1
|
Delherbe NA, Gomez O, Plominsky AM, Oliver A, Manzanera M, Kalyuzhnaya MG. Atmospheric methane consumption in arid ecosystems acts as a reverse chimney and is accelerated by plant-methanotroph biomes. THE ISME JOURNAL 2025; 19:wraf026. [PMID: 40037293 PMCID: PMC11931723 DOI: 10.1093/ismejo/wraf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/03/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Drylands cover one-third of the Earth's surface and are one of the largest terrestrial sinks for methane. Understanding the structure-function interplay between members of arid biomes can provide critical insights into mechanisms of resilience toward anthropogenic and climate-change-driven environmental stressors-water scarcity, heatwaves, and increased atmospheric greenhouse gases. This study integrates in situ measurements with culture-independent and enrichment-based investigations of methane-consuming microbiomes inhabiting soil in the Anza-Borrego Desert, a model arid ecosystem in Southern California, United States. The atmospheric methane consumption ranged between 2.26 and 12.73 μmol m2 h-1, peaking during the daytime at vegetated sites. Metagenomic studies revealed similar soil-microbiome compositions at vegetated and unvegetated sites, with Methylocaldum being the major methanotrophic clade. Eighty-four metagenome-assembled genomes were recovered, six represented by methanotrophic bacteria (three Methylocaldum, two Methylobacter, and uncultivated Methylococcaceae). The prevalence of copper-containing methane monooxygenases in metagenomic datasets suggests a diverse potential for methane oxidation in canonical methanotrophs and uncultivated Gammaproteobacteria. Five pure cultures of methanotrophic bacteria were obtained, including four Methylocaldum. Genomic analysis of Methylocaldum isolates and metagenome-assembled genomes revealed the presence of multiple stand-alone methane monooxygenase subunit C paralogs, which may have functions beyond methane oxidation. Furthermore, these methanotrophs have genetic signatures typically linked to symbiotic interactions with plants, including tryptophan synthesis and indole-3-acetic acid production. Based on in situ fluxes and soil microbiome compositions, we propose the existence of arid-soil reverse chimneys, an empowered methane sink represented by yet-to-be-defined cooperation between desert vegetation and methane-consuming microbiomes.
Collapse
Affiliation(s)
- Nathalie A Delherbe
- Department of Biology, San Diego State University, San Diego, CA 92129, United States
| | - Oscar Gomez
- Department of Biology, San Diego State University, San Diego, CA 92129, United States
| | - Alvaro M Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
| | - Aaron Oliver
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
| | - Maximino Manzanera
- Institute for Water Research and Department of Microbiology, University of Granada, Granada 18071, Spain
| | - Marina G Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego, CA 92129, United States
| |
Collapse
|
2
|
Halim MA, Bieser JMH, Thomas SC. Large, sustained soil CO 2 efflux but rapid recovery of CH 4 oxidation in post-harvest and post-fire stands in a mixedwood boreal forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172666. [PMID: 38653415 DOI: 10.1016/j.scitotenv.2024.172666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The net effect of forest disturbances, such as fires and harvesting, on soil greenhouse gas fluxes is determined by their impacts on both biological and physical factors, as well as the temporal dynamics of these effects post-disturbance. Although harvesting and fire may have distinct effects on soil carbon (C) dynamics, the temporal patterns in soil CO2 and CH4 fluxes and the potential differences between types of disturbances, remain poorly characterized in boreal forests. In this study, we measured soil CO2 and CH4 fluxes using a off-axis integrated cavity output spectroscopy system in snow-free seasons over two years in post-harvest and post-fire chronosequence sites within a mixedwood boreal forest in northwestern Ontario, Canada. Soil CO2 efflux showed a post-disturbance peak, with differing dynamics depending on the disturbance type: post-harvest stands exhibited a nearly tenfold increase (from ∼1 to ∼11 μmol CO2.m-2.s-1) from 1 to 9-10 years post-disturbance, followed by a steep decline; post-fire stands showed a more gradual increase, peaking at ∼6-7.2 μmol CO2.m-2.s-1 after ∼12-15 years. The youngest post-harvest stands were net sources of CH4,whereas post-fire stands were never net CH4 sources. In both disturbance types, the strength of the CH4 sink increased with stand age, approaching ∼2.4 nmol.m-2.s-1 by 15 years post-disturbance. Volumetric water content, bulk density, litter depth, and pH were significant predictors of CO2 fluxes; for CH4 fluxes, litter depth, pH, and the interaction of VWC and soil temperature were significant predictors in both disturbance types, with EC also showing a relationship in post-harvest stands. Our findings indicate that while soil CH4 oxidation rapidly recovers following disturbance, both post-harvest and post-fire stands show a multi-decade release of soil CO2 that is too large to be offset by C gains over this period.
Collapse
Affiliation(s)
- Md Abdul Halim
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks Street, M5S 3B3 Toronto, Canada; Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Jillian M H Bieser
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks Street, M5S 3B3 Toronto, Canada
| | - Sean C Thomas
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks Street, M5S 3B3 Toronto, Canada
| |
Collapse
|
3
|
Danilova OV, Oshkin IY, Belova SE, Miroshnikov KK, Ivanova AA, Dedysh SN. One Step Closer to Enigmatic USCα Methanotrophs: Isolation of a Methylocapsa-like Bacterium from a Subarctic Soil. Microorganisms 2023; 11:2800. [PMID: 38004811 PMCID: PMC10672854 DOI: 10.3390/microorganisms11112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In this study, we isolated and characterized a representative of these methanotrophs, strain D3K7, from a subarctic soil of northern Russia. Strain D3K7 grows on methane and methanol in a wide range of temperatures, between 5 and 30 °C. Weak growth was also observed on acetate. The presence of acetate in the culture medium stimulated growth at low CH4 concentrations (~100 p.p.m.v.). The finished genome sequence of strain D3K7 is 4.15 Mb in size and contains about 3700 protein-encoding genes. According to the result of phylogenomic analysis, this bacterium forms a common clade with metagenome-assembled genomes obtained from the active layer of a permafrost thaw gradient in Stordalen Mire, Abisco, Sweden, and the mineral cryosol at Axel Heiberg Island in the Canadian High Arctic. This clade occupies a phylogenetic position in between characterized Methylocapsa methanotrophs and representatives of the as-yet-uncultivated upland soil cluster alpha (USCα). As shown by the global distribution analysis, D3K7-like methanotrophs are not restricted to polar habitats but inhabit peatlands and soils of various climatic zones.
Collapse
Affiliation(s)
| | | | | | | | | | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave. 33/2, Moscow 119071, Russia; (O.V.D.); (I.Y.O.); (S.E.B.); (A.A.I.)
| |
Collapse
|
4
|
Atmospheric Methane Consumption and Methanotroph Communities in West Siberian Boreal Upland Forest Ecosystems. FORESTS 2021. [DOI: 10.3390/f12121738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upland forest ecosystems are recognized as net sinks for atmospheric methane (CH4), one of the most impactful greenhouse gases. Biological methane uptake in these ecosystems occurs due to the activity of aerobic methanotrophic bacteria. Russia hosts one-fifth of the global forest area, with the most extensive forest landscapes located in West Siberia. Here, we report seasonal CH4 flux measurements conducted in 2018 in three types of stands in West Siberian middle taiga–Siberian pine, Aspen, and mixed forests. High rates of methane uptake of up to −0.184 mg CH4 m−2 h−1 were measured by a static chamber method, with an estimated total growing season consumption of 4.5 ± 0.5 kg CH4 ha−1. Forest type had little to no effect on methane fluxes within each season. Soil methane oxidation rate ranged from 0 to 8.1 ng CH4 gDW−1 h−1 and was negatively related to water-filled pore space. The microbial soil communities were dominated by the Alpha- and Gammaproteobacteria, Acidobacteriota and Actinobacteriota. The major group of 16S rRNA gene reads from methanotrophs belonged to uncultivated Beijerinckiaceae bacteria. Molecular identification of methanotrophs based on retrieval of the pmoA gene confirmed that Upland Soil Cluster Alpha was the major bacterial group responsible for CH4 oxidation.
Collapse
|
5
|
Kumar M, Yadav AN, Saxena R, Rai PK, Paul D, Tomar RS. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
do Carmo Linhares D, Saia FT, Duarte RTD, Nakayama CR, de Melo IS, Pellizari VH. Methanotrophic Community Detected by DNA-SIP at Bertioga's Mangrove Area, Southeast Brazil. MICROBIAL ECOLOGY 2021; 81:954-964. [PMID: 33392629 DOI: 10.1007/s00248-020-01659-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Methanotrophic bacteria can use methane as sole carbon and energy source. Its importance in the environment is related to the mitigation of methane emissions from soil and water to the atmosphere. Brazilian mangroves are highly productive, have potential to methane production, and it is inferred that methanotrophic community is of great importance for this ecosystem. The scope of this study was to investigate the functional and taxonomic diversity of methanotrophic bacteria present in the anthropogenic impacted sediments from Bertioga´s mangrove (SP, Brazil). Sediment sample was cultivated with methane and the microbiota actively involved in methane oxidation was identified by DNA-based stable isotope probing (DNA-SIP) using methane as a labeled substrate. After 4 days (96 h) of incubation and consumption of 0.7 mmol of methane, the most active microorganisms were related to methanotrophs Methylomonas and Methylobacter as well as to methylotrophic Methylotenera, indicating a possible association of these bacterial groups within a methane-derived food chain in the Bertioga mangrove. The abundance of genera Methylomonas, able to couple methane oxidation to nitrate reduction, may indicate that under low dissolved oxygen tensions, some aerobic methanotrophs could shift to intraerobic methane oxidation to avoid oxygen starvation.
Collapse
Affiliation(s)
- Débora do Carmo Linhares
- Laboratory of Industrial Biotechnology, Institute for Technological Research of São Paulo, 05508-901, São Paulo, SP, Brazil.
- Department of Biological Oceanography, Oceanographic Institute, University of Sao Paulo, Praça do Oceanográfico, 191, 05508-120, Butantã, São Paulo-SP, Brazil.
| | - Flávia Talarico Saia
- Institute of Marine Sciences, Federal University of São Paulo, Av. Dr. Carvalho de Mendonça, 144, Encruzilhada, Santos, SP, 11070-102, Brazil
| | - Rubens Tadeu Delgado Duarte
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Cristina Rossi Nakayama
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | | | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of Sao Paulo, Praça do Oceanográfico, 191, 05508-120, Butantã, São Paulo-SP, Brazil
| |
Collapse
|
7
|
Belova SE, Danilova OV, Ivanova AA, Merkel AY, Dedysh SN. Methane-Oxidizing Communities in Lichen-Dominated Forested Tundra Are Composed Exclusively of High-Affinity USCα Methanotrophs. Microorganisms 2020; 8:microorganisms8122047. [PMID: 33371270 PMCID: PMC7766663 DOI: 10.3390/microorganisms8122047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
Upland soils of tundra function as a constant sink for atmospheric CH4 but the identity of methane oxidizers in these soils remains poorly understood. Methane uptake rates of -0.4 to -0.6 mg CH4-C m-2 day-1 were determined by the static chamber method in a mildly acidic upland soil of the lichen-dominated forested tundra, North Siberia, Russia. The maximal CH4 oxidation activity was localized in an organic surface soil layer underlying the lichen cover. Molecular identification of methanotrophic bacteria based on retrieval of the pmoA gene revealed Upland Soil Cluster Alpha (USCα) as the only detectable methanotroph group. Quantification of these pmoA gene fragments by means of specific qPCR assay detected ~107pmoA gene copies g-1 dry soil. The pmoA diversity was represented by seven closely related phylotypes; the most abundant phylotype displayed 97.5% identity to pmoA of Candidatus Methyloaffinis lahnbergensis. Further analysis of prokaryote diversity in this soil did not reveal 16S rRNA gene fragments from well-studied methanotrophs of the order Methylococcales and the family Methylocystaceae. The largest group of reads (~4% of all bacterial 16S rRNA gene fragments) that could potentially belong to methanotrophs was classified as uncultivated Beijerinckiaceae bacteria. These reads displayed 96-100 and 95-98% sequence similarity to 16S rRNA gene of Candidatus Methyloaffinis lahnbergensis and "Methylocapsa gorgona" MG08, respectively, and were represented by eight species-level operational taxonomic units (OTUs), two of which were highly abundant. These identification results characterize subarctic upland soils, which are exposed to atmospheric methane concentrations only, as a unique habitat colonized mostly by USCα methanotrophs.
Collapse
|
8
|
Praeg N, Illmer P. Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms. Sci Rep 2020; 10:22324. [PMID: 33339837 PMCID: PMC7749151 DOI: 10.1038/s41598-020-79143-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Microbial community and diversity in the rhizosphere is strongly influenced by biotic and/or abiotic factors, like root exudates, nutrient availability, edaphon and climate. Here we report on the microbial diversity within the rhizosphere of Larix decidua, a dominant tree species in the Alps, as compared with the microbiome within the surrounding soil. We describe how increased light intensity influenced the rhizobiome and put emphasize on methane cycling microorganisms. Microbial taxa were classified into 26 bacterial, 4 archaeal and 6 fungal phyla revealing significant differences between bulk and rhizosphere soils. The dominant prokaryotic phyla were Proteobacteria, Acidobacteria, Actinobacteria (both, rhizosphere and bulk soil) and Bacteroidetes (rhizosphere soil only) and dominant fungal phyla in both fractions included Ascomycota and Basidiomycota. The rhizosphere community was indicated by Suillus sp., plant growth-promoting bacteria and Candidatus Saccharibacteria. Predicted genes in membrane transport and carbohydrate metabolism were significantly more abundant in rhizosphere soils while genes connected with energy metabolisms and cell motility increased in bulk soils. Dominant methanotrophic microorganisms were Upland Soil Cluster (USC) α methanotrophs, Methylogaea spp. and Methylosinus spp., while most methanogens belonged to Methanomassiliicoccales. The overall abundance of methanotrophs distinctly increased in the rhizosphere but to a very different species-specific extent. The increased light intensity only led to minor changes in the rhizobiome, nevertheless a couple of indicator species (e.g. Pseudomonas sp.) for intensified light conditions were established.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, 6020, Innsbruck, Austria.
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, 6020, Innsbruck, Austria
| |
Collapse
|
9
|
Deng Y, Che R, Wang F, Conrad R, Dumont M, Yun J, Wu Y, Hu A, Fang J, Xu Z, Cui X, Wang Y. Upland Soil Cluster Gamma dominates methanotrophic communities in upland grassland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:826-836. [PMID: 30921716 DOI: 10.1016/j.scitotenv.2019.03.299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 05/25/2023]
Abstract
Aerobic methanotrophs in upland soils consume atmospheric methane, serving as a critical counterbalance to global warming; however, the biogeographic distribution patterns of their abundance and community composition are poorly understood, especial at a large scale. In this study, soils were sampled from 30 grasslands across >2000 km on the Qinghai-Tibetan Plateau to determine the distribution patterns of methanotrophs and their driving factors at a regional scale. Methanotroph abundance and community composition were analyzed using quantitative PCR and Illumina Miseq sequencing of pmoA genes, respectively. The pmoA gene copies ranged from 8.2 × 105 to 1.1 × 108 per gram dry soil. Among the 30 grassland soil samples, Upland Soil Cluster Gamma (USCγ) dominated the methanotroph communities in 26 samples. Jasper Ridge Cluster (JR3) was the most dominant methanotrophic cluster in two samples; while Methylocystis, cluster FWs, and Methylobacter were abundant in other two wet soil samples. Interestingly, reanalyzing the pmoA genes sequencing data from existing publications suggested that USCγ was also the main methanotrophic cluster in grassland soils in other regions, especially when their mean annual precipitation was <500 mm. Canonical Analysis of Principal Coordinates including all soil samples indicated that the methanotrophic community composition was significantly correlated with local environmental factors, among which mean annual precipitation and pH showed the strongest correlations. Variance partitioning analysis showed that environmental factors and spatial distance were significant factors affecting the community structure of methanotrophs, and environmental properties were more important factors. Collectively, these findings indicate that atmospheric methane may be mainly oxidized by USCγ in upland soils. They also highlight the key role of water availability and pH in determining the abundance and community profiles of grassland soil methanotrophs.
Collapse
Affiliation(s)
- Yongcui Deng
- School of Geography, Nanjing Normal University, 210023 Nanjing, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, 650091 Kunming, China; University of the Chinese Academy of Sciences, 100049 Beijing, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Fang Wang
- University of the Chinese Academy of Sciences, 100049 Beijing, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Marc Dumont
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Juanli Yun
- Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yibo Wu
- Ningbo University, 315211 Ningbo, China
| | - Ang Hu
- Hunan Agricultural University, 410128 Changsha, China
| | - Jie Fang
- School of Geography, Nanjing Normal University, 210023 Nanjing, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Xiaoyong Cui
- University of the Chinese Academy of Sciences, 100049 Beijing, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, 100101 Beijing, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
| | - Yanfen Wang
- University of the Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
10
|
Heděnec P, Angel R, Lin Q, Rui J, Li X. Increased methane concentration alters soil prokaryotic community structure along an artificial pH gradient. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1421-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Gunasekera SS, Hettiaratchi JP, Bartholameuz EM, Farrokhzadeh H, Irvine E. A comparative evaluation of the performance of full-scale high-rate methane biofilter (HMBF) systems and flow-through laboratory columns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35845-35854. [PMID: 30276693 DOI: 10.1007/s11356-018-3100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Methane biofilter (MBF) technology, a cost effective method to control atmospheric emission of CH4, is usually developed as a passively aerated system to control low-volume point-source emissions such as those from landfills with gas collection systems. Actively aerated high-rate methane biofilter (HMBF) systems are designed to overcome the shortcomings of passively aerated systems by ensuring the entire filter bed is utilized for CH4 oxidation. Flow-through column experiments point to the fact that CH4 oxidation rates of actively aerated systems could be several times higher than that of passively aerated systems. However, reports of the performance of field HMBF systems are not available in literature. Furthermore, there are no studies that demonstrate the possibility of using laboratory data in the design and operation of field systems. The current study was conducted to fill this research gap and involve a comparative study of the performance of laboratory columns to field performance of a HMBF system using solution gas produced at an oil battery site as the CH4 source. The actively aerated column studies confirmed past results with high CH4 oxidation rates; one column received air at two injection points and achieved an oxidation rate of 1417 g/m3/d, which is the highest reported value to date for compost-filled columns. Subsequent studies at a specially designed field HMBF filled with compost showed a higher oxidation rate of 1919 g/m3/d, indicating the possibility of exceeding the high CH4 oxidation rates observed in the laboratory. The achievement of observed field oxidation rates being higher than those in the laboratory is attributed to the capability of maintaining higher temperatures in field HMBFs. Furthermore, results show that field HMBFs could operate at lower than stoichiometric air to CH4 ratios, and lower retention times than that of laboratory columns. Results indicated that laboratory columns may not truly represent field behavior, and said results could only be used in the preliminary design of field HMBFs.
Collapse
Affiliation(s)
- S Samadhi Gunasekera
- Department of Civil Engineering and Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Joseph Patrick Hettiaratchi
- Department of Civil Engineering and Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Eranda M Bartholameuz
- Department of Civil Engineering and Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Hasti Farrokhzadeh
- Department of Civil Engineering and Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Eamonn Irvine
- Department of Civil Engineering and Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
12
|
Montemurro N, García-Vara M, Peña-Herrera JM, Lladó J, Barceló D, Pérez S. Conventional and Advanced Processes for the Removal of Pharmaceuticals and Their Human Metabolites from Wastewater. ACTA ACUST UNITED AC 2018. [DOI: 10.1021/bk-2018-1302.ch002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Nicola Montemurro
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Manuel García-Vara
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Juan Manuel Peña-Herrera
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Jordi Lladó
- Department of Mining, Industrial and TIC Engineering (EMIT), Universitat Politécnica de Catalunya (UPC), Manresa, Barcelona 08242, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| | - Sandra Pérez
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA), Spanish National Research Council (CSIC), Barcelona 08034, Spain
| |
Collapse
|
13
|
Methanotrophy across a natural permafrost thaw environment. ISME JOURNAL 2018; 12:2544-2558. [PMID: 29955139 PMCID: PMC6155033 DOI: 10.1038/s41396-018-0065-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/09/2022]
Abstract
The fate of carbon sequestered in permafrost is a key concern for future global warming as this large carbon stock is rapidly becoming a net methane source due to widespread thaw. Methane release from permafrost is moderated by methanotrophs, which oxidise 20-60% of this methane before emission to the atmosphere. Despite the importance of methanotrophs to carbon cycling, these microorganisms are under-characterised and have not been studied across a natural permafrost thaw gradient. Here, we examine methanotroph communities from the active layer of a permafrost thaw gradient in Stordalen Mire (Abisko, Sweden) spanning three years, analysing 188 metagenomes and 24 metatranscriptomes paired with in situ biogeochemical data. Methanotroph community composition and activity varied significantly as thaw progressed from intact permafrost palsa, to partially thawed bog and fully thawed fen. Thirteen methanotroph population genomes were recovered, including two novel genomes belonging to the uncultivated upland soil cluster alpha (USCα) group and a novel potentially methanotrophic Hyphomicrobiaceae. Combined analysis of porewater δ13C-CH4 isotopes and methanotroph abundances showed methane oxidation was greatest below the oxic-anoxic interface in the bog. These results detail the direct effect of thaw on autochthonous methanotroph communities, and their consequent changes in population structure, activity and methane moderation potential.
Collapse
|
14
|
Farrokhzadeh H, Hettiaratchi JPA, Jayasinghe P, Kumar S. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions. BIORESOURCE TECHNOLOGY 2017; 239:219-225. [PMID: 28521232 DOI: 10.1016/j.biortech.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Aiming to improve conventional methane biofilter performance, a multiple-level aeration biofilter design is proposed. Laboratory flow-through column experiments were conducted to evaluate three actively-aerated methane biofilter configurations. Columns were aerated at one, two, and three levels of the bed depth, with air introduced at flow rates calculated from methane oxidation reaction stoichiometry. Inlet methane loading rates were increased in five stages between 6 and 18mL/min. The effects of methane feeding rate, levels of aeration, and residence time on methane oxidation rates were determined. Samples collected after completion of flow-through experiments were used to determine methane oxidation kinetic parameters, Vmax, Km, and methanotrophic community distribution across biofilter columns. Results obtained from mixed variances analysis and response surfaces, as well as methanotrophic activity data, suggested that, biofilter column with two aeration levels has the most even performance over time, maintaining 85.1% average oxidation efficiency over 95days of experiments.
Collapse
Affiliation(s)
- Hasti Farrokhzadeh
- Center for Environmental Engineering Research and Education (CEERE) and Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - J Patrick A Hettiaratchi
- Center for Environmental Engineering Research and Education (CEERE) and Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Poornima Jayasinghe
- Center for Environmental Engineering Research and Education (CEERE) and Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
15
|
High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils. Appl Environ Microbiol 2017; 83:AEM.01139-17. [PMID: 28687652 DOI: 10.1128/aem.01139-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/30/2017] [Indexed: 11/20/2022] Open
Abstract
Glacier forefield soils can provide a substantial sink for atmospheric CH4, facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and temporal variability of atmospheric-CH4 oxidation in an Alpine glacier forefield during the snow-free season of 2013. We quantified CH4 flux in soils of increasing age and in different landforms (sandhill, terrace, and floodplain forms) by using soil gas profile and static flux chamber methods. To determine MOB abundance and community structure, we employed pmoA gene-based quantitative PCR and targeted amplicon sequencing. Uptake of CH4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH4 uptake rates ranging from -3.7 to -0.03 mg CH4 m-2 day-1 Floodplain and terrace soils exhibited lower uptake rates and even intermittent CH4 emissions. Linear mixed-effects models indicated that soil age and landform were the dominating factors shaping CH4 flux, followed by cumulative rainfall (weighted sum ≤4 days prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with upland soil clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical but differed significantly from the highly variable sandhill soil communities. We concluded that soil age and landform modulate the soil CH4 sink strength in glacier forefields and that recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH4 inventories.IMPORTANCE Oxidation of methane (CH4) in well-drained, "upland" soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric-CH4 oxidation in mature upland soils, little is known about this important function in young, developing soils, such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat. In this field-based study, we investigated the spatial and temporal variability of atmospheric-CH4 oxidation and associated MOB communities in Alpine glacier forefield soils, aiming at better understanding the factors that shape the sink for atmospheric CH4 in this young soil ecosystem. This study contributes to the knowledge on the dynamics of atmospheric-CH4 oxidation in developing upland soils and represents a further step toward the inclusion of Alpine glacier forefield soils in global CH4 inventories.
Collapse
|
16
|
Siniscalchi LAB, Leite LR, Oliveira G, Chernicharo CAL, de Araújo JC. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16751-16764. [PMID: 28567677 DOI: 10.1007/s11356-017-9197-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.
Collapse
Affiliation(s)
- Luciene Alves Batista Siniscalchi
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
- Department of Engineering, Federal University of Lavras, Dr. Sylvio Menicucci Avenue, 1001, Lavras, Minas Gerais State, 37200-000, Brazil
| | - Laura Rabelo Leite
- Department of Engineering, Federal University of Lavras, Dr. Sylvio Menicucci Avenue, 1001, Lavras, Minas Gerais State, 37200-000, Brazil
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, René Rachou Research Center, Oswaldo Cruz Foundation, Augusto de Lima Avenue 1715, Belo Horizonte, Minas Gerais State, 30.190-002, Brazil
- Instituto Vale de Tecnologia, Rua Boaventura da Silva, 955, Belém, Pará, 66055-090, Brazil
| | - Carlos Augusto Lemos Chernicharo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Juliana Calabria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte, Minas Gerais State, 31270-901, Brazil.
| |
Collapse
|
17
|
|
18
|
Knief C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front Microbiol 2015; 6:1346. [PMID: 26696968 PMCID: PMC4678205 DOI: 10.3389/fmicb.2015.01346] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023] Open
Abstract
Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of BonnBonn, Germany
| |
Collapse
|
19
|
Krause S, Niklaus PA, Badwan Morcillo S, Meima Franke M, Lüke C, Reim A, Bodelier PLE. Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows. FEMS Microbiol Ecol 2015; 91:fiv119. [PMID: 26449384 DOI: 10.1093/femsec/fiv119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/13/2022] Open
Abstract
The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions.
Collapse
Affiliation(s)
- Sascha Krause
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Pascal A Niklaus
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Sara Badwan Morcillo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | - Marion Meima Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | - Claudia Lüke
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, 6525 AJ, the Netherlands
| | - Andreas Reim
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| |
Collapse
|
20
|
Landscape position influences microbial composition and function via redistribution of soil water across a watershed. Appl Environ Microbiol 2015; 81:8457-68. [PMID: 26431971 DOI: 10.1128/aem.02643-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 02/01/2023] Open
Abstract
Subalpine forest ecosystems influence global carbon cycling. However, little is known about the compositions of their soil microbial communities and how these may vary with soil environmental conditions. The goal of this study was to characterize the soil microbial communities in a subalpine forest watershed in central Montana (Stringer Creek Watershed within the Tenderfoot Creek Experimental Forest) and to investigate their relationships with environmental conditions and soil carbonaceous gases. As assessed by tagged Illumina sequencing of the 16S rRNA gene, community composition and structure differed significantly among three landscape positions: high upland zones (HUZ), low upland zones (LUZ), and riparian zones (RZ). Soil depth effects on phylogenetic diversity and β-diversity varied across landscape positions, being more evident in RZ than in HUZ. Mantel tests revealed significant correlations between microbial community assembly patterns and the soil environmental factors tested (water content, temperature, oxygen, and pH) and soil carbonaceous gases (carbon dioxide concentration and efflux and methane concentration). With one exception, methanogens were detected only in RZ soils. In contrast, methanotrophs were detected in all three landscape positions. Type I methanotrophs dominated RZ soils, while type II methanotrophs dominated LUZ and HUZ soils. The relative abundances of methanotroph populations correlated positively with soil water content (R = 0.72, P < 0.001) and negatively with soil oxygen (R = -0.53, P = 0.008). Our results suggest the coherence of soil microbial communities within and differences in communities between landscape positions in a subalpine forested watershed that reflect historical and contemporary environmental conditions.
Collapse
|
21
|
Suenaga H. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment. Front Microbiol 2015; 6:1018. [PMID: 26441940 PMCID: PMC4585196 DOI: 10.3389/fmicb.2015.01018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose.
Collapse
Affiliation(s)
- Hikaru Suenaga
- Bioproduction Research Institute - National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, Japan
| |
Collapse
|
22
|
Kanaparthi D, Conrad R. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria. Syst Appl Microbiol 2015; 38:184-8. [DOI: 10.1016/j.syapm.2015.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 10/23/2022]
|
23
|
Depth-related coupling relation between methane-oxidizing bacteria (MOBs) and sulfate-reducing bacteria (SRBs) in a marine sediment core from the Dongsha region, the South China Sea. Appl Microbiol Biotechnol 2014; 98:10223-30. [PMID: 25064353 DOI: 10.1007/s00253-014-5958-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
The vertical distributions of methane-oxidizing bacteria (MOBs) and sulfate-reducing bacteria (SRBs) in the marine sediment core of DH-CL14 from the Dongsha region, the South China Sea, were investigated. To enumerate MOBs and SRBs, their specific genes of pmoA and apsA were quantified by a culture-independent molecular biological technique, real-time polymerase chain reaction (RT-PCR). The result shows that the pmoA gene copies per gram of sediments reached the maximum of 1,118,679 at the depth of 140-160 cm. Overall considering the detection precision, sample amount, measurement cost, and sensitivity to the seepage of methane from the oil/gas reservoirs or gas hydrates, we suggest that the depth of 140-160 cm may be the optimal sampling position for the marine microbial exploration of oils, gases, and gas hydrates in the Dongsha region. The data of the pmoA and apsA gene copies exhibit an evident coupling relation between MOBs and SRBs as illustrated in their vertical distributions in this sediment core, which may well be interpreted by a high sulfate concentration inhibiting methane production and further leading to the reduction of MOBs. In comparison with the numbers of the pmoA and apsA copies at the same sediment depth, we find out that there were two methane-oxidizing mechanisms of aerobic and anaerobic oxidation in this sediment core, i.e., the aerobic oxidation with free oxygen dominantly occurred above the depth of 210-230 cm, while the anaerobic oxidation with the other electron acceptors such as sulfates and manganese-iron oxides happened below the depth of 210-230 cm.
Collapse
|
24
|
Martineau C, Pan Y, Bodrossy L, Yergeau E, Whyte LG, Greer CW. Atmospheric methane oxidizers are present and active in Canadian high Arctic soils. FEMS Microbiol Ecol 2014; 89:257-69. [PMID: 24450397 DOI: 10.1111/1574-6941.12287] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 01/08/2023] Open
Abstract
The melting of permafrost and the associated potential for methane emissions to the atmosphere are major concerns in the context of global warming. However, soils can also represent a significant sink for methane through the activity of methane-oxidizing bacteria (MOB). In this study, we looked at the activity, diversity, and community structure of MOB at two sampling depths within the active layer in three soils from the Canadian high Arctic. These soils had the capacity to oxidize methane at low (15 ppm) and high (1000 ppm) methane concentrations, but rates differed greatly depending on the sampling date, depth, and site. The pmoA gene sequences related to two genotypes of uncultured MOB involved in atmospheric methane oxidation, the 'upland soil cluster gamma' and the 'upland soil cluster alpha', were detected in soils with near neutral and acidic pH, respectively. Other groups of MOB, including Type I methanotrophs and the 'Cluster 1' genotype, were also detected, indicating a broader diversity of MOB than previously reported for Arctic soils. Overall, the results reported here showed that methane oxidation at both low and high methane concentrations occurs in high Arctic soils and revealed that different groups of atmospheric MOB inhabit these soils.
Collapse
|
25
|
Aronson EL, Allison SD, Helliker BR. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol 2013; 4:225. [PMID: 23966984 PMCID: PMC3743065 DOI: 10.3389/fmicb.2013.00225] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022] Open
Abstract
Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5–15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and calls for novel approaches in order to predict future atmospheric methane trends. This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms. In particular, we focus on published efforts to connect community composition and diversity of methane-cycling microbial communities to observed rates of methane flux. We find abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels. These responses vary by ecosystem and associated vegetation type. This information will be useful in process-based models of ecosystem methane flux responses to shifts in environmental and climatic parameters.
Collapse
Affiliation(s)
- Emma L Aronson
- Department of Plant Pathology and Microbiology, University of California Riverside, CA, USA ; Department of Ecology and Evolutionary Biology, University of California Irvine, CA, USA
| | | | | |
Collapse
|
26
|
Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 2013; 15:2395-417. [DOI: 10.1111/1462-2920.12149] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Loïc Nazaries
- Hawkesbury Institute for the Environment; University of Western Sydney; Building L9; Locked Bag 1797; Penrith South; NSW; 2751; Australia
| | - J. Colin Murrell
- School of Environmental Sciences; University of East Anglia; Norwich Research Park; Norwich; NR4 7TJ; UK
| | - Pete Millard
- Landcare Research; PO Box 40; Lincoln; 7604; New Zealand
| | - Liz Baggs
- Institute of Biological and Environmental Sciences; University of Aberdeen; Zoology Building; Tillydrone Avenue; Aberdeen; AB24 2TZ; Scotland; UK
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment; University of Western Sydney; Building L9; Locked Bag 1797; Penrith South; NSW; 2751; Australia
| |
Collapse
|
27
|
Kizilova AK, Titova LV, Kravchenko IK, Iutinskaya GA. Evaluation of the diversity of nitrogen-fixing bacteria in soybean rhizosphere by nifH gene analysis. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712050116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Suzuki T, Nakamura T, Fuse H. Isolation of two novel marine ethylene-assimilating bacteria, Haliea species ETY-M and ETY-NAG, containing particulate methane monooxygenase-like genes. Microbes Environ 2012; 27:54-60. [PMID: 22307463 PMCID: PMC4036023 DOI: 10.1264/jsme2.me11256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two novel ethylene-assimilating bacteria, strains ETY-M and ETY-NAG, were isolated from seawater around Japan. The characteristics of both strains were investigated, and phylogenetic analyses of their 16S rRNA gene sequences showed that they belonged to the genus Haliea. In C1-4 gaseous hydrocarbons, both strains grew only on ethylene, but degraded ethane, propylene, and propane in addition to ethylene. Methane, n-butane, and i-butane were not utilized or degraded by either strain. Soluble methane monooxygenase-type genes, which are ubiquitous in alkene-assimilating bacteria for initial oxidation of alkenes, were not detected in these strains, although genes similar to particulate methane monooxygenases (pMMO)/ammonia monooxygenases (AMO) were observed. The phylogenetic tree of the deduced amino acid sequences formed a new clade near the monooxygenases of ethane-assimilating bacteria similar to other clades of pMMOs in type I, type II, and Verrucomicrobia methanotrophs and AMOs in alpha and beta proteobacteria.
Collapse
Affiliation(s)
- Toshihiro Suzuki
- Graduate School of Regional Environment Systems, Shibaura Institute of Technology, Saitama, Japan
| | | | | |
Collapse
|
29
|
Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. ISME JOURNAL 2011; 6:1115-26. [PMID: 22189499 DOI: 10.1038/ismej.2011.179] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0-10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH(4) m(-2) h(-1). Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 10(5)-1.9 × 10(6) copies g(-1) of soil. Temperature was positively correlated with CH(4) uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH(4) uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH(4) uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH(4) uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade.
Collapse
|
30
|
Kip N, Dutilh BE, Pan Y, Bodrossy L, Neveling K, Kwint MP, Jetten MSM, Op den Camp HJM. Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:667-673. [PMID: 23761355 DOI: 10.1111/j.1758-2229.2011.00260.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sphagnum peatlands are important ecosystems in the methane cycle. Methanotrophs in these ecosystems have been shown to reduce methane emissions and provide additional carbon to Sphagnum mosses. However, little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses in these peatlands. In this study, we applied a pmoA microarray and high-throughput 454 pyrosequencing to pmoA PCR products obtained from total DNA from Sphagnum mosses from a Dutch peat bog to investigate the presence of methanotrophs and to compare the two different methods. Both techniques showed comparable results and revealed an abundance of Methylomonas and Methylocystis species in the Sphagnum mosses. The advantage of the microarray analysis is that it is fast and cost-effective, especially when many samples have to be screened. Pyrosequencing is superior in providing pmoA sequences of many unknown or uncultivated methanotrophs present in the Sphagnum mosses and, thus, provided much more detailed and quantitative insight into the microbial diversity.
Collapse
Affiliation(s)
- Nardy Kip
- Radboud University Nijmegen, Institute for Water and Wetland Research (IWWR), Department of Microbiology, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands. Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands. Department of Bioresources, AIT, Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria. Department of Human Genetics, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6525 GA Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ganzert L, Lipski A, Hubberten HW, Wagner D. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. FEMS Microbiol Ecol 2011; 76:476-91. [PMID: 21314705 DOI: 10.1111/j.1574-6941.2011.01068.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH.
Collapse
Affiliation(s)
- Lars Ganzert
- Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Potsdam, Germany.
| | | | | | | |
Collapse
|
32
|
|
33
|
Ansari MI, Malik A. Seasonal variation of different microorganisms with nickel and cadmium in the industrial wastewater and agricultural soils. ENVIRONMENTAL MONITORING AND ASSESSMENT 2010; 167:151-163. [PMID: 19548097 DOI: 10.1007/s10661-009-1038-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 06/03/2009] [Indexed: 05/27/2023]
Abstract
Wastewater and soil samples were collected from the industrial area of Ghaziabad City, India from January 2005 to December 2007 and were analyzed for the presence of heavy metals by atomic absorption spectrophotometry. Test samples revealed high levels of Fe, Cr, Cu, Ni, Zn, and Cd as 967.03, 34.63, 27.97, 19.7, 16.70, and 3.20 mg/L of wastewater, respectively. The concentrations of inorganic minerals were higher in the soil samples irrigated with wastewater. Total coliforms were found to be maximum (1,133x10(4) most probable number per 100 mL) during spring and summer followed by winter and postmonsoon in the wastewater samples. The microbial count in soil as well as in wastewater decreases as the metal concentration increases. The concentration 200 microg/mL of nickel and cadmium inhibits majority of the population, while, at some points, it inhibits 100% of the population. The exponential decay model for microbial count at the increasing metal concentrations indicate that asymbiotic N2 fixers were best fitted to the model. In all the seasons, the order of decline in terms of exponential decay of the population of different microbial groups in soil was asymbiotic N2 fixers>actinomycetes>fungi>aerobic heterotrophic bacteria. The different microbial groups that have different values of slope in different seasons indicate that the resistant population of microorganisms was variable with seasons.
Collapse
Affiliation(s)
- Mohd Ikram Ansari
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202 002, India
| | | |
Collapse
|
34
|
Abstract
Here, we report an efficient method for extracting high-quality mRNA from soil. Key steps in the isolation of total RNA were low-pH extraction (pH 5.0) and Q-Sepharose chromatography. The removal efficiency of humic acids was 94 to 98% for all soils tested. To enrich mRNA, subtractive hybridization of rRNA was most efficient. Subtractive hybridization may be followed by exonuclease treatment if the focus is on the analysis of unprocessed mRNA. The total extraction method can be completed within 8 h, resulting in enriched mRNA ranging from 200 bp to 4 kb in size.
Collapse
|
35
|
van der Ha D, Hoefman S, Boeckx P, Verstraete W, Boon N. Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. Appl Microbiol Biotechnol 2010; 87:2355-63. [DOI: 10.1007/s00253-010-2702-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 11/29/2022]
|
36
|
Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Abstract
Methanotrophs, cells that consume methane (CH(4)) as their sole source of carbon and energy, play key roles in the global carbon cycle, including controlling anthropogenic and natural emissions of CH(4), the second-most important greenhouse gas after carbon dioxide. These cells have also been widely used for bioremediation of chlorinated solvents, and help sustain diverse microbial communities as well as higher organisms through the conversion of CH(4) to complex organic compounds (e.g. in deep ocean and subterranean environments with substantial CH(4) fluxes). It has been well-known for over 30 years that copper (Cu) plays a key role in the physiology and activity of methanotrophs, but it is only recently that we have begun to understand how these cells collect Cu, the role Cu plays in CH(4) oxidation by the particulate CH(4) monooxygenase, the effect of Cu on the proteome, and how Cu affects the ability of methanotrophs to oxidize different substrates. Here we summarize the current state of knowledge of the phylogeny, environmental distribution, and potential applications of methanotrophs for regional and global issues, as well as the role of Cu in regulating gene expression and proteome in these cells, its effects on enzymatic and whole-cell activity, and the novel Cu uptake system used by methanotrophs.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
38
|
Lüke C, Krause S, Cavigiolo S, Greppi D, Lupotto E, Frenzel P. Biogeography of wetland rice methanotrophs. Environ Microbiol 2009; 12:862-72. [DOI: 10.1111/j.1462-2920.2009.02131.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Horz HP, Raghubanshi AS, Heyer J, Kammann C, Conrad R, Dunfield PF. Activity and community structure of methane-oxidising bacteria in a wet meadow soil. FEMS Microbiol Ecol 2009; 41:247-57. [PMID: 19709259 DOI: 10.1111/j.1574-6941.2002.tb00986.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The structure and activity of the methane-oxidising microbial community in a wet meadow soil in Germany were investigated using biogeochemical, cultivation, and molecular fingerprinting techniques. Both methane from the atmosphere and methane produced in anaerobic subsurface soil were oxidised. The specific affinity (first-order rate constant) for methane consumption was highest in the top 20 cm of soil and the apparent half-saturation constant was 137-300 nM CH(4), a value intermediate to measured values in wetland soils versus well-aerated upland soils. Most-probable-number (MPN) counting of methane-oxidising bacteria followed by isolation and characterisation of strains from the highest positive dilution steps suggested that the most abundant member of the methane-oxidising community was a Methylocystis strain (10(5)-10(7) cells g(-1) d.w. soil). Calculations based on kinetic data suggested that this cell density was sufficient to account for the observed methane oxidation activity in the soil. DNA extraction directly from the same soil samples, followed by PCR amplification and comparative sequence analyses of the pmoA gene, also detected Methylocystis. However, molecular community fingerprinting analyses revealed a more diverse and dynamic picture of the methane-oxidising community. Retrieved pmoA sequences included, besides those closely related to Methylocystis spp., others related to the genera Methylomicrobium and Methylocapsa, and there were differences across samples which were not evident in MPN analyses.
Collapse
Affiliation(s)
- Hans-Peter Horz
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, 35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:285-292. [PMID: 23765881 DOI: 10.1111/j.1758-2229.2009.00038.x] [Citation(s) in RCA: 442] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The global budget of atmospheric CH4 , which is on the order of 500-600 Tg CH4 per year, is mainly the result of environmental microbial processes, such as archaeal methanogenesis in wetlands, rice fields, ruminant and termite digestive systems and of microbial methane oxidation under anoxic and oxic conditions. This review highlights recent progress in the research of anaerobic CH4 oxidation, of CH4 production in the plant rhizosphere, of CH4 serving as substrate for the aquatic trophic food chain and the discovery of novel aerobic methanotrophs. It also emphasizes progress and deficiencies in our knowledge of microbial utilization of low atmospheric CH4 concentrations in soil, CH4 production in the plant canopy, intestinal methanogenesis and CH4 production in pelagic water.
Collapse
Affiliation(s)
- Ralf Conrad
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str.8, 35043 Marburg, Germany
| |
Collapse
|
41
|
Kolb S. The quest for atmospheric methane oxidizers in forest soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:336-46. [PMID: 23765885 DOI: 10.1111/j.1758-2229.2009.00047.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aerobic methanotrophs in forest soils are the largest biological sink for atmospheric methane (CH4 ). Community structures in 53 soils from Europe, Russia, North and South America, Asia and New Zealand located in boreal, temperate and tropical forests were analysed and maximal abundances of 2.1 × 10(7) methanotrophs g(-1) DW were measured. In acidic soils, the most frequently detected pmoA genotypes were Upland Soil Cluster α (USCα) and Methylocystis spp. Phospholipid fatty acids that were labelled by consumption of (14/13) CH4 suggested the activity of type II methanotrophs. Cluster 1 (Methylocystaceae), USCγ and Methylocystis spp. were frequently detected genotypes in pH-neutral soils. Genotypes with ambiguous functional affiliation were co-detected (Clusters MR1, RA21, 2) and may represent aerobic methanotrophs, ammonia oxidizers or enzymes with an unknown function. The physiological traits of atmospheric CH4 oxidizers are largely unknown because organisms possessing the key forest soil pmoA genotypes (USCα, USCγ, Cluster 1) have not been cultivated. Some methanotrophic strains belonging to the family Methylocystaceae have been shown to oxidize CH4 at atmospheric mixing ratios. Methylocystis strain SC2 was found to have an alternative particulate CH4 monooxygenase responsible for CH4 oxidation at atmospheric mixing ratios. pH, forest type and temperature might be environmental factors that shape methanotrophic communities in forest soils. However, specific effects on individual species are largely unknown, and only a limited number of studies have addressed environmental controls of methanotrophic diversity, pointing to the need for future research in this area.
Collapse
Affiliation(s)
- Steffen Kolb
- Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
42
|
Abstract
The oxidation of methane by methane-oxidising microorganisms is an important link in the global methane budget. Oxic soils are a net sink while wetland soils are a net source of atmospheric methane. It has generally been accepted that the consumption of methane in upland as well as lowland systems is inhibited by nitrogenous fertiliser additions. Hence, mineral nitrogen (i.e. ammonium/nitrate) has conceptually been treated as a component with the potential to enhance emission of methane from soils and sediments to the atmosphere, and results from numerous studies have been interpreted as such. Recently, ammonium-based fertilisation was demonstrated to stimulate methane consumption in rice paddies. Growth and activity of methane-consuming bacteria in microcosms as well as in natural rice paddies was N limited. Analysing the available literature revealed that indications for N limitation of methane consumption have been reported in a variety of lowland soils, upland soils, and sediments. Obviously, depriving methane-oxidising bacteria of a suitable source of N hampers their growth and activity. However, an almost instantaneous link between the presence of mineral nitrogen (i.e. ammonium, nitrate) and methane-oxidising activity, as found in rice soils and culture experiments, requires an alternative explanation. We propose that switching from mineral N assimilation to the fixation of molecular nitrogen may explain this phenomenon. However, there is as yet no experimental evidence for any mechanism of instantaneous stimulation, since most studies have assumed that nitrogenous fertiliser is inhibitory of methane oxidation in soils and have focused only on this aspect. Nitrogen as essential factor on the sink side of the global methane budget has been neglected, leading to erroneous interpretation of methane emission dynamics, especially from wetland environments. The purpose of this minireview is to summarise and balance the data on the regulatory role of nitrogen in the consumption of methane by soils and sediments, and thereby stimulate the scientific community to embark on experiments to close the existing gap in knowledge.
Collapse
|
43
|
Angel R, Conrad R. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Environ Microbiol 2009; 11:2598-610. [PMID: 19601957 DOI: 10.1111/j.1462-2920.2009.01984.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aerated soils are a biological sink for atmospheric methane. However, the activity of desert soils and the presence of methanotrophs in these soils have hardly been studied. We studied on-site atmospheric methane consumption rates as well as the diversity and expression of the pmoA gene, coding for a subunit of the particulate methane monooxygenase, in arid and hyperarid soils in the Negev Desert, Israel. Methane uptake was only detected in undisturbed soils in the arid region (approximately 90 mm year(-1)) and vertical methane profiles in soil showed the active layer to be at 0-20 cm depth. No methane uptake was detected in the hyperarid soils (approximately 20 mm year(-1)) as well as in disturbed soils in the arid region (i.e. agricultural field and a mini-catchment). Molecular analysis of the methanotrophic community using terminal restriction fragment length polymorphism (T-RFLP) and cloning/sequencing of the pmoA gene detected methanotrophs in the active soils, whereas the inactive ones were dominated by sequences of the homologous gene amoA, coding for a subunit of the ammonia monooxygenase. Even in the active soils, methanotrophs (as well as in situ activity) could not be detected in the soil crust, which is the biologically most important layer in desert soils. All pmoA sequences belonged to yet uncultured strains. Transcript analysis showed dominance of sequences clustering within the JR3, formerly identified in Californian grassland soils. Our results show that although active methanotrophs are prevalent in arid soils they seem to be absent or inactive in hyperarid and disturbed arid soils. Furthermore, we postulate that methanotrophs of the yet uncultured JR3 cluster are the dominant atmospheric methane oxidizers in this ecosystem.
Collapse
Affiliation(s)
- Roey Angel
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany.
| | | |
Collapse
|
44
|
Abstract
Methanol is an atmospheric compound that is primarily released from plant polymers and impacts ozone formation. The global methanol emission rate from terrestrial ecosystems is of the same order of magnitude (4.9 x 10(12) mol year(-1)) as that of methane (10 x 10(12) mol year(-1)). The major proportion of the annual plant-released methanol does not enter the atmosphere, but may be reoxidized by biological methanol oxidation, which is catalyzed by methanol-oxidizing prokaryotes. Fifty-six aerobic methanol-oxidizing species have been isolated from soils. These methylotrophs belong to the Alpha-, Beta-, and Gammaproteobacteria, Verrucomicrobia, Firmicutes, and Actinobacteria. Their ecological niches are determined by oxygen and methanol concentration, temperature, pH, the capability to utilize nitrate as an electron acceptor, and the spectrum of nitrogen sources and utilizable multicarbon substrates. Recently discovered interactions with eukaryotes indicate that their ecological niches may not solely be defined by physicochemical parameters. Nonetheless, there are still gaps in knowledge; based on global methanol budgets, methanol oxidation in soil is important, but has not been addressed adequately by biogeochemical studies. Ratios of above-ground and soil-internal methanol oxidation are not known. The contribution to methanol-oxidation by aerobic and anaerobic methylotrophs in situ also needs further research.
Collapse
Affiliation(s)
- Steffen Kolb
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
45
|
Liebner S, Rublack K, Stuehrmann T, Wagner D. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. MICROBIAL ECOLOGY 2009; 57:25-35. [PMID: 18592300 DOI: 10.1007/s00248-008-9411-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 05/20/2008] [Indexed: 05/26/2023]
Abstract
With this study, we present first data on the diversity of aerobic methanotrophic bacteria (MOB) in an Arctic permafrost active layer soil of the Lena Delta, Siberia. Applying denaturing gradient gel electrophoresis and cloning of 16S ribosomal ribonucleic acid (rRNA) and pmoA gene fragments of active layer samples, we found a general restriction of the methanotrophic diversity to sequences closely related to the genera Methylobacter and Methylosarcina, both type I MOB. In contrast, we revealed a distinct species-level diversity. Based on phylogenetic analysis of the 16S rRNA gene, two new clusters of MOB specific for the permafrost active layer soil of this study were found. In total, 8 out of 13 operational taxonomic units detected belong to these clusters. Members of these clusters were closely related to Methylobacter psychrophilus and Methylobacter tundripaludum, both isolated from Arctic environments. A dominance of MOB closely related to M. psychrophilus and M. tundripaludum was confirmed by an additional pmoA gene analysis. We used diversity indices such as the Shannon diversity index or the Chao1 richness estimator in order to compare the MOB community near the surface and near the permafrost table. We determined a similar diversity of the MOB community in both depths and suggest that it is not influenced by the extreme physical and geochemical gradients in the active layer.
Collapse
Affiliation(s)
- Susanne Liebner
- Alfred Wegener Institute for Polar and Marine Research, Research Department Potsdam, Telegrafenberg A43, 14473, Potsdam, Germany.
| | | | | | | |
Collapse
|
46
|
Metagenomics: Future of microbial gene mining. Indian J Microbiol 2008; 48:202-15. [PMID: 23100714 DOI: 10.1007/s12088-008-0033-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 04/07/2008] [Indexed: 10/21/2022] Open
Abstract
Modern biotechnology has a steadily increasing demand for novel genes for application in various industrial processes and development of genetically modified organisms. Identification, isolation and cloning for novel genes at a reasonable pace is the main driving force behind the development of unprecedented experimental approaches. Metagenomics is one such novel approach for engendering novel genes. Metagenomics of complex microbial communities (both cultivable and uncultivable) is a rich source of novel genes for biotechnological purposes. The contributions made by metagenomics to the already existing repository of prokaryotic genes is quite impressive but nevertheless, this technique is still in its infancy. In the present review we have drawn comparison between routine cloning techniques and metagenomic approach for harvesting novel microbial genes and described various methods to reach down to the specific genes in the metagenome. Accomplishments made thus far, limitations and future prospects of this resourceful technique are discussed.
Collapse
|
47
|
Singh B, Bhat TK, Kurade NP, Sharma OP. Metagenomics in animal gastrointestinal ecosystem: a microbiological and biotechnological perspective. Indian J Microbiol 2008; 48:216-27. [PMID: 23100715 DOI: 10.1007/s12088-008-0027-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 12/15/2007] [Indexed: 01/04/2023] Open
Abstract
Metagenomics- the application of the genomics technologies to nonculturable microbial communities, is coming of age. These approaches can be used for the screening and selection of nonculturable rumen microbiota for assessing their role in gastrointestinal (GI) nutrition, plant material fermentation and the health of the host. The technologies designed to access this wealth of genetic information through environmental nucleic acid extraction have provided a means of overcoming the limitations of culture-dependent microbial genetic exploitation. The molecular procedures and techniques will result in reliable insights into the GI microbial structure and activity of the livestock gut microbes in relation to functional interactions, temporal and spatial relationships among different microbial consortia and dietary ingredients. Future developments and applications of these methods promise to provide the first opportunity to link distribution and identity of rumen microbes in their natural habitats with their genetic potential and in situ activities.
Collapse
Affiliation(s)
- B Singh
- Animal Biotechnology Lab. Regional Station, Indian Veterinary Research Institute, Palampur, 176 061 India
| | | | | | | |
Collapse
|
48
|
Huber-Humer M, Gebert J, Hilger H. Biotic systems to mitigate landfill methane emissions. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2008; 26:33-46. [PMID: 18338700 DOI: 10.1177/0734242x07087977] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Landfill gases produced during biological degradation of buried organic wastes include methane, which when released to the atmosphere, can contribute to global climate change. Increasing use of gas collection systems has reduced the risk of escaping methane emissions entering the atmosphere, but gas capture is not 100% efficient, and further, there are still many instances when gas collection systems are not used. Biotic methane mitigation systems exploit the propensity of some naturally occurring bacteria to oxidize methane. By providing optimum conditions for microbial habitation and efficiently routing landfill gases to where they are cultivated, a number of bio-based systems, such as interim or long-term biocovers, passively or actively vented biofilters, biowindows and daily-used biotarps, have been developed that can alone, or with gas collection, mitigate landfill methane emissions. This paper reviews the science that guides bio-based designs; summarizes experiences with the diverse natural or engineered substrates used in such systems; describes some of the studies and field trials being used to evaluate them; and discusses how they can be used for better landfill operation, capping, and aftercare.
Collapse
|
49
|
Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 2007; 74:1305-15. [PMID: 18165358 DOI: 10.1128/aem.02233-07] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Mohanty SR, Bodelier PLE, Conrad R. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 2007; 62:24-31. [PMID: 17725622 DOI: 10.1111/j.1574-6941.2007.00370.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Temperature change affects methane consumption in soil. However, there is no information on possible temperature control of methanotrophic bacterial populations. Therefore, we studied CH(4) consumption and populations of methanotrophs in an upland forest soil and a rice field soil incubated at different temperatures between 5 and 45 degrees C for up to 40 days. Potential methane consumption was measured at 4% CH(4). The temporal progress of CH(4) consumption indicated growth of methanotrophs. Both soils showed maximum CH(4) consumption at 25-35 degrees C, but no activity at >40 degrees C. In forest soil CH(4) was also consumed at 5 degrees C, but in rice soil only at 15 degrees C. Methanotroph populations were assessed by terminal restriction fragment length polymorphism (T-RFLP) targeting particulate methane monooxygenase (pmoA) genes. Eight T-RFs with relative abundance >1% were retrieved from both forest and rice soil. The individual T-RFs were tentatively assigned to different methanotrophic populations (e.g. Methylococcus/Methylocaldum, Methylomicrobium, Methylobacter, Methylocystis/Methylosinus) according to published sequence data. Two T-RFs were assigned to ammonium monooxygenase (amoA) gene sequences. Statistical tests showed that temperature affected the relative abundance of most T-RFs. Furthermore, the relative abundance of individual T-RFs differed between the two soils, and also exhibited different temperature dependence. We conclude that temperature can be an important factor regulating the community composition of methanotrophs in soil.
Collapse
Affiliation(s)
- Santosh R Mohanty
- Department of Biogeochemistry, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | |
Collapse
|