1
|
Yadav VK, Khan SH, Choudhary N, Tirth V, Kumar P, Ravi RK, Modi S, Khayal A, Shah MP, Sharma P, Godha M. Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. J Basic Microbiol 2021; 62:348-360. [PMID: 34528719 DOI: 10.1002/jobm.202100217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 11/12/2022]
Abstract
Nanotechnology has gained huge importance in the field of environmental clean-up today. Due to their remarkable and unique properties, it has shown potential application for the remediation of several pesticides and textile dyes. Recently it has shown positive results for the remediation of sodium dodecyl sulfate (SDS). One of the highly exploited surfactants in detergent preparation is anionic surfactants. The SDS selected for the present study is an example of anionic linear alkyl sulfate. It is utilized extensively in industrial washing, which results in the high effluent level of this contaminant and ubiquitously toxic to the environment. The present review is based on the research depicting the adverse effects of SDS in general and possible strategies to minimizing its effects by bacterial degradation which are capable of exploiting the SDS as an only source of carbon. Moreover, it has also highlighted that how nanotechnology can play a role in the remediation of such recalcitrant pesticides.
Collapse
Affiliation(s)
- Virendra K Yadav
- Department of Microbiology, School of Sciences, P P Savani University, Kosamba, Surat, Gujarat, India.,Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Samreen H Khan
- Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Nisha Choudhary
- Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia.,Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha, Asir, Kingdom of Saudi Arabia
| | - Pankaj Kumar
- Environmental Microbiology, School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Raman K Ravi
- Environmental Microbiology, School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Shreya Modi
- Environmental Nanotechnology, School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Areeba Khayal
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Maulin P Shah
- Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India
| | - Purva Sharma
- Department of Zoology, School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Meena Godha
- Department of Zoology, School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Poh WH, Lin J, Colley B, Müller N, Goh BC, Schleheck D, El Sahili A, Marquardt A, Liang Y, Kjelleberg S, Lescar J, Rice SA, Klebensberger J. The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa. PLoS One 2020; 15:e0241019. [PMID: 33156827 PMCID: PMC7647112 DOI: 10.1371/journal.pone.0241019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm development is very complex and can include multiple, highly interconnected signal transduction/response pathways, which are incompletely understood. We demonstrated previously that in the opportunistic, human pathogen P. aeruginosa, the PP2C-like protein phosphatase SiaA and the di-guanylate cyclase SiaD control the formation of macroscopic cellular aggregates, a type of suspended biofilms, in response to surfactant stress. In this study, we demonstrate that the SiaABC proteins represent a signal response pathway that functions through a partner switch mechanism to control biofilm formation. We also demonstrate that SiaABCD functionality is dependent on carbon substrate availability for a variety of substrates, and that upon carbon starvation, SiaB mutants show impaired dispersal, in particular with the primary fermentation product ethanol. This suggests that carbon availability is at least one of the key environmental cues integrated by the SiaABCD system. Further, our biochemical, physiological and crystallographic data reveals that the phosphatase SiaA and its kinase counterpart SiaB balance the phosphorylation status of their target protein SiaC at threonine 68 (T68). Crystallographic analysis of the SiaA-PP2C domain shows that SiaA is present as a dimer. Dynamic modelling of SiaA with SiaC suggested that SiaA interacts strongly with phosphorylated SiaC and dissociates rapidly upon dephosphorylation of SiaC. Further, we show that the known phosphatase inhibitor fumonisin inhibits SiaA mediated phosphatase activity in vitro. In conclusion, the present work improves our understanding of how P. aeuruginosa integrates specific environmental conditions, such as carbon availability and surfactant stress, to regulate cellular aggregation and biofilm formation. With the biochemical and structural characterization of SiaA, initial data on the catalytic inhibition of SiaA, and the interaction between SiaA and SiaC, our study identifies promising targets for the development of biofilm-interference drugs to combat infections of this aggressive opportunistic pathogen.
Collapse
Affiliation(s)
- Wee-Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jianqing Lin
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Brendan Colley
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicolai Müller
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Konstanz, Germany
| | - Boon Chong Goh
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - David Schleheck
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Konstanz, Germany
| | - Abbas El Sahili
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andreas Marquardt
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Konstanz, Germany
| | - Yang Liang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- The ithree Institute, The University of Technology Sydney, Sydney, Australia
| | - Janosch Klebensberger
- University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany
| |
Collapse
|
3
|
Van Stempvoort DR, Brown SJ, Smyth SA. Detections of alkyl-phenoxy-benzenesulfonates in municipal wastewater. CHEMOSPHERE 2020; 251:126386. [PMID: 32155495 DOI: 10.1016/j.chemosphere.2020.126386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
This study presents the first reported detections and concentrations of alkyl phenoxy-benzenesulfonate surfactants (APBS) in municipal wastewater. A semi quantitative direct injection LC/MS/MS method was developed. Samples of raw influent and final effluent were obtained from fourteen municipal wastewater treatment plants (WWTPs) at various locations in Canada and were analyzed for APBS, including five homologues of monoalkyldiphenylether disulfonates (MADS) and one monoalkyldiphenylether sulfonate (MAMS) homologue. APBS were detected in all 42 of the wastewater raw influent samples and in 37 of the 42 wastewater final effluent samples; the other 5 final effluent samples had trace levels below the minimum detection limit. In the samples of raw influent from the fourteen municipal treatment plants, the dissolved concentrations of APBS (total) ranged from 0.9 to 13.6 μg/L. In samples of final effluent from the same plants the total APBS ranged from below detection to 4 μg/L. The APBS were more resistant to loss during wastewater treatment compared to previous studies of linear alkylbenzene sulfonates in wastewaters. The most effective wastewater treatments for removal of APBS were those that involved either secondary treatment with aeration or advanced treatment including biological nutrient removal. Available information on ecotoxicity is lacking for evaluating the impacts of APBS surfactants when released to the environment.
Collapse
Affiliation(s)
- Dale R Van Stempvoort
- Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada.
| | - Susan J Brown
- Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada
| | - Shirley Anne Smyth
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada
| |
Collapse
|
4
|
Masoudian Z, Salehi-Lisar SY, Norastehnia A. Phytoremediation potential of Azolla filiculoides for sodium dodecyl benzene sulfonate (SDBS) surfactant considering some physiological responses, effects of operational parameters and biodegradation of surfactant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20358-20369. [PMID: 32240507 DOI: 10.1007/s11356-020-08286-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/02/2020] [Indexed: 05/27/2023]
Abstract
In this study, phytoremediation potential of the Azolla filiculoides Lam. was examined for sodium dodecyl benzene sulfonate (SDBS) anionic surfactant. Furthermore, the effect of surfactant treatment on some physiological characteristics of Azolla was studied. The surfactant bioremoval efficiency was studied under variable conditions including treatment time, initial surfactant concentration, Azolla fresh weight, temperature, and pH. Results showed that surfactant removal efficiency of A. filiculoides was significantly enhanced with increasing of temperature, initial surfactant concentration, and amount of Azolla. SDBS led to a reduction in growth rate and total chlorophyll content, but effect index of Azolla increased by higher concentrations of surfactant. In contrast, antioxidant enzymes activities including polyphenol oxidase, ascorbate peroxidase, catalase, and peroxidase, as well as nonenzymatic antioxidants such as total carotenoids and anthocyanin contents significantly increased probably due to the ability of plant to overcome oxidative stress induced by SDBS. An increase in antioxidant activity based on 2, 2-diphenyl-1-picrylhydrazil (DPPH) confirmed this fact. An increase in the amount of hydrogen peroxide and reduction in membrane stability index indicated the induction of oxidative stress. As a result of SDBS biodegradation, 6 homologs of sulfophenyl carboxylates (SPCs) including C2 to C7-SPC and benzenesulfonate ring were identified by liquid chromatography-mass spectroscopy (LC-MS) analysis.
