1
|
Yang T, Chavez MS, Niman CM, Xu S, El-Naggar MY. Long-distance electron transport in multicellular freshwater cable bacteria. eLife 2024; 12:RP91097. [PMID: 39207443 PMCID: PMC11361709 DOI: 10.7554/elife.91097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current-voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope's nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Shuai Xu
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos AngelesUnited States
- Department of Chemistry, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
2
|
Di Nezio F, Roman S, Buetti-Dinh A, Sepúlveda Steiner O, Bouffard D, Sengupta A, Storelli N. Motile bacteria leverage bioconvection for eco-physiological benefits in a natural aquatic environment. Front Microbiol 2023; 14:1253009. [PMID: 38163082 PMCID: PMC10756677 DOI: 10.3389/fmicb.2023.1253009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Bioconvection, a phenomenon characterized by the collective upward swimming of motile microorganisms, has mainly been investigated within controlled laboratory settings, leaving a knowledge gap regarding its ecological implications in natural aquatic environments. This study aims to address this question by investigating the influence of bioconvection on the eco-physiology of the anoxygenic phototrophic sulfur bacteria community of meromictic Lake Cadagno. Methods Here we comprehensively explore its effects by comparing the physicochemical profiles of the water column and the physiological traits of the main populations of the bacterial layer (BL). The search for eco-physiological effects of bioconvection involved a comparative analysis between two time points during the warm season, one featuring bioconvection (July) and the other without it (September). Results A prominent distinction in the physicochemical profiles of the water column centers on light availability, which is significantly higher in July. This minimum threshold of light intensity is essential for sustaining the physiological CO2 fixation activity of Chromatium okenii, the microorganism responsible for bioconvection. Furthermore, the turbulence generated by bioconvection redistributes sulfides to the upper region of the BL and displaces other microorganisms from their optimal ecological niches. Conclusion The findings underscore the influence of bioconvection on the physiology of C. okenii and demonstrate its functional role in improving its metabolic advantage over coexisting phototrophic sulfur bacteria. However, additional research is necessary to confirm these results and to unravel the multiscale processes activated by C. okenii's motility mechanisms.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Samuele Roman
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
| | - Oscar Sepúlveda Steiner
- Department of Surface Waters – Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
- Civil and Environmental Engineering, University of California, Davis, Davis, CA, United States
| | - Damien Bouffard
- Department of Surface Waters – Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
- Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Anupam Sengupta
- Department of Physics and Materials Science, Physics of Living Matter Group, Luxembourg City, Luxembourg
| | - Nicola Storelli
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Hu S, He R, Zeng J, Zhao D, Wang S, He F, Yu Z, Wu QL. Lower Compositional Variation and Higher Network Complexity of Rhizosphere Bacterial Community in Constructed Wetland Compared to Natural Wetland. MICROBIAL ECOLOGY 2023; 85:965-979. [PMID: 35641581 DOI: 10.1007/s00248-022-02040-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 05/04/2023]
Abstract
Macrophyte rhizosphere microbes, as crucial components of the wetland ecosystem, play an important role in maintaining the function and stability of natural and constructed wetlands. Distinct environmental conditions and management practices between natural and constructed wetlands would affect macrophytes rhizosphere microbial communities and their associated functions. Nevertheless, the understanding of the diversity, composition, and co-occurrence patterns of the rhizosphere bacterial communities in natural and constructed wetlands remains unclear. Here, we used 16S rRNA gene high-throughput sequencing to characterize the bacterial community of the rhizosphere and bulk sediments of macrophyte Phragmites australis in representative natural and constructed wetlands. We observed higher alpha diversity of the bacterial community in the constructed wetland than that of the natural wetland. Additionally, the similarity of bacterial community composition between rhizosphere and bulk sediments in the constructed wetland was increased compared to that of the natural wetland. We also found that plants recruit specific taxa with adaptive functions in the rhizosphere of different wetland types. Rhizosphere samples of the natural wetland significantly enriched the functional bacterial groups that mainly related to nutrient cycling and plant-growth-promoting, while those of the constructed wetland-enriched bacterial taxa with potentials for biodegradation. Co-occurrence network analysis showed that the interactions among rhizosphere bacterial taxa in the constructed wetland were more complex than those of the natural wetland. This study broadens our understanding of the distinct selection processes of the macrophytes rhizosphere-associated microbes and the co-occurrence network patterns in different wetland types. Furthermore, our findings emphasize the importance of plant-microbe interactions in wetlands and further suggest P. australis rhizosphere enriched diverse functional bacteria that might enhance the wetland performance through biodegradation, nutrient cycling, and supporting plant growth.
Collapse
Affiliation(s)
- Siwen Hu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shuren Wang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fei He
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Bacterial, Phytoplankton, and Viral Distributions and Their Biogeochemical Contexts in Meromictic Lake Cadagno Offer Insights into the Proterozoic Ocean Microbial Loop. mBio 2022; 13:e0005222. [PMID: 35726916 PMCID: PMC9426590 DOI: 10.1128/mbio.00052-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lake Cadagno, a permanently stratified high-alpine lake with a persistent microbial bloom in its chemocline, has long been considered a model for the low-oxygen, high-sulfide Proterozoic ocean. Although the lake has been studied for over 25 years, the absence of concerted study of the bacteria, phytoplankton, and viruses, together with primary and secondary production, has hindered a comprehensive understanding of its microbial food web. Here, the identities, abundances, and productivity of microbes were evaluated in the context of Lake Cadagno biogeochemistry. Photosynthetic pigments together with 16S rRNA gene phylogenies suggest the prominence of eukaryotic phytoplankton chloroplasts, primarily chlorophytes. Chloroplasts closely related to those of high-alpine-adapted Ankyra judayi persisted with oxygen in the mixolimnion, where photosynthetic efficiency was high, while chloroplasts of Closteriopsis-related chlorophytes peaked in the chemocline and monimolimnion. The anoxygenic phototrophic sulfur bacterium Chromatium dominated the chemocline along with Lentimicrobium, a genus of known fermenters. Secondary production peaked in the chemocline, which suggested that anoxygenic primary producers depended on heterotrophic nutrient remineralization. The virus-to-microbe ratio peaked with phytoplankton abundances in the mixolimnion and were at a minimum where Chromatium abundance was highest, trends that suggest that viruses may play a role in the modulation of primary production. Through the combined analysis of bacterial, eukaryotic, viral, and biogeochemical spatial dynamics, we provide a comprehensive synthesis of the Lake Cadagno microbial loop. This study offers a new ecological perspective on how biological and geochemical connections may have occurred in the chemocline of the Proterozoic ocean, where eukaryotic microbial life is thought to have evolved.
Collapse
|
5
|
Chen M, Jiao YY, Zhang YQ, Krumholz LR, Ren JX, Li ZH, Zhao LY, Song HT, Lu JD. Succession of sulfur bacteria during decomposition of cyanobacterial bloom biomass in the shallow Lake Nanhu: An ex situ mesocosm study. CHEMOSPHERE 2020; 256:127101. [PMID: 32450355 DOI: 10.1016/j.chemosphere.2020.127101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/26/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Previous studies of the dynamics of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) have focused on deep stratified lakes. The objective of this study is to present an in-depth investigation of the structure and dynamics of sulfur bacteria (including SRB and SOB) in the water column of shallow freshwater lakes. A cyanobacterial bloom biomass (CBB)-amended mesocosm experiment was conducted in this study, in which water was taken from a shallow eutrophic lake with sulfate levels near 40 mg L-1. Illumina sequencing was used to investigate SRB and SOB species involved in CBB decomposition and the effects of the increases in sulfate input on the water column microbial community structure. The accumulation of dissolved sulfide (∑H2S) produced by SRB during CBB decomposition stimulated the growth of SOB, and ∑H2S was then oxidized back to sulfate by SOB in the water column. Chlorobaculum sequences (the main SOB species in the study) were significantly influenced by increases in sulfate input, with relative abundance increasing approximately four-fold in treatments amended with 40 mg L-1 sulfate (referred to as 40S) when compared to the treatment without additional sulfate addition (referred to as CU). Additionally, an increase in SOB number was observed from day 26-37, concurrent with the decrease in SRB number, indicating the succession of sulfur bacteria. These findings suggest that biological sulfur oxidation and succession of sulfur bacteria occur in the water column during CBB decomposition in shallow freshwater ecosystems, and the increases in sulfate input stimulate microbial sulfur oxidation.
Collapse
Affiliation(s)
- Mo Chen
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yi-Ying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, China
| | - Ya-Qing Zhang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Lee R Krumholz
- Department of Botany & Microbiology, University of Oklahoma, Norman, OK, USA
| | - Jun-Xian Ren
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Zhao-Hua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Li-Ya Zhao
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Hui-Ting Song
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Jin-Deng Lu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
6
|
Berg JS, Pjevac P, Sommer T, Buckner CRT, Philippi M, Hach PF, Liebeke M, Holtappels M, Danza F, Tonolla M, Sengupta A, Schubert CJ, Milucka J, Kuypers MMM. Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Environ Microbiol 2019; 21:1611-1626. [PMID: 30689286 DOI: 10.1111/1462-2920.14543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022]
Abstract
Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also oxidize sulfide with nitrate and oxygen, little is known about the prevalence of this chemolithotrophic lifestyle in the environment. In this study, we investigated the role of these phototrophs in light-independent sulfide removal in the chemocline of Lake Cadagno. Our temporally resolved, high-resolution chemical profiles indicated that dark sulfide oxidation was coupled to high oxygen consumption rates of ~9 μM O2 ·h-1 . Single-cell analyses of lake water incubated with 13 CO2 in the dark revealed that Chromatium okenii was to a large extent responsible for aerobic sulfide oxidation and it accounted for up to 40% of total dark carbon fixation. The genome of Chr. okenii reconstructed from the Lake Cadagno metagenome confirms its capacity for microaerophilic growth and provides further insights into its metabolic capabilities. Moreover, our genomic and single-cell data indicated that other PSB grow microaerobically in these apparently anoxic waters. Altogether, our observations suggest that aerobic respiration may not only play an underappreciated role in anoxic environments but also that organisms typically considered strict anaerobes may be involved.
Collapse
Affiliation(s)
- Jasmine S Berg
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.,Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zurich, 8092, Zurich, Switzerland
| | - Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - Tobias Sommer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Caroline R T Buckner
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Miriam Philippi
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Philipp F Hach
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Manuel Liebeke
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Moritz Holtappels
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Alten Hafen 26, 27568, Bremerhaven, Germany
| | - Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department for Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department for Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Anupam Sengupta
- Physics and Materials Science Research Unit, University of Luxembourg, 162 A, Avenue de la Faencerie, L-1511, Luxembourg City, Luxembourg
| | - Carsten J Schubert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| |
Collapse
|
7
|
Bacterial diversity in the water column of meromictic Lake Cadagno and evidence for seasonal dynamics. PLoS One 2018; 13:e0209743. [PMID: 30586464 PMCID: PMC6306205 DOI: 10.1371/journal.pone.0209743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/11/2018] [Indexed: 11/19/2022] Open
Abstract
The meromictic Lake Cadagno is characterized by a compact chemocline with high concentrations of anoxygenic phototrophic purple and green sulfur bacteria. However, a complete picture of the bacterial diversity, and in particular of effects of seasonality and compartmentalization is missing. To characterize bacterial communities and elucidate relationships between them and their surrounding environment high-throughput 16S rRNA gene pyrosequencing was conducted. Proteobacteria, Chlorobi, Verrucomicrobia, and Actinobacteria were the dominant groups in Lake Cadagno water column. Moreover, bacterial interaction within the chemocline and between oxic and anoxic lake compartments were investigated through fluorescence in situ hybridization (FISH) and flow cytometry (FCM). The different populations of purple sulfur bacteria (PSB) and green sulfur bacteria (GSB) in the chemocline indicate seasonal dynamics of phototrophic sulfur bacteria composition. Interestingly, an exceptional bloom of a cyanobacteria population in the oxic-anoxic transition zone affected the common spatial distribution of phototrophic sulfur bacteria with consequence on chemocline location and water column stability. Our study suggests that both bacterial interactions between different lake compartments and within the chemocline can be a dynamic process influencing the stratification structure of Lake Cadagno water column.
Collapse
|
8
|
Hao T, Luo J, Wei L, Mackey HR, Liu R, Rey Morito G, Chen GH. Physicochemical and biological characterization of long-term operated sulfate reducing granular sludge in the SANI® process. WATER RESEARCH 2015; 71:74-84. [PMID: 25600299 DOI: 10.1016/j.watres.2014.12.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 09/26/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
The SANI(®) process (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) is a treatment system with low energy demands. The major bioreactor of this new technology is a sulfate-reducing up-flow sludge bed (SRUSB) that converts organics and provides electron donors for subsequent autotrophic denitrification. This research characterizes the granules inside the SRUSB, with the aim of improving its efficiency, maximizing its operational flexibility, and minimizing its footprint. The unique sulfate-reducing bacteria (SRB) granules serving in the SRUSB were found to increase the resilience and compactness of the SRUSB. The granules, with a compact and porous structure, showed high cohesion resisting breakage with a shear force G > 3400 s(-1). The hydrophobicity of the external surface of the mature granules remained stable at around 70% and acid volatile sulfide (AVS) accumulated at the bottom of the SRUSB. 16s rRNA gene analysis of the microbial communities revealed that Desulfobulbus (42.1%), Prosthecochloris (19%) and Trichococcus (12%) dominated the mature granular sludge. Fluorescence in situ hybridization (FISH) further showed that SRB organisms were located internally and then surrounded by non-SRB. According to the FISH results, the spatial distribution of extracellular polymeric substances (EPS) displayed protein and α-polysaccharides in the exterior and β-polysaccharide in the core of the granules. Such biological structure suggests that each SRB granule acts as an efficient and independent unit, capable of achieving both fermentation and organic conversion. The present investigation sheds light on the physicochemical and biological characteristics of the SRB granulate. This information provides valuable information for scaling-up the SANI(®) process to treat real saline sewage in Hong Kong.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jinghai Luo
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Li Wei
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hamish R Mackey
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Rulong Liu
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guillermo Rey Morito
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; SYSU-HKUST Research Centre for Innovative Environmental Technology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Pjevac P, Kamyshny A, Dyksma S, Mußmann M. Microbial consumption of zero-valence sulfur in marine benthic habitats. Environ Microbiol 2014; 16:3416-30. [DOI: 10.1111/1462-2920.12410] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/20/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Petra Pjevac
- Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Alexey Kamyshny
- Department of Geological and Environmental Sciences; The Faculty of Natural Sciences; Ben-Gurion University of the Negev; Beer Sheva Israel
| | - Stefan Dyksma
- Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology; Bremen Germany
| |
Collapse
|
10
|
Hao T, Wei L, Lu H, Chui H, Mackey HR, van Loosdrecht MCM, Chen G. Characterization of sulfate-reducing granular sludge in the SANI(®) process. WATER RESEARCH 2013; 47:7042-7052. [PMID: 24200003 DOI: 10.1016/j.watres.2013.07.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
Hong Kong practices seawater toilet flushing covering 80% of the population. A sulfur cycle-based biological nitrogen removal process, the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process, had been developed to close the loop between the hybrid water supply and saline sewage treatment. To enhance this novel process, granulation of a Sulfate-Reducing Up-flow Sludge Bed (SRUSB) reactor has recently been conducted for organic removal and provision of electron donors (sulfide) for subsequent autotrophic denitrification, with a view to minimizing footprint and maximizing operation resilience. This further study was focused on the biological and physicochemical characteristics of the granular sulfate-reducing sludge. A lab-scale SRUSB reactor seeded with anaerobic digester sludge was operated with synthetic saline sewage for 368 days. At 1 h nominal hydraulic retention time (HRT) and 6.4 kg COD/m(3)-d organic loading rate, the SRUSB reactor achieved 90% COD and 75% sulfate removal efficiencies. Granular sludge was observed within 30 days, and became stable after 4 months of operation with diameters of 400-500 μm, SVI5 of 30 ml/g, and extracellular polymeric substances of 23 mg carbohydrate/g VSS. Fluorescence in situ hybridization (FISH) analysis revealed that the granules were enriched with abundant sulfate-reducing bacteria (SRB) as compared with the seeding sludge. Pyrosequencing analysis of the 16S rRNA gene in the sulfate-reducing granules on day 90 indicated that the microbial community consisted of a diverse SRB genera, namely Desulfobulbus (18.1%), Desulfobacter (13.6%), Desulfomicrobium (5.6%), Desulfosarcina (0.73%) and Desulfovibrio (0.6%), accounting for 38.6% of total operational taxonomic units at genera level, with no methanogens detected. The microbial population and physicochemical properties of the granules well explained the excellent performance of the granular SRUSB reactor.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
11
|
Tonolla M, Peduzzi S, Hahn D, Peduzzi R. Spatio-temporal distribution of phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). FEMS Microbiol Ecol 2012; 43:89-98. [PMID: 19719699 DOI: 10.1111/j.1574-6941.2003.tb01048.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Abstract In situ hybridization was used to study the spatio-temporal distribution of phototrophic sulfur bacteria in the permanent chemocline of meromictic Lake Cadagno, Switzerland. At all four sampling times during the year the numerically most important phototrophic sulfur bacteria in the chemocline were small-celled purple sulfur bacteria of two yet uncultured populations designated D and F. Other small-celled purple sulfur bacteria (Amoebobacter purpureus and Lamprocystis roseopersicina) were found in numbers about one order of magnitude lower. These numbers were similar to those of large-celled purple sulfur bacteria (Chromatium okenii) and green sulfur bacteria that almost entirely consisted of Chlorobium phaeobacteroides. In March and June when low light intensities reached the chemocline, cell densities of all populations, with the exception of L. roseopersicina, were about one order of magnitude lower than in August and October when light intensities were much higher. Most populations were evenly distributed throughout the whole chemocline during March and June, while in August and October a microstratification of populations was detected suggesting specific eco-physiological adaptations of different populations of phototrophic sulfur bacteria to the steep physico-chemical gradients in the chemocline of Lake Cadagno.
Collapse
Affiliation(s)
- Mauro Tonolla
- Cantonal Institute of Microbiology, Microbial Ecology (University of Geneva), Via Giuseppe Buffi 6, CH-6904 Lugano, Switzerland
| | | | | | | |
Collapse
|
12
|
Isolation and characterization of aggregate-forming sulfate-reducing and purple sulfur bacteria from the chemocline of meromictic Lake Cadagno, Switzerland. FEMS Microbiol Ecol 2012; 45:29-37. [PMID: 19719604 DOI: 10.1016/s0168-6496(03)00107-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract In situ hybridization with specific oligonucleotide probes was used to monitor enrichment cultures of yet uncultured populations of sulfate-reducing and small-celled purple sulfur bacteria found to associate into aggregates in the chemocline of meromictic Lake Cadagno, Switzerland, and to select potential isolates. Enrichment and isolation conditions resembled those of their nearest cultured relatives, the sulfate-reducing bacterium Desulfocapsa thiozymogenes and small-celled purple sulfur bacteria belonging to the genus Lamprocystis, respectively. Based on comparative 16S rRNA analysis and physiological characterization, isolate Cad626 was found to resemble D. thiozymogenes although it differed from the type strain by its ability to grow on lactate and pyruvate. Like D. thiozymogenes, isolate Cad626 was able to disproportionate inorganic sulfur compounds (sulfur, thiosulfate, sulfite) and to grow, although growth on sulfur required a sulfide scavenger (FeOOH). Isolate Cad16 represented small-celled purple sulfur bacteria that belonged to a previously detected, but uncultured population designated F and was related to Lamprocystis purpurea as evidenced by comparative 16S rRNA analysis and the presence of bacteriochlorophyll a and the carotenoid okenone. Mixed cultures of isolates Cad626 and Cad16 resulted in their association in aggregates similar to those observed in the chemocline of Lake Cadagno. Concomitant growth enhancement of both isolates in mixed culture suggested synergistic interactions that presumably resemble a source-sink relationship for sulfide between the sulfate-reducing bacterium growing by sulfur disproportionation and the purple sulfur bacteria acting as biotic scavenger.
Collapse
|
13
|
Klepac-Ceraj V, Hayes CA, Gilhooly WP, Lyons TW, Kolter R, Pearson A. Microbial diversity under extreme euxinia: Mahoney Lake, Canada. GEOBIOLOGY 2012; 10:223-235. [PMID: 22329601 DOI: 10.1111/j.1472-4669.2012.00317.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and/or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distributions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomicrobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. Overall, the results are consistent with the presence of distinct microbial niches and suggest zonation of sulfur cycle processes in this stratified system.
Collapse
MESH Headings
- Archaea/classification
- Archaea/isolation & purification
- Bacteria/classification
- Bacteria/isolation & purification
- Biota
- British Columbia
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fresh Water/microbiology
- Genes, rRNA
- Geologic Sediments/microbiology
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- V Klepac-Ceraj
- Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Kai Finster
- a Microbiology section, Institute of Biological Sciences, University of Aarhus , Aarhus C, Denmark
| |
Collapse
|
15
|
Fritz GB, Pfannkuchen M, Struck U, Hengherr S, Strohmeier S, Brümmer F. Characterizing an Anoxic Habitat: Sulfur Bacteria in a Meromictic Alpine Lake. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-1896-8_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
16
|
Brück WM, Brück TB, Self WT, Reed JK, Nitecki SS, McCarthy PJ. Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida. ISME JOURNAL 2010; 4:686-99. [DOI: 10.1038/ismej.2009.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Schmidtova J, Hallam SJ, Baldwin SA. Phylogenetic diversity of transition and anoxic zone bacterial communities within a near-shore anoxic basin: Nitinat Lake. Environ Microbiol 2009; 11:3233-51. [DOI: 10.1111/j.1462-2920.2009.02044.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Bayer C, Heindl NR, Rinke C, Lücker S, Ott JA, Bulgheresi S. Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:136-144. [PMID: 19838308 PMCID: PMC2761003 DOI: 10.1111/j.1758-2229.2009.00019.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/06/2009] [Indexed: 05/24/2023]
Abstract
Marine nematodes that carry sulfur-oxidizing bacteria on their cuticle (Stilbonematinae, Desmodoridae) migrate between oxidized and reduced sand layers thereby supplying their symbionts with oxygen and sulfide. These symbionts, in turn, constitute the worms' major food source. Due to the accessibility, abundance and relative simplicity of this association, stilbonematids may be useful to understand symbiosis establishment. Nevertheless, only the symbiont of Laxus oneistus has been found to constitute one single phylotype within the Gammaproteobacteria. Here, we characterized the symbionts of three yet undescribed nematodes that were morphologically identified as members of the genus Robbea. They were collected at the island of Corsica, the Cayman Islands and the Belize Barrier Reef. The surface of these worms is covered by a single layer of morphologically undistinguishable bacteria. 18S rDNA-based phylogenetic analysis showed that all three species belong to the Stilbonematinae, although they do not form a distinct cluster within that subfamily. 16S rDNA-based analysis of the symbionts placed them interspersed in the cluster comprising the sulfur-oxidizing symbionts of L. oneistus and of marine gutless oligochaetes. Finally, the presence and phylogeny of the aprA gene indicated that the symbionts of all three nematodes can use reduced sulfur compounds as an energy source.
Collapse
Affiliation(s)
- Christoph Bayer
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Niels R Heindl
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Christian Rinke
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Sebastian Lücker
- Departments of Microbial Ecology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Joerg A Ott
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Silvia Bulgheresi
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
19
|
Overmann J. Ecology of Phototrophic Sulfur Bacteria. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S. Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 2006; 72:5596-609. [PMID: 16885314 PMCID: PMC1538711 DOI: 10.1128/aem.00715-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Waters from an extensive sulfide-rich aquifer emerge in the Frasassi cave system, where they mix with oxygen-rich percolating water and cave air over a large surface area. The actively forming cave complex hosts a microbial community, including conspicuous white biofilms coating surfaces in cave streams, that is isolated from surface sources of C and N. Two distinct biofilm morphologies were observed in the streams over a 4-year period. Bacterial 16S rDNA libraries were constructed from samples of each biofilm type collected from Grotta Sulfurea in 2002. beta-, gamma-, delta-, and epsilon-proteobacteria in sulfur-cycling clades accounted for > or = 75% of clones in both biofilms. Sulfate-reducing and sulfur-disproportionating delta-proteobacterial sequences in the clone libraries were abundant and diverse (34% of phylotypes). Biofilm samples of both types were later collected at the same location and at an additional sample site in Ramo Sulfureo and examined, using fluorescence in situ hybridization (FISH). The biomass of all six stream biofilms was dominated by filamentous gamma-proteobacteria with Beggiatoa-like and/or Thiothrix-like cells containing abundant sulfur inclusions. The biomass of epsilon-proteobacteria detected using FISH was consistently small, ranging from 0 to less than 15% of the total biomass. Our results suggest that S cycling within the stream biofilms is an important feature of the cave biogeochemistry. Such cycling represents positive biological feedback to sulfuric acid speleogenesis and related processes that create subsurface porosity in carbonate rocks.
Collapse
Affiliation(s)
- Jennifer L Macalady
- Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Olapade OA, Depas MM, Jensen ET, McLellan SL. Microbial communities and fecal indicator bacteria associated with Cladophora mats on beach sites along Lake Michigan shores. Appl Environ Microbiol 2006; 72:1932-8. [PMID: 16517640 PMCID: PMC1393218 DOI: 10.1128/aem.72.3.1932-1938.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high biomasses of Cladophora, a filamentous green alga, is found mainly during the summer along the shores of Lake Michigan. In this study, the abundance and persistence of the fecal indicator bacterium Escherichia coli and sulfate-reducing bacteria (SRB) on Cladophora mats collected at Lake Michigan beaches were evaluated using both culture-based and molecular analyses. Additionally, 16S rRNA gene cloning and sequencing were used to examine the bacterial community composition. Overall, E. coli was detected in all 63 samples obtained from 11 sites, and the average levels at most beaches ranged from 2,700 CFU/100 g (wet weight) of Cladophora to 7,500 CFU/100 g of Cladophora. However, three beaches were found to have site average E. coli densities of 12,800, 21,130, and 27,950 CFU/100 g of Cladophora. The E. coli levels in the lake water collected at the same time from these three sites were less than the recommended U.S. Environmental Protection Agency limit, 235 CFU/100 ml. E. coli also persisted on Cladophora mats in microcosms at room temperature for more than 7 days, and in some experiments it persisted for as long as 28 days. The SRB densities on Cladophora mats were relatively high, ranging from 4.4x10(6) cells/g (6.64 log CFU/g) to 5.73x10(6) cells/g (6.76 log CFU/g) and accounting for between 20% and 27% of the total bacterial counts. Partial sequences of the 16S rRNA gene clones revealed a phylogenetically diverse community, in which the Cytophaga-Flavobacterium-Bacteroides cluster and the low-G+C-content gram-positive bacteria were the dominant organisms, accounting for 40% and 12.8%, respectively, of the total clone library. These results further reveal the potential public health and ecological significance of Cladophora mats that are commonly found along the shoreline of Lake Michigan, especially with regard to the potential to harbor microorganisms associated with fecal pollution and odor-causing bacteria.
Collapse
Affiliation(s)
- Ola A Olapade
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, 600 E. Greenfield Avenue, Milwaukee, WI 53204, USA
| | | | | | | |
Collapse
|
22
|
Overmann J. Symbiosis between non-related bacteria in phototrophic consortia. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:21-37. [PMID: 16623387 DOI: 10.1007/3-540-28221-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Jörg Overmann
- Bereich Mikrobiologie, Department Biologie I, Maria-Ward-Str. la, 80638 München, Germany.
| |
Collapse
|
23
|
Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 2005; 66:194-205. [PMID: 16337704 DOI: 10.1016/j.mimet.2005.11.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 10/28/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
A denaturing gradient gel electrophoresis (DGGE) method was developed to assess the diversity of dsrB (dissimilatory sulfite reductase beta-subunit)-genes in sulfate-reducing communities. For this purpose a PCR primer pair was optimized for the amplification of a approximately 350 bp dsrB gene fragment that after DGGE gel electrophoresis enabled us to discriminate between dsrB genes of different SRB-subgroups,-genera and -species. The dsrB-DGGE method revealed considerable genetic diversity when applied to DNA extracts obtained from aquifer samples that were derived from monitoring wells of an in situ metal precipitation (ISMP) pilot project conducted at the site of a non-ferrous industry or from environmental heavy metal contaminated samples. The sequences of the excised and sequenced DGGE bands represented dsrB genes of different SRB-subgroups,-genera and -species, thus confirming the broad applicability of the PCR primer pair. Linking the results of the physico-chemical follow-up of the field and lab experiments to the dsrB-DGGE data will provide a better understanding of the contribution of the SRB populations to the ongoing ISMP processes.
Collapse
Affiliation(s)
- Joke Geets
- Limburg University Centrum, Department of Chemistry, Biology and Geology, Environmental Biology Group, Universitaire Campus, B-3590 Diepenbeek, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Tonolla M, Peduzzi R, Hahn D. Long-term population dynamics of phototrophic sulfur bacteria in the chemocline of Lake Cadagno, Switzerland. Appl Environ Microbiol 2005; 71:3544-50. [PMID: 16000760 PMCID: PMC1169024 DOI: 10.1128/aem.71.7.3544-3550.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Population analyses in water samples obtained from the chemocline of crenogenic, meromictic Lake Cadagno, Switzerland, in October for the years 1994 to 2003 were studied using in situ hybridization with specific probes. During this 10-year period, large shifts in abundance between purple and green sulfur bacteria and among different populations were obtained. Purple sulfur bacteria were the numerically most prominent phototrophic sulfur bacteria in samples obtained from 1994 to 2001, when they represented between 70 and 95% of the phototrophic sulfur bacteria. All populations of purple sulfur bacteria showed large fluctuations in time with populations belonging to the genus Lamprocystis being numerically much more important than those of the genera Chromatium and Thiocystis. Green sulfur bacteria were initially represented by Chlorobium phaeobacteroides but were replaced by Chlorobium clathratiforme by the end of the study. C. clathratiforme was the only green sulfur bacterium detected during the last 2 years of the analysis, when a shift in dominance from purple sulfur bacteria to green sulfur bacteria was observed in the chemocline. At this time, numbers of purple sulfur bacteria had decreased and those of green sulfur bacteria increased by about 1 order of magnitude and C. clathratiforme represented about 95% of the phototrophic sulfur bacteria. This major change in community structure in the chemocline was accompanied by changes in profiles of turbidity and photosynthetically available radiation, as well as for sulfide concentrations and light intensity. Overall, these findings suggest that a disruption of the chemocline in 2000 may have altered environmental niches and populations in subsequent years.
Collapse
Affiliation(s)
- Mauro Tonolla
- Cantonal Institute of Microbiology, Via Mirasole 22A, CH-6500 Bellinzona, Switzerland
| | | | | |
Collapse
|
25
|
Tonolla M, Bottinelli M, Demarta A, Peduzzi R, Hahn D. Molecular identification of an uncultured bacterium ("morphotype R") in meromictic Lake Cadagno, Switzerland. FEMS Microbiol Ecol 2005; 53:235-44. [PMID: 16329943 DOI: 10.1016/j.femsec.2004.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 12/20/2004] [Accepted: 12/22/2004] [Indexed: 11/28/2022] Open
Abstract
Comparative sequence analysis of almost complete 16S rRNA genes of members of the Desulfobacteriaceae retrieved from two gene clone libraries of uncultured bacteria of the chemocline of Lake Cadagno, Switzerland, resulted in the molecular identification of nine sequences, with a tight cluster of five sequences that represented at least three different populations of bacteria with homology values of 95% and 93% to their closest cultured relatives Desulfomonile tiedjei and Desulfomonile limimaris, respectively. In situ hybridization with probes DsmA455 targeting two subpopulations and DsmB455 targeting one subpopulation, detected bacteria with a peculiar morphology previously described as "morphotype R". The individual probes detected about the same number of cells in all samples and together added up to represent all cells of "morphotype R" suggesting that the basic ecophysiological requirements of the subpopulations might be similar. In the monimolimnion, "morphotype R" cells accounted for up to 29% of all Bacteria and entirely represented the Desulfobacteriaceae, the most prominent sulfate-reducing bacteria. In the sediment, "morphotype R" was similarly prominent in the upper cm only where it represented all Desulfobacteriaceae and up to 50% of all Bacteria. Numbers and importance within the Desulfobacteriaceae and Bacteria declined significantly with depth in sediments suggesting potential effects of changing environmental conditions on the fate of "morphotype R".
Collapse
Affiliation(s)
- Mauro Tonolla
- Cantonal Institute of Microbiology, Bellinzona, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 2004; 70:6230-9. [PMID: 15466570 PMCID: PMC522115 DOI: 10.1128/aem.70.10.6230-6239.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The occurrence and distribution of magnetotactic bacteria (MB) were studied as a function of the physical and chemical conditions in meromictic Salt Pond, Falmouth, Mass., throughout summer 2002. Three dominant MB morphotypes were observed to occur within the chemocline. Small microaerophilic magnetite-producing cocci were present at the top of the chemocline, while a greigite-producing packet-forming bacterium occurred at the base of the chemocline. The distributions of these groups displayed sharp changes in abundance over small length scales within the water column as well as strong seasonal fluctuations in population abundance. We identified a novel, greigite-producing rod in the sulfidic hypolimnion that was present in relatively constant abundance over the course of the season. This rod is the first MB that appears to belong to the gamma-Proteobacteria, which may suggest an iron- rather than sulfur-based respiratory metabolism. Its distribution and phylogenetic identity suggest that an alternative model for the ecological and physiological role of magnetotaxis is needed for greigite-producing MB.
Collapse
Affiliation(s)
- S L Simmons
- Geomirobiology Group, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | | | | | | |
Collapse
|
27
|
Engel AS, Porter ML, Stern LA, Quinlan S, Bennett PC. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic âEpsilonproteobacteriaâ. FEMS Microbiol Ecol 2004; 51:31-53. [PMID: 16329854 DOI: 10.1016/j.femsec.2004.07.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 06/09/2004] [Accepted: 07/12/2004] [Indexed: 11/23/2022] Open
Abstract
Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave, Wyoming, were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of white filament bundles, with low C:N ratios (3.5-5.4) and high sulfur content (16.1-51.2%). White filament bundles and two other mat morphotypes had organic carbon isotope values (mean delta13C=-34.7 per thousand, 1sigma=3.6) consistent with chemolithoautotrophic carbon fixation from a dissolved inorganic carbon reservoir (cave water, mean delta13C=-7.4 per thousand for two springs, n=8). Bacterial diversity was low overall in the clone libraries, and the most abundant taxonomic group was affiliated with the "Epsilonproteobacteria" (68%), with other bacterial sequences affiliated with Gammaproteobacteria (12.2%), Betaproteobacteria (11.7%), Deltaproteobacteria (0.8%), and the Acidobacterium (5.6%) and Bacteriodetes/Chlorobi (1.7%) divisions. Six distinct epsilonproteobacterial taxonomic groups were identified from the microbial mats. Epsilonproteobacterial and bacterial group abundances and community structure shifted from the spring orifices downstream, corresponding to changes in dissolved sulfide and oxygen concentrations and metabolic requirements of certain bacterial groups. Most of the clone sequences for epsilonproteobacterial groups were retrieved from areas with high sulfide and low oxygen concentrations, whereas Thiothrix spp. and Thiobacillus spp. had higher retrieved clone abundances where conditions of low sulfide and high oxygen concentrations were measured. Genetic and metabolic diversity among the "Epsilonproteobacteria" maximizes overall cave ecosystem function, and these organisms play a significant role in providing chemolithoautotrophic energy to the otherwise nutrient-poor cave habitat. Our results demonstrate that sulfur cycling supports subsurface ecosystems through chemolithoautotrophy and expand the evolutionary and ecological views of "Epsilonproteobacteria" in terrestrial habitats.
Collapse
Affiliation(s)
- Annette Summers Engel
- Department of Geological Sciences, Research Group for Microbial Geochemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
28
|
Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Spear JR, Krumholz LR. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 2003; 69:5609-21. [PMID: 12957951 PMCID: PMC194924 DOI: 10.1128/aem.69.9.5609-5621.2003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 06/25/2003] [Indexed: 11/20/2022] Open
Abstract
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.
Collapse
Affiliation(s)
- Mostafa S Elshahed
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Schramm A, Fuchs BM, Nielsen JL, Tonolla M, Stahl DA. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 2002; 4:713-20. [PMID: 12460279 DOI: 10.1046/j.1462-2920.2002.00364.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A method is presented for fluorescence in situ hybridization (FISH) of 16S rRNA gene clones targeting in vivo transcribed plasmid inserts (Clone-FISH). Several different cloning approaches and treatments to generate target-rRNA in the clones were compared. Highest signal intensities of Clone-FISH were obtained using plasmids with a T7 RNA polymerase promoter and host cells with an IPTG-inducible T7 RNA polymerase. Combined IPTG-induction and chloramphenicol treatment of those clones resulted in FISH signals up to 2.8-fold higher than signals of FISH with probe EUB338 to cells of Escherichia coli. Probe dissociation curves for three oligonucleotide probes were compared for reference cells containing native (FISH) or cloned (Clone-FISH) target sequences. Melting behaviour and calculated T(d) values were virtually identical for clones and cells, providing a format to use 16S rRNA gene clones instead of pure cultures for probe validation and optimization of hybridization conditions. The optimized Clone-FISH protocol was also used to screen an environmental clone library for insert sequences of interest. In this application format, 13 out of 82 clones examined were identified to contain sulphate-reducing bacterial rRNA genes. In summary, Clone-FISH is a simple and fast technique, compatible with a wide variety of cloning vectors and hosts, that should have general utility for probe validation and screening of clone libraries.
Collapse
Affiliation(s)
- Andreas Schramm
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA
| | | | | | | | | |
Collapse
|
30
|
Ashelford KE, Weightman AJ, Fry JC. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res 2002; 30:3481-9. [PMID: 12140334 PMCID: PMC137075 DOI: 10.1093/nar/gkf450] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe PRIMROSE, a computer program for identifying 16S rRNA probes and PCR primers for use as phylogenetic and ecological tools in the identification and enumeration of bacteria. PRIMROSE is designed to use data from the Ribosomal Database Project (RDP) to find potentially useful oligonucleotides with up to two degenerate positions. The taxonomic range of these, and other existing oligonucleotides, can then be explored, allowing for the rapid identification of suitable oligonucleotides. PRIMROSE includes features to allow user-defined sequence databases to be used. An in silico trial of the program using the RDP database identified oligonucleotides that described their target taxa with a degree of accuracy far greater than that of equivalent currently used oligonucleotides. We identify oligonucleotides for subdivisions of the Proteobacteria and for the Cytophaga-Flexibacter-Bacteroides (CFB) division. These oligonucleotides describe up to 94.7% of their target taxon with fewer than 50 non-target hits, and the authors recommend that they be investigated further. A comparison with PROBE DESIGN within the ARB software package shows that PRIMROSE is capable of identifying oligonucleotides with a higher specificity. PRIMROSE has an intuitive graphical user interface and runs on the Microsoft Windows 95/NT/2000 operating systems. It is open source and is freely available from the authors.
Collapse
Affiliation(s)
- Kevin E Ashelford
- Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff CF10 3TL, UK.
| | | | | |
Collapse
|
31
|
Amann R, Fuchs BM, Behrens S. The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 2001; 12:231-6. [PMID: 11404099 DOI: 10.1016/s0958-1669(00)00204-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluorescence in situ hybridisation (FISH) with rRNA-targeted oligonucleotide probes facilitates the rapid and specific identification of individual microbial cells in their natural environments. Over the past year there have been a number of methodological developments in this area and new applications of FISH in microbial ecology and biotechnology have been reported.
Collapse
Affiliation(s)
- R Amann
- Molecular Ecology Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.
| | | | | |
Collapse
|