Collapse
Affiliation(s)
- Zahra Masoudian
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan, 5166616471, Iran
| | - Seyed Yahya Salehi-Lisar
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan, 5166616471, Iran.
| | - Akbar Norastehnia
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
5
|
Cuadrat RRC, Sorokina M, Andrade BG, Goris T, Dávila AMR. Global ocean resistome revealed: Exploring antibiotic resistance gene abundance and distribution in TARA Oceans samples. Gigascience 2020; 9:giaa046. [PMID: 32391909 PMCID: PMC7213576 DOI: 10.1093/gigascience/giaa046] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The rise of antibiotic resistance (AR) in clinical settings is of great concern. Therefore, the understanding of AR mechanisms, evolution, and global distribution is a priority for patient survival. Despite all efforts in the elucidation of AR mechanisms in clinical strains, little is known about its prevalence and evolution in environmental microorganisms. We used 293 metagenomic samples from the TARA Oceans project to detect and quantify environmental antibiotic resistance genes (ARGs) using machine learning tools. RESULTS After manual curation of ARGs, their abundance and distribution in the global ocean are presented. Additionally, the potential of horizontal ARG transfer by plasmids and their correlation with environmental and geographical parameters is shown. A total of 99,205 environmental open reading frames (ORFs) were classified as 1 of 560 different ARGs conferring resistance to 26 antibiotic classes. We found 24,567 ORFs in putative plasmid sequences, suggesting the importance of mobile genetic elements in the dynamics of environmental ARG transmission. Moreover, 4,804 contigs with >=2 putative ARGs were found, including 2 plasmid-like contigs with 5 different ARGs, highlighting the potential presence of multi-resistant microorganisms in the natural ocean environment. Finally, we identified ARGs conferring resistance to some of the most relevant clinical antibiotics, revealing the presence of 15 ARGs similar to mobilized colistin resistance genes (mcr) with high abundance on polar biomes. Of these, 5 are assigned to Psychrobacter, a genus including opportunistic human pathogens. CONCLUSIONS This study uncovers the diversity and abundance of ARGs in the global ocean metagenome. Our results are available on Zenodo in MySQL database dump format, and all the code used for the analyses, including a Jupyter notebook js avaliable on Github. We also developed a dashboard web application (http://www.resistomedb.com) for data visualization.
Collapse
Affiliation(s)
- Rafael R C Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke - DIfE, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessingstrasse 8, 07743 Jena, Germany
| | - Bruno G Andrade
- Animal Biotechnology Laboratory, Embrapa Southeast Livestock, EMBRAPA, Rodovia Washington Luiz, Km 234 s/n°, 13560-970 São Carlos, SP, Brazil
| | - Tobias Goris
- Department of Molecular Toxicology, Research Group Intestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke - DIfE, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - Alberto M R Dávila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Av Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
- Graduate Program in Biodiversity and Health, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Tu R, Jin W, Han SF, Ding B, Gao SH, Zhou X, Li SF, Feng X, Wang Q, Yang Q, Yuwen Y. Treatment of wastewater containing linear alkylbenzene sulfonate by bacterial-microalgal biological turntable. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0499-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Tang W, Li X, Liu H, Wu S, Zhou Q, Du C, Teng Q, Zhong Y, Yang C. Sequential vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of decentralized domestic wastewater with sodium dodecyl benzene sulfonate. BIORESOURCE TECHNOLOGY 2020; 300:122634. [PMID: 31901779 DOI: 10.1016/j.biortech.2019.122634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 05/23/2023]
Abstract
Sequential vertical flow trickling filter and horizontal flow multi-soil-layering bioreactor were investigated for the treatment of decentralized domestic wastewater at various concentrations of sodium dodecyl benzene sulfonate (SDBS). Results have shown that the removal rate of COD could reach 92.1% at initial COD concentration of 960 mg/L (800 mg/L was provided by SDBS). NH4+-N concentration could be reduced from 52.4 to 9.71 mg/L without aeration. Besides, a quadratic function model was fit to describe the relationship between the relative activity of amylase and the protein content in extracellular polymer substance. SDBS could inhibit the transport and metabolisms of amino acids, lipids and carbohydrates in biofilms. The analysis of three-dimensional fluorescence diagram indicated that the peak in excitation/emission wavelengths = 310-340/370-430 nm was the characteristic peaks of some active substances such as some enzymes in EPS. Only Microbacterium could totally offset the toxicity of SDBS degradation products.
Collapse
Affiliation(s)
- Wenchang Tang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haiyang Liu
- Datang Environment Industry Group Co., Ltd. Beijing 100097, China
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qi Zhou
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Cheng Du
- Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Qing Teng
- Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yuanyuan Zhong
- Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| |
Collapse
|
8
|
Fedeila M, Hachaïchi-Sadouk Z, Bautista LF, Simarro R, Nateche F. Biodegradation of anionic surfactants by Alcaligenes faecalis, Enterobacter cloacae and Serratia marcescens strains isolated from industrial wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:629-635. [PMID: 30096664 DOI: 10.1016/j.ecoenv.2018.07.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Pseudo-persistent organic pollutants, such as anionic surfactants (AS), are nowadays among the more complex problems that threaten the aquatic environments and other environmental compartments. The present work describes the identification and efficiency of a consortium, isolated from Algerian industrial wastewater, to remove three anionic surfactants (i.e., sodium dodecylbenzenesulfonate (SDBS), sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES)). The genetic analysis of 16S rRNA indicated that these strains are Alcaligenes faecalis, Enterobacter cloacae and Serratia marcescens. Under aerobic conditions, pH 7.0 and optimum temperature of 30 °C, the mixed consortium allowed to degrade 85.1% of initial SDBS amount after 144 h of incubation with half-life of 20.8 h. While E. cloacae and S. marcescens pure strains eliminated 46% and 41% less SDBS respectively. Evenly, SDS was degraded at only 23.71% by A. faecalis strain. However, the degradation capacity of SDS by the consortium was very high (94.2%) with a half-life of 9.8 h. The SLES anionic surfactant showed a lower biodegradation by the consortium (47.53%) due to the presence of ether oxide units in the chemical structure of SLES which induced toxicity to the medium. The investigation of the biodegradation of this type of organic pollutants by microorganisms has recently become a key issue for the environmental protection area.
Collapse
Affiliation(s)
- Mourad Fedeila
- Laboratory of Applied Organic Chemistry, Faculty of Chemistry, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar 16111, Algiers, Algeria.
| | - Zohra Hachaïchi-Sadouk
- Laboratory of Applied Organic Chemistry, Faculty of Chemistry, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar 16111, Algiers, Algeria
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Raquel Simarro
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Farida Nateche
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar 16111, Algiers, Algeria
| |
Collapse
|
9
|
Tsuboi S, Yamamura S, Nakajima-Kambe T, Iwasaki K. Diversity of alkane hydroxylase genes on the rhizoplane of grasses planted in petroleum-contaminated soils. SPRINGERPLUS 2015; 4:526. [PMID: 26405645 PMCID: PMC4575313 DOI: 10.1186/s40064-015-1312-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/07/2015] [Indexed: 11/10/2022]
Abstract
The study investigated the diversity and genotypic features of alkane hydroxylase genes on rhizoplanes of grasses planted in artificial petroleum-contaminated soils to acquire new insights into the bacterial communities responsible for petroleum degradation in phytoremediation. Four types of grass (Cynodon dactylon, two phenotypes of Zoysia japonica, and Z. matrella) were used. The concentrations of total petroleum hydrocarbon effectively decreased in the grass-planted systems compared with the unplanted system. Among the representative alkane hydroxylase genes alkB, CYP153, almA and ladA, the first two were detected in this study, and the genotypes of both genes were apparently different among the systems studied. Their diversity was also higher on the rhizoplanes of the grasses than in unplanted oil-contaminated soils. Actinobacteria-related genes in particular were among the most diverse alkane hydroxylase genes on the rhizoplane in this study, indicating that they are one of the main contributors to degrading alkanes in oil-contaminated soils during phytoremediation. Actinobacteria-related alkB genes and CYP153 genes close to the genera Parvibaculum and Aeromicrobium were found in significant numbers on the rhizoplanes of grasses. These results suggest that the increase in diversity and genotype differences of the alkB and CYP153 genes are important factors affecting petroleum hydrocarbon-degrading ability during phytoremediation.
Collapse
Affiliation(s)
- Shun Tsuboi
- National Institute for Environmental Studies (NIES), Center for Regional Environmental Research, 16-2 Onogawa, Tsukuba, 305-8506 Japan ; National Institute for Environmental Studies (NIES), Center for Environmental Biology and Ecosystem Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Shigeki Yamamura
- National Institute for Environmental Studies (NIES), Center for Regional Environmental Research, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Toshiaki Nakajima-Kambe
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Japan
| | - Kazuhiro Iwasaki
- National Institute for Environmental Studies (NIES), Center for Regional Environmental Research, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| |
Collapse
|
10
|
Zhang Y, Ma J, Zhou S, Ma F. Concentration-dependent toxicity effect of SDBS on swimming behavior of freshwater fishes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:77-85. [PMID: 26093194 DOI: 10.1016/j.etap.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/03/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
Sodium dodecyl benzene sulfonate (SDBS) is a kind of widely used anionic surfactant and its discharge may pose potential risk to the receiving aquatic ecosystem. The aim of our study is to investigate the toxic effect of SDBS on fish swimming behavior quantitatively, followed by examination whether there are significant differences of swimming behavior among applied fish species (i.e. zebra fish (Danio rerio), Japanese medaka (Oryzias latipes) and red carp (Cyprinus carpio)). The swimming speed and vertical position were analyzed after the fish exposed to SDBS aiming to reflect the toxicity of SDBS on fish. Our results showed that the swimming behavior of three fishes was significantly affected by SDBS, although there were slight differences of swimming pattern changes among three fish species when they exposed to the same concentration of SDBS. It could be seen that red carp, one of the native fish species in China, can be used as a model fish to reflect the water quality changes as well as zebra fish and Japanese medaka which are commonly used as model fishes. Our study also illustrated that the swimming behavior monitoring may have a good application prospect in pre-warning of water quality.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jing Ma
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Siyun Zhou
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nan Gang District, Harbin 150090, China.
| |
Collapse
|
11
|
Popovic A, Tchigvintsev A, Tran H, Chernikova TN, Golyshina OV, Yakimov MM, Golyshin PN, Yakunin AF. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:1-20. [DOI: 10.1007/978-3-319-23603-2_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Prakash D, Nawani N. A rapid and improved technique for scanning electron microscopy of actinomycetes. J Microbiol Methods 2014; 99:54-7. [DOI: 10.1016/j.mimet.2014.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/08/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
|
13
|
Weiss M, Kesberg AI, Labutti KM, Pitluck S, Bruce D, Hauser L, Copeland A, Woyke T, Lowry S, Lucas S, Land M, Goodwin L, Kjelleberg S, Cook AM, Buhmann M, Thomas T, Schleheck D. Permanent draft genome sequence of Comamonas testosteroni KF-1. Stand Genomic Sci 2013; 8:239-54. [PMID: 23991256 PMCID: PMC3746432 DOI: 10.4056/sigs.3847890] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni KF-1 is a model organism for the elucidation of the novel biochemical degradation pathways for xenobiotic 4-sulfophenylcarboxylates (SPC) formed during biodegradation of synthetic 4-sulfophenylalkane surfactants (linear alkylbenzenesulfonates, LAS) by bacterial communities. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,026,527 bp long chromosome (one sequencing gap) exhibits an average G+C content of 61.79% and is predicted to encode 5,492 protein-coding genes and 114 RNA genes.
Collapse
Affiliation(s)
- Michael Weiss
- Department of Biological Sciences, University of Konstanz, Germany ; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Surfactants: Chemistry, Toxicity and Remediation. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2013. [DOI: 10.1007/978-3-319-02387-8_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Two enzymes of a complete degradation pathway for linear alkylbenzenesulfonate (LAS) surfactants: 4-sulfoacetophenone Baeyer-Villiger monooxygenase and 4-sulfophenylacetate esterase in Comamonas testosteroni KF-1. Appl Environ Microbiol 2012; 78:8254-63. [PMID: 23001656 DOI: 10.1128/aem.02412-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complete biodegradation of the surfactant linear alkylbenzenesulfonate (LAS) is accomplished by complex bacterial communities in two steps. First, all LAS congeners are degraded into about 50 sulfophenylcarboxylates (SPC), one of which is 3-(4-sulfophenyl)butyrate (3-C(4)-SPC). Second, these SPCs are mineralized. 3-C(4)-SPC is mineralized by Comamonas testosteroni KF-1 in a process involving 4-sulfoacetophenone (SAP) as a metabolite and an unknown inducible Baeyer-Villiger monooxygenase (BVMO) to yield 4-sulfophenyl acetate (SPAc) from SAP (SAPMO enzyme); hydrolysis of SPAc to 4-sulfophenol and acetate is catalyzed by an unknown inducible esterase (SPAc esterase). Transcriptional analysis showed that one of four candidate genes for BVMOs in the genome of strain KF-1, as well as an SPAc esterase candidate gene directly upstream, was inducibly transcribed during growth with 3-C(4)-SPC. The same genes were identified by enzyme purification and peptide fingerprinting-mass spectrometry when SAPMO was enriched and SPAc esterase purified to homogeneity by protein chromatography. Heterologously overproduced pure SAPMO converted SAP to SPAc and was active with phenylacetone and 4-hydroxyacetophenone but not with cyclohexanone and progesterone. SAPMO showed the highest sequence homology to the archetypal phenylacetone BVMO (57%), followed by steroid BVMO (55%) and 4-hydroxyacetophenone BVMO (30%). Finally, the two pure enzymes added sequentially, SAPMO with NADPH and SAP, and then SPAc esterase, catalyzed the conversion of SAP via SPAc to 4-sulfophenol and acetate in a 1:1:1:1 molar ratio. Hence, the first two enzymes of a complete LAS degradation pathway were identified, giving evidence for the recruitment of members of the very versatile type I BVMO and carboxylester hydrolase enzyme families for the utilization of a xenobiotic compound by bacteria.
Collapse
|
16
|
Schleheck D, Weiss M, Pitluck S, Bruce D, Land ML, Han S, Saunders E, Tapia R, Detter C, Brettin T, Han J, Woyke T, Goodwin L, Pennacchio L, Nolan M, Cook AM, Kjelleberg S, Thomas T. Complete genome sequence of Parvibaculum lavamentivorans type strain (DS-1(T)). Stand Genomic Sci 2011; 5:298-310. [PMID: 22675581 PMCID: PMC3368416 DOI: 10.4056/sigs.2215005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvibaculum lavamentivorans DS-1(T) is the type species of the novel genus Parvibaculum in the novel family Rhodobiaceae (formerly Phyllobacteriaceae) of the order Rhizobiales of Alphaproteobacteria. Strain DS-1(T) is a non-pigmented, aerobic, heterotrophic bacterium and represents the first tier member of environmentally important bacterial communities that catalyze the complete degradation of synthetic laundry surfactants. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,914,745 bp long genome with its predicted 3,654 protein coding genes is the first completed genome sequence of the genus Parvibaculum, and the first genome sequence of a representative of the family Rhodobiaceae.
Collapse
Affiliation(s)
- David Schleheck
- Department of Biological Sciences and Research School Chemical Biology, University of Konstanz, Germany
| | - Michael Weiss
- Department of Biological Sciences and Research School Chemical Biology, University of Konstanz, Germany
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - David Bruce
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Miriam L. Land
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Shunsheng Han
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Elizabeth Saunders
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Chris Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Thomas Brettin
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Len Pennacchio
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alasdair M. Cook
- Department of Biological Sciences and Research School Chemical Biology, University of Konstanz, Germany
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Fukuda W, Yamada K, Miyoshi Y, Okuno H, Atomi H, Imanaka T. Rhodoligotrophos appendicifer gen. nov., sp. nov., an appendaged bacterium isolated from a freshwater Antarctic lake. Int J Syst Evol Microbiol 2011; 62:1945-1950. [PMID: 22003040 DOI: 10.1099/ijs.0.032953-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-spore-forming, non-motile, irregularly circular, aerobic/microaerobic appendaged bacterium (strain 120-1(T)) was isolated from Naga-ike, one of the freshwater lakes in the Skarvsnes ice-free area of Antarctica. Strain 120-1(T) grew between 5 and 35 °C, with optimum growth at 30 °C. The pH range for growth was between 6.0 and 9.0 (optimum of approximately pH 7.0). The range of NaCl concentration allowing growth of strain 120-1(T) was between 0 and 5.0%, with an optimum of 0.5-1.0%. Strain 120-1(T) was able to utilize organic compounds such as glucose, arabinose, gluconate, adipate and malate. Red colonies were formed on plate medium and the carotenoids were present in the cells. Ubiquinones Q-9 and Q-10 were the major respiratory quinones. The major cellular fatty acids were C(16:0), C(18:1)ω9c and C(18:1)ω7c. The G+C content of the genomic DNA was 61.1 mol%. Comparative analyses of 16S rRNA gene sequences and physiological characteristics of strain 120-1(T) indicate that strain 120-1(T) is a phylogenetically novel bacterium, and that it represents a novel species in a new genus, Rhodoligotrophos gen. nov., in the order Rhizobiales, family Rhodobiaceae. The name Rhodoligotrophos appendicifer gen. nov. sp. nov. is proposed as the type species of this new genus, with 120-1(T) ( = JCM 16873(T) = ATCC BAA-2115(T)) as the type strain.
Collapse
Affiliation(s)
- Wakao Fukuda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Kozo Yamada
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yuki Miyoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirokazu Okuno
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
18
|
Liu Y, Han P, Li XY, Shih K, Gu JD. Enantioselective degradation and unidirectional chiral inversion of 2-phenylbutyric acid, an intermediate from linear alkylbenzene, by Xanthobacter flavus PA1. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:1633-1640. [PMID: 21794984 DOI: 10.1016/j.jhazmat.2011.06.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/10/2011] [Accepted: 06/29/2011] [Indexed: 05/31/2023]
Abstract
Microbial degradation of the chiral 2-phenylbutyric acid (2-PBA), a metabolite of surfactant linear alkylbenzene sulfonates (LAS), was investigated using both racemic and enantiomer-pure compounds together with quantitative stereoselective analyses. A pure culture of bacteria, identified as Xanthobacter flavus strain PA1 isolated from the mangrove sediment of Hong Kong Mai Po Nature Reserve, was able to utilize the racemic 2-PBA as well as the single enantiomers as the sole source of carbon and energy. In the presence of the racemic compounds, X. flavus PA1 degraded both (R) and (S) forms of enantiomers to completion in a sequential manner in which the (S) enantiomer disappeared much faster than the (R) enantiomer. When the single pure enantiomer was supplied as the sole substrate, a unidirectional chiral inversion involving (S) enantiomer to (R) enantiomer was evident. No major difference was observed in the degradation intermediates with either of the individual enantiomers when used as the growth substrate. Two major degradation intermediates were detected and identified as 3-hydroxy-2-phenylbutanoic acid and 4-methyl-3-phenyloxetan-2-one, using a combination of liquid chromatography-mass spectrometry (LC-MS), and (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. The biochemical degradation pathway follows an initial oxidation of the alkyl side chain before aromatic ring cleavage. This study reveals new evidence for enantiomeric inversion catalyzed by pure culture of environmental bacteria and emphasizes the significant differences between the two enantiomers in their environmental fates.
Collapse
Affiliation(s)
- Yishan Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
19
|
Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 2011; 21:599-609. [PMID: 21270172 DOI: 10.1101/gr.115592.110] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer (LGT) plays a major role in prokaryote evolution with only a few genes that are resistant to it; yet the nature and magnitude of barriers to lateral transfer are still debated. Here, we implement directed networks to investigate donor-recipient events of recent lateral gene transfer among 657 sequenced prokaryote genomes. For 2,129,548 genes investigated, we detected 446,854 recent lateral gene transfer events through nucleotide pattern analysis. Among these, donor-recipient relationships could be specified through phylogenetic reconstruction for 7% of the pairs, yielding 32,028 polarized recent gene acquisition events, which constitute the edges of our directed networks. We find that the frequency of recent LGT is linearly correlated both with genome sequence similarity and with proteome similarity of donor-recipient pairs. Genome sequence similarity accounts for 25% of the variation in gene-transfer frequency, with proteome similarity adding only 1% to the variability explained. The range of donor-recipient GC content similarity within the network is extremely narrow, with 86% of the LGTs occurring between donor-recipient pairs having ≤5% difference in GC content. Hence, genome sequence similarity and GC content similarity are strong barriers to LGT in prokaryotes. But they are not insurmountable, as we detected 1530 recent transfers between distantly related genomes. The directed network revealed that recipient genomes of distant transfers encode proteins of nonhomologous end-joining (NHEJ; a DNA repair mechanism) far more frequently than the recipient lacking that mechanism. This implicates NHEJ in genes spread across distantly related prokaryotes through bypassing the donor-recipient sequence similarity barrier.
Collapse
Affiliation(s)
- Ovidiu Popa
- Institute of Botany III, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
20
|
Isolation from Tannery Wastewater and Characterization of Bacterial Strain Involved in Nonionic Surfactant Degradation. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.183-185.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bacterial strain OPQa3 capable of utilizing nonylphenol polyoxyethylene (NPnEO) as sole carbon source was isolated from water samples collected from tannery waste treatment plant suffered long-time application of NPnEO by enrichment method. It was preliminarily identified as Brevundimonas sp. (most similar to Brevundimonas diminuta (EU434566.1)), according to the observation of morphological characteristics, physiological-biochemical tests and the similarity analysis of its 16S rDNA gene sequence. Inoculated 2% of OPQa3 suspension, to give a final OD600of approximately 0.70, to inorganic salt medium in which the initial concentration of NPnEO was 746 mg•L-1, degradation test showed that, the degradation rate of strain OPQa3 was 84.5% within 120 hours, the optimum temperature was 30°C while the optimum pH value was about 7, and the growth period was of 24 hours.
Collapse
|
21
|
Yeldho D, Rebello S, Jisha MS. Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulphate, by Pseudomonas aeruginosa S7. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 86:110-113. [PMID: 21152890 DOI: 10.1007/s00128-010-0162-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Sodium dodecyl sulphate (SDS), an anionic surfactant, has been used extensively due to its low cost and excellent foaming properties. Fifteen different bacterial isolates capable of degrading SDS were isolated from detergent contaminated soil by enrichment culture technique and the degradation efficiency was assessed by Methylene Blue Active Substances (MBAS) assay. The most efficient SDS degrading isolate was selected and identified as Pseudomonas aeruginosa S7. The selected isolate was found to harbor a single 6-kb plasmid. Acridine orange, ethidium bromide, SDS and elevated temperatures of incubation failed to cure the plasmid. The cured derivatives of SDS degrading Pseudomonas aeruginosa were obtained only when ethidium bromide and elevated temperature (40 °C) were used together. Transformation of E. coli DH5α with plasmid isolated from S7 resulted in subsequent growth of the transformants on minimal salt media with SDS (0.1%) as the sole source of carbon. The SDS degradation ability of S7 and the transformant was found to be similar as assessed by Methylene Blue Active Substance Assay. The antibiotic resistance profiles of S7, competent DH5α and transformant were analyzed and it was noted that the transfer of antibiotic resistance correlated with the transfer of plasmid as well as SDS degrading property.
Collapse
Affiliation(s)
- Deepthi Yeldho
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | | | |
Collapse
|
22
|
Klebensberger J, Birkenmaier A, Geffers R, Kjelleberg S, Philipp B. SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environ Microbiol 2009; 11:3073-86. [PMID: 19638175 DOI: 10.1111/j.1462-2920.2009.02012.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell aggregation is a stress response and serves as a survival strategy for Pseudomonas aeruginosa strain PAO1 during growth with the toxic detergent Na-dodecylsulfate (SDS). This process involves the psl operon and is linked to c-di-GMP signalling. The induction of cell aggregation in response to SDS was studied. Transposon and site-directed mutagenesis revealed that the cupA-operon and the co-transcribed genes siaA (PA0172) and siaD (PA0169) were essential for SDS-induced aggregation. While siaA encodes a putative membrane protein with a HAMP and a PP2C-like phosphatase domain, siaD encodes a putative diguanylate cyclase involved in the biosynthesis of c-di-GMP. Complementation studies uncovered that the loss of SDS-induced aggregation in the formerly isolated spontaneous mutant strain N was caused by a non-functional siaA allele. DNA-microarray analysis of SDS-grown cells revealed consistent activation of eight genes, including cupA1, with known or presumptive important functions in cell aggregation in the parent strain compared with non-aggregating siaA and siaD mutants. A siaAD-dependent increase of cupA1 mRNA levels in SDS-grown cells was also shown by Northern blots. These results clearly demonstrate that SiaAD are essential for inducing cell aggregation as a specific response to SDS and suggest that they are responsible for perceiving and transducing SDS-related stress.
Collapse
Affiliation(s)
- Janosch Klebensberger
- Universität Konstanz, Fachbereich Biologie, Mikrobielle Okologie, Fach M654, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
23
|
Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, Kjelleberg S. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 2009; 4:e5513. [PMID: 19436737 PMCID: PMC2677461 DOI: 10.1371/journal.pone.0005513] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/14/2009] [Indexed: 11/25/2022] Open
Abstract
In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or 'suspended biofilms', by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10-400 microm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.
Collapse
Affiliation(s)
- David Schleheck
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Water and Waste Technology, School of Civil Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicolas Barraud
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Janosch Klebensberger
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jeremy S. Webb
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Diane McDougald
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Scott A. Rice
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Peressutti SR, Olivera NL, Babay PA, Costagliola M, Alvarez HM. Degradation of linear alkylbenzene sulfonate by a bacterial consortium isolated from the aquatic environment of Argentina. J Appl Microbiol 2008; 105:476-84. [PMID: 18355233 DOI: 10.1111/j.1365-2672.2008.03771.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S R Peressutti
- Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
25
|
Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Schleheck D, Knepper TP, Eichhorn P, Cook AM. Parvibaculum lavamentivorans DS-1T degrades centrally substituted congeners of commercial linear alkylbenzenesulfonate to sulfophenyl carboxylates and sulfophenyl dicarboxylates. Appl Environ Microbiol 2007; 73:4725-32. [PMID: 17557839 PMCID: PMC1951025 DOI: 10.1128/aem.00632-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Commercial linear alkylbenzenesulfonate (LAS) contains 20 congeners of linear alkanes (C(10) to C(13)) substituted subterminally with the 4-sulfophenyl moiety in any position from lateral to central. Parvibaculum lavamentivorans DS-1(T) degrades each of eight laterally substituted congeners [e.g., 2-(4-sulfophenyl)decane (2-C10-LAS); herein, compounds are named systematically by chain length (e.g., C(10)) and by the position of the substituent on the chain (e.g., position 2)] to a major sulfophenyl carboxylate [SPC; here 3-(4-sulfophenyl)butyrate (3-C4-SPC)] and two minor products, namely, the alpha,beta-unsaturated SPC (SPC-2H, here 3-C4-SPC-2H) and the SPC+2C (here 5-C6-SPC) species (D. Schleheck, T. P. Knepper, K. Fischer, and A. M. Cook, Appl. Environ. Microbiol. 70:4053-4063). The degradation of centrally substituted congeners by strain DS-1 was examined in this work. 5-C10-LAS yielded not only the predicted 4-C8-SPC, 4-C8-SPC-2H, and 6-C10-SPC (about 70% of products) but also sulfophenyl dicarboxylates (SPdC), i.e., C6-, C8-, and C10-SPdC. These were identified by electrospray ionization-mass spectrometry (ESI-MS) after separation by high-pressure liquid chromatography (HPLC). ESI ion-trap MS and ESI-time of flight-MS were used to confirm the identities of key intermediates. Different mixtures of congeners obtained by separation of commercial LAS by HPLC were degraded, and the degradative products were compared. If a congener carried the sulfophenyl substituent on the 5, 6, or 7 position, SPdCs were formed as well as SPC, SPC-2H, and SPC+2C, whereas the substituent on the 2, 3, or 4 position yielded only SPC, SPC-2H, and SPC+2C. Some 50 products were generated from the 20 LAS congeners: 11 major SPCs, each with an SPC-2H and an SPC+2C (i.e., 33 SPC and SPC-2H species), and about 17 SPdC species. A large array of compounds, many in low quantities, is thus generated by P. lavamentivorans DS-1 during the degradation of commercial LAS.
Collapse
Affiliation(s)
- David Schleheck
- Department of Biology, The University of Konstanz, Universitätsstr 10, Konstanz, Germany
| | | | | | | |
Collapse
|
27
|
Klebensberger J, Rui O, Fritz E, Schink B, Philipp B. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Arch Microbiol 2006; 185:417-27. [PMID: 16775748 DOI: 10.1007/s00203-006-0111-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/12/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Pseudomonas aeruginosa strain PAO1 grew with the detergent sodium dodecyl sulfate (SDS). The growth started with the formation of macroscopic cell aggregates which consisted of respiring cells embedded in an extracellular matrix composed of acidic polysaccharides and DNA. Damaged and uncultivable cells accumulated in these aggregates compared to those cells that remained suspended. We investigated the response of suspended cells to SDS under different conditions. At high energy supply, the cells responded with a decrease in optical density and in viable counts, release of protein and DNA, and formation of macroscopic aggregates. This response was not observed if the energy supply was reduced by inhibiting respiration with KCN, or if cells not induced for SDS degradation were exposed to SDS. Exposure to SDS caused cell lysis without aggregation if cells were completely deprived of energy, either by applying anoxic conditions, by addition of CCCP, or by addition of KCN to a mutant defective in cyanide-insensitive respiration. Aggregated cells showed a more than 100-fold higher survival rate after exposure to SDS plus CCCP than suspended cells. Our results demonstrate that cell aggregation is an energy-dependent response of P. aeruginosa to detergent stress which might serve as a survival strategy during growth with SDS.
Collapse
Affiliation(s)
- Janosch Klebensberger
- Fachbereich für Biologie, Mikrobielle Okologie, Universität Konstanz, Fach M 654, 78457, Konstanz, Germany
| | | | | | | | | |
Collapse
|
28
|
Sanz E, Prats D, Rodríguez M, Camacho A. Effect of temperature and organic nutrients on the biodegradation of linear alkylbenzene sulfonate (LAS) during the composting of anaerobically digested sludge from a wastewater treatment plant. WASTE MANAGEMENT (NEW YORK, N.Y.) 2006; 26:1237-45. [PMID: 16298520 DOI: 10.1016/j.wasman.2005.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 07/11/2005] [Accepted: 09/28/2005] [Indexed: 05/05/2023]
Abstract
Limits on the application of biosolids (anaerobically processed sludges from wastewater treatment plants) as fertilizers for the amendment of soil are becoming greater because of the accumulation of recalcitrant substances, making necessary the use of techniques that bring the concentration of xenobiotics to lower concentrations than those permitted. In general, the biosolids composting process is sufficient to reduce the usual concentration of linear alkylbenzene sulfonates (LAS) to low levels. In this work, an assessment is made on the effect of temperature in the capacity of enriched bacterial populations to biodegrade LAS, together with the influence that the available nutrients may have in the biodegradation of these compounds. The results show that the microbial metabolism of LAS was not observed in the thermophilic range. The optimum temperature for the biodegradation of LAS appears to be around 40 degrees C, this is, the lowest assayed here, and at this temperature the differences in the biodegradation of LAS among the nutritionally supplemented cultures are small.
Collapse
Affiliation(s)
- E Sanz
- Institute of Water and Environmental Science, University of Alicante, Spain
| | | | | | | |
Collapse
|
29
|
Schleheck D, Cook AM. Omega-oxygenation of the alkyl sidechain of linear alkylbenzenesulfonate (LAS) surfactant in Parvibaculum lavamentivorans(T). Arch Microbiol 2005; 183:369-77. [PMID: 16075201 DOI: 10.1007/s00203-005-0002-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 03/14/2005] [Accepted: 05/04/2005] [Indexed: 11/28/2022]
Abstract
Parvibaculum lavamentivorans (T) DS-1, an aerobic, heterotrophic bacterium, requires a biofilm on a solid surface (e.g. glass particles) when utilizing commercial linear alkylbenzenesulfonate surfactant (LAS; 20 congeners) for growth. Catabolism involves the undefined 'omega-oxygenation' and beta-oxidation of the LAS side chain, and the organism excretes sulfophenyl carboxylates (SPC) quantitatively. A 3.5-l fermenter was developed which allowed gram-quantities of LAS-grown cells to be grown and harvested from medium with glass particles as the solid support. The catabolism of LAS was dominant: in diauxie experiments with acetate as second carbon source, LAS was utilized first. The biofilm-encoated LAS-grown cells were unsuitable for metabolic work in vitro because cell suspensions clumped and were not disrupted effectively, but the degradative enzymes were found to be expressed constitutively in acetate-grown cells, which formed no biofilm. LAS-dependent oxygen uptake was measured in acetate-grown cells at about 0.6 mkat (kg protein)(-1), but not in extracts of cells. Whole cells converted LAS to SPC in the presence of molecular oxygen only, and the reaction could be saturably inhibited by metyrapone, which acts on e.g. cytochromes P450 (CYP). However, despite the presence of CYP153-like sequences in the genome of strain DS-1(T), the difference spectra did not support the presence of a CYP in crude extracts, and the nature of the LAS-oxygenase remains unclear.
Collapse
Affiliation(s)
- David Schleheck
- Department of Biology, The University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
30
|
Eichhorn P, López O, Barceló D. Application of liquid chromatography–electrospray-tandem mass spectrometry for the identification and characterisation of linear alkylbenzene sulfonates and sulfophenyl carboxylates in sludge-amended soils. J Chromatogr A 2005; 1067:171-9. [PMID: 15844522 DOI: 10.1016/j.chroma.2005.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A novel procedure was developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS) and their major metabolites, sulfophenyl carboxylates (SPC), in sludge-amended soil. After pressurised liquid extraction with methanol/water (90:10) and a clean-up on C18 solid-phase extraction cartridges, final analysis was done by ion-pair liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS). With this method, SPC with 5-13 carbon atoms in the aliphatic side chain were identified for the first time in agricultural soils treated with sewage sludge. Quantification of LAS and SPC in soil from 10 field sites, which differed in the history of sludge application, gave total concentrations of 120-2840 microg kg(-1) for LAS and of 4-220 microg kg(-1) for SPC. The data provided evidence for rapid biodegradation of LAS in the initial phase after sludge amendment with a transitory build-up of high concentrations of, mainly, short-chain SPC. Trace amounts of residual LAS and SPC were detected in soils having received the last sludge treatment 10 days to 4 years prior to sampling.
Collapse
Affiliation(s)
- Peter Eichhorn
- IIQAB-CSIC, Department of Environmental Chemistry, 08034 Barcelona, Spain
| | | | | |
Collapse
|
31
|
Rein U, Gueta R, Denger K, Ruff J, Hollemeyer K, Cook AM. Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology (Reading) 2005; 151:737-747. [PMID: 15758220 DOI: 10.1099/mic.0.27548-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paracoccus pantotrophusNKNCYSA utilizes (R)-cysteate (2-amino-3-sulfopropionate) as a sole source of carbon and energy for growth, with either nitrate or molecular oxygen as terminal electron acceptor, and the specific utilization rate of cysteate is about 2 mkat (kg protein)−1. The initial degradative reaction is catalysed by an (R)-cysteate : 2-oxoglutarate aminotransferase, which yields 3-sulfopyruvate. The latter was reduced to 3-sulfolactate by an NAD-linked sulfolactate dehydrogenase [3·3 mkat (kg protein)−1]. The inducible desulfonation reaction was not detected initially in cell extracts. However, a strongly induced protein with subunits of 8 kDa (α) and 42 kDa (β) was found and purified. The corresponding genes had similarities to those encoding altronate dehydratases, which often require iron for activity. The purified enzyme could then be shown to convert 3-sulfolactate to sulfite and pyruvate and it was termed sulfolactate sulfo-lyase (Suy). A high level of sulfite dehydrogenase was also induced during growth with cysteate, and the organism excreted sulfate. A putative regulator, OrfR, was encoded upstream ofsuyABon the reverse strand. Downstream ofsuyABwassuyZ, which was cotranscribed withsuyB. The gene, an allele oftauZ, encoded a putative membrane protein with transmembrane helices (COG2855), and is a candidate to encode the sulfate exporter needed to maintain homeostasis during desulfonation.suyAB-like genes are widespread in sequenced genomes and environmental samples where, in contrast to the current annotation, several presumably encode the desulfonation of 3-sulfolactate, a component of bacterial spores.
Collapse
Affiliation(s)
- Ulrike Rein
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Ronnie Gueta
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Karin Denger
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Jürgen Ruff
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- Institute of Biochemical Engineering, Saarland University, Box 50 11 50, D-66041 Saarbrücken, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
32
|
Schleheck D, Knepper TP, Fischer K, Cook AM. Mineralization of individual congeners of linear alkylbenzenesulfonate by defined pairs of heterotrophic bacteria. Appl Environ Microbiol 2004; 70:4053-63. [PMID: 15240283 PMCID: PMC444835 DOI: 10.1128/aem.70.7.4053-4063.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvibaculum lavamentivorans DS-1(T) utilized the commercial surfactant linear alkylbenzenesulfonate (LAS) (20 congeners with C(10) to C(13) side chains) as a carbon and energy source by shortening the side chain, and sulfophenylcarboxylates (SPCs) and similar compounds (e.g., alpha,beta-unsaturated SPCs [SPC-2Hs]) were excreted with quantitative recovery of the sulfophenyl moiety. 2-(4-Sulfophenyl)decane (2-C10-LAS) was converted largely to 3-(4-sulfophenyl)butyrate (3-C4-SPC), as were 2-C12-LAS and 2-C14-LAS; the other products were 5-C6-SPC (SPC+2C) and 3-C4-SPC-2H. 2-C11-LAS was converted largely to 4-C5-SPC with the corresponding SPC+2C and SPC-2H; similarly, 3-C12-LAS yielded 4-C6-SPC with the corresponding SPC+2C and SPC-2H. This pattern of products confirmed that LAS is degraded by omega-oxygenation and chain shortening through beta-oxidation. At least nine major SPCs were formed from commercial LAS. The novel isolates Comamonas testosteroni SPB-2 and KF-1 utilized 3-C4-SPC; Delftia acidovorans SPH-1 utilized 4-C6-SPC enantioselectively. The substrate-dependent oxygen uptake of whole cells of strain SPB-2 indicated that there was inducible oxygenation of 3-C4-SPC and of 4-sulfophenol in whole cells of the strains of C. testosteroni during growth with 3-C4-SPC or 4-sulfophenol. The degradative pathways apparently involved 4-sulfocatechol and 4-sulfocatechol 1,2-dioxygenase. Strain SPB-2 and strain DS-1(T) grew together in LAS-salts medium, and only seven of the nine major SPCs were recovered. Strain SPB-2 utilized 3-C4-SPC, 3-C5-SPC, and 3-C4-SPC-2H. Strain SPH-1 grew together with strain DS-1(T) in LAS-salts medium, and a different set of seven major SPCs was recovered. Strain SPH-1 utilized 4-C6-SPC, 4-C5-SPC, 4-C6-SPC-2H, and 4-C5-SPC-2H. A three-member community consisting of strains DS-1(T), SPB-2, and SPH-1 utilized four major SPCs. We inferred that this community mineralized the major SPCs derived from 8 of the 20 LAS congeners.
Collapse
Affiliation(s)
- David Schleheck
- Department of Biology, The University of Konstanz, Universitätsstr. 10, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
33
|
Schleheck D, Tindall BJ, Rosselló-Mora R, Cook AM. Parvibaculum lavamentivorans gen. nov., sp. nov., a novel heterotroph that initiates catabolism of linear alkylbenzenesulfonate. Int J Syst Evol Microbiol 2004; 54:1489-1497. [PMID: 15388700 DOI: 10.1099/ijs.0.03020-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain DS-1T is a small (0·8 μm in length and 0·2 μm in diameter) heterotrophic bacterium able to ω-oxygenate the commercial surfactant linear alkylbenzenesulfonate (LAS) and shorten the side chain by β-oxidation to yield sulfophenylcarboxylates. The morphotype is widespread in cultures able to utilize LAS, and a second organism with similar characteristics, strain AN-8, is now available. Utilization of LAS is concomitant with formation of a biofilm, and cells were non-motile. Many surfactants were utilized. The organisms also grew with acetate or octane, but required no biofilm and were motile. Analysis of the gene encoding 16S rRNA placed the organisms in the α-subclass of the Proteobacteria with a sequence divergence of >8 % from any species whose name has been validly published. 16S rRNA gene sequence comparison with entries in the GenBank database showed 98 % similarity to an α-protobacterial marine isolate, JP57: strain JP57 displayed the same morphotype as strain DS-1T, but it was unable to utilize surfactants or any single source of carbon tested. The lipid components of strains DS-1T and JP57 were virtually identical. The fatty acids contained ester- and putative amide-linked hydroxy fatty acids, in a combination that is currently unique in the α-Proteobacteria. The major respiratory quinone present in both strains was Q11. The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unidentified aminolipids. Data on the 16S rRNA gene sequence and the lipid composition indicated that strains DS-1T and JP57 should be placed in a new genus, for which the name Parvibaculum is proposed. The differences between these strains, supported by DNA hybridizations, lead to the conclusion that strain DS-1T (=DSM 13023T=NCIMB 13966T) is the type strain of a species in the genus Parvibaculum, for which the name Parvibaculum lavamentivorans gen. nov., sp. nov. is proposed.
Collapse
MESH Headings
- Acetic Acid/metabolism
- Alkanesulfonic Acids/metabolism
- Alphaproteobacteria/classification
- Alphaproteobacteria/cytology
- Alphaproteobacteria/isolation & purification
- Alphaproteobacteria/metabolism
- Bacterial Typing Techniques
- Base Composition
- Biodegradation, Environmental
- Biofilms/growth & development
- Cardiolipins/analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Fatty Acids/analysis
- Genes, rRNA/genetics
- Molecular Sequence Data
- Movement
- Octanes/metabolism
- Phosphatidylcholines/analysis
- Phosphatidylethanolamines/analysis
- Phosphatidylglycerols/analysis
- Phylogeny
- Quinones/analysis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Surface-Active Agents/metabolism
- Water Microbiology
Collapse
Affiliation(s)
- David Schleheck
- Fachbereich Biologie der Universität, D-78457 Konstanz, Germany
| | - Brian J Tindall
- DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, D-38124 Braunschweig, Germany
| | - Ramón Rosselló-Mora
- CSIC-UIB-Institut Mediterrani d'Estudis Avançats, E-07190 Esporles, Mallorca, Spain
| | - Alasdair M Cook
- Fachbereich Biologie der Universität, D-78457 Konstanz, Germany
| |
Collapse
|
34
|
Dong W, Eichhorn P, Radajewski S, Schleheck D, Denger K, Knepper TP, Murrell JC, Cook AM. Parvibaculum lavamentivorans converts linear alkylbenzenesulphonate surfactant to sulphophenylcarboxylates, alpha,beta-unsaturated sulphophenylcarboxylates and sulphophenyldicarboxylates, which are degraded in communities. J Appl Microbiol 2004; 96:630-40. [PMID: 14962144 DOI: 10.1111/j.1365-2672.2004.02200.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The aims were to test whether Parvibaculum lavamentivoransT degraded commercial linear alkylbenzenesulphonate (LAS) surfactant via omega-oxygenation and beta-oxidation to sulphophenylcarboxylates (SPCs), whether the organism was widespread and reisolable, and whether the degradative community used the 4-sulphocatechol 1,2-dioxygenase to cleave the aromatic ring from LAS. METHODS AND RESULTS Heterotrophic P. lavamentivoransT converted LAS (side chain length C10-C13) to SPCs (C4-C13), alpha,beta-unsaturated SPCs (C4-C13) and sulphophenyldicarboxylates (SPdCs) (at least C8-C12). Identifications came from high performance liquid chromatography (HPLC) separation, an electrospray interface and mass spectrometry. No evidence for other paths was found. The degradation of LAS in trickling filters inoculated with environmental samples always showed transient SPC intermediates (HPLC) and the presence of the P. lavamentivorans morphotype in the community. One new isolate was obtained. A community able to mineralize LAS contained 4-sulphocatechol-1,2-dioxygenase at high specific activity. CONCLUSIONS Parvibaculum lavamentivoransT degrades commercial LAS via omega-oxygenation, oxidation and chain shortening through beta-oxidation to yield a wide range of SPCs. The latter are degraded in bacterial communities which contain organisms like P. lavamentivorans, and which utilize sulphocatechol dioxygenase for ring cleavage. SIGNIFICANCE AND IMPACT OF THE STUDY There is one widespread pathway to degrade LAS. Any traces of LAS and larger amounts of SPCs in the effluent from sewage works are exposed to degradative organisms in acclimated and pristine environments. These degradative reactions can now be studied in pure cultures.
Collapse
Affiliation(s)
- W Dong
- Department of Biological Sciences, The University, Konstanz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Leon VM, Gómez-Parra A, González-Mazo E. Biodegradation of linear alkylbenzene sulfonates and their degradation intermediates in seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:2359-2367. [PMID: 15116841 DOI: 10.1021/es034813+] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A study has been made of the aerobic biodegradation of linear alkylbenzene sulfonates (C12 and C11 homologues) and sulfophenylcarboxylic acids (C5 and C11 homologues) in seawater at concentrations of the same order as those detected ones in coastal waters influenced by wastewater effluents, at different temperatures, and both with and without the addition of an inoculum adapted to the presence of linear alkylbenzene sulfonate (LAS). The biodegradation of C12LAS, C11LAS, C5SPC, and C11SPC exceeds 99% in all tests performed and can be satisfactorily fitted to a second-degree polynomial without an independent term. The kinetic of degradation of LAS presents a clear seasonal component, since the process is considerably inhibited at lower temperatures; it is also kinetically enhanced by the presence of the inoculum. The intermediates detected for all the cases are sulfophenylcarboxylic acids (SPCs), the most abundant being those intermediates produced by the omega- and beta-oxidations of the parent compound, although intermediates produced by the alpha-oxidation have also been detected. The kinetic of the SPCs generated can be described using a model composed of two terms that represent the formation and the degradation of these intermediates. The total disappearance of the SPCs in all cases indicates that the degradation of LAS in seawater at the tested concentrations in aerobic conditions is complete.
Collapse
Affiliation(s)
- Víctor M Leon
- Departamento de Química-Física, Facultad de Ciencias del Mar, Universidad de Cádiz, Poligono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain.
| | | | | |
Collapse
|
36
|
Schleheck D, Cook AM. Saccharin as a sole source of carbon and energy for Sphingomonas xenophaga SKN. Arch Microbiol 2003; 179:191-6. [PMID: 12610724 DOI: 10.1007/s00203-002-0515-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bacterium, strain SKN, that was able to utilize saccharin as the sole source of carbon and energy for aerobic growth, was enriched and isolated from communal sewage. The isolate was identified as a strain of Sphingomonas xenophaga. Saccharin was quantitatively converted to cell material, sulfate, ammonium and, presumably, CO(2). The specific rate of saccharin-dependent oxygen uptake during growth reached a maximum before the culture entered the stationary phase and then fell to undetectable levels. Saccharin was degraded only in the presence of molecular oxygen. Catechol was detected as an intermediate during degradation of saccharin in whole cells and catechol 1,2-dioxygenase was expressed inducibly during growth with saccharin. There was an apparent requirement of 2 mol O(2)/mol saccharin to remove the substituents on the ring and to cleave the ring. We presume that S. xenophaga SKN synthesizes a multi-component saccharin dioxygenase that simultaneously cleaves off both vicinal substituents from the aromatic ring to yield catechol and the undefined precursor of CO(2) as well as sulfate and ammonium ions.
Collapse
|
37
|
Schleheck D, Lechner M, Schönenberger R, Suter MJF, Cook AM. Desulfonation and degradation of the disulfodiphenylethercarboxylates from linear alkyldiphenyletherdisulfonate surfactants. Appl Environ Microbiol 2003; 69:938-44. [PMID: 12571015 PMCID: PMC143680 DOI: 10.1128/aem.69.2.938-944.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier work showed that the biodegradation of a commercial linear monoalkyldiphenyletherdisulfonate surfactant as a carbon source for microbial growth leads to the quantitative formation of corresponding disulfodiphenylether carboxylates (DSDPECs), which were not degraded. alpha-Proteobacterium strain DS-1 (DSM 13023) catalyzes these reactions. These DSDPECs have now been characterized by high-pressure liquid chromatography coupled via an electrospray interface to a mass spectrometer. DSDPECs were a complex mixture of compounds which indicated catabolism via omega-oxygenation and beta-oxidation. DSDPECs were subject to quantitative desulfonation in bacterial cultures in which they served as sole sulfur sources for bacterial growth. On average, one sulfonate group per DSDPEC species was removed, and the organism responsible for this desulfonation was isolated and identified as Rhodococcus opacus ISO-5. The products were largely monosulfodiphenylether carboxylate-phenols (MSDPEC-phenols). MSDPEC-phenols were subject to extensive dissimilation by bacteria from activated sludge.
Collapse
Affiliation(s)
- David Schleheck
- Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
38
|
Ruff J, Denger K, Cook AM. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 2003; 369:275-85. [PMID: 12358600 PMCID: PMC1223080 DOI: 10.1042/bj20021455] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2002] [Accepted: 10/02/2002] [Indexed: 11/17/2022]
Abstract
The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum.
Collapse
Affiliation(s)
- Jürgen Ruff
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
39
|
Schwitzguébel JP, Aubert S, Grosse W, Laturnus F. Sulphonated aromatic pollutants. Limits of microbial degradability and potential of phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2002; 9:62-72. [PMID: 11885419 DOI: 10.1007/bf02987317] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many synthetic sulphonated aromatic compounds are used as starting material to produce dyes and pigments, or are released as by-products in the effluents of the textile and dye industry. A large number of these chemicals are poorly biodegradable and cannot be eliminated by classical wastewater treatment plants. To limit the impact of these pollutants on the environment, new processes, based on the use of higher plants (constructed wetlands or hydroponic systems), are under development. Detergents and surfactants are essential for both industrial and domestic applications, the most important family being the alkylbenzene sulphonates. Originally, the alkyl side chains were branched and thus recalcitrant to biodegradation. Therefore, they have been replaced by linear alkylbenzene sulphonates. Although more acceptable, present formulations still have adverse environmental and toxic effects. In this context, phytoremediation appears to be a promising approach to remove these compounds from contaminated soils and waters.
Collapse
Affiliation(s)
- Jean-Paul Schwitzguébel
- Laboratory for Environmental Biotechnology (LBE), Swiss Federal Institute of Technology, Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
40
|
Denger K, Ruff J, Rein U, Cook AM. Sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J 2001; 357:581-6. [PMID: 11439112 PMCID: PMC1221989 DOI: 10.1042/0264-6021:3570581] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The strictly anaerobic bacterium Desulfonispora thiosulfatigenes ferments taurine via sulphoacetaldehyde, which is hydrolysed to acetate and sulphite by sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12). The lyase was expressed at high levels and a two-step, 4.5-fold purification yielded an apparently homogeneous soluble protein, which was presumably a homodimer in its native form; the molecular mass of the subunit was about 61 kDa (by SDS/PAGE). The mass was determined to be 63.8 kDa by matrix-assisted laser-desorption ionization-time-of-flight (MALDI-TOF) MS. The purified enzyme converted 1 mol of sulphoacetaldehyde to 1 mol each of sulphite and acetate, but no requirement for thiamine pyrophosphate (TPP) was detected. The N-terminal and two internal amino acid sequences were determined, which allowed us to generate PCR primers. The gene was amplified and sequenced. The DNA sequence had no significant homologue in the databases searched, whereas the derived amino acid sequence indicated an oxo-acid lyase, revealed a TPP-binding site and gave a derived molecular mass of 63.8 kDa.
Collapse
Affiliation(s)
- K Denger
- Department of Biology, The University, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
41
|
Contzen M, Bürger S, Stolz A. Cloning of the genes for a 4-sulphocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulphocatechol. Mol Microbiol 2001; 41:199-205. [PMID: 11454212 DOI: 10.1046/j.1365-2958.2001.02505.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes for a protocatechuate 3,4-dioxygenase (P34O-II) with the ability to oxidize 4-sulphocatechol were cloned from the 4-aminobenzenesulphonate(sulphanilate)-degrading bacterium Hydrogenophaga intermedia strain S1 (DSMZ 5680). Sequence comparisons of the deduced amino acid sequences of both subunits of the P34O-II from H. intermedia S1 (PcaH-II and PcaG-II) with those of another P34O-II, previously obtained from Agrobacterium radiobacter S2, and the corresponding sequences from the protocatechuate 3,4-dioxygenases from other bacterial genera demonstrated that seven amino acid residues, which were conserved in all previously known P34Os (P34O-Is), were different in both P34O-IIs. According to previously published structural data for the P34O of Pseudomonas putida only two of these amino acid residues were located near the catalytical centre. The respective amino acid residues were mutated in the P34O-I from A. radiobacter S2 by site-specific mutagenesis, and it was found that a single amino acid exchange enabled the protocatechuate converting P34O also to oxidize 4-sulphocatechol.
Collapse
Affiliation(s)
- M Contzen
- Institut für Mikrobiologie, Universität Stuttgart, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
42
|
Contzen M, Moore ER, Blümel S, Stolz A, Kämpfer P. Hydrogenophaga intermedia sp. nov., a 4-aminobenzenesulfonate degrading organism. Syst Appl Microbiol 2000; 23:487-93. [PMID: 11249018 DOI: 10.1016/s0723-2020(00)80022-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The taxonomic status of a gram-negative, oxidase positive rod (strain S1) able to degrade 4-aminobenzenesulfonate was studied using a polyphasic approach. Chemotaxonomic investigations of quinones and polar lipids established the allocation of this strain to the beta-subclass of the Proteobacteria and revealed similarities to Hydrogenophaga palleronii. 16S rRNA sequence comparisons demonstrated that this strain clusters phylogenetically with H. palleronii and H. taeniospiralis, but clearly represents a new species. The fatty acid patterns and substrate utilization profile displayed similarity to the characteristics of the four validly published species of Hydrogenophaga, although clear differentiating characters were also observed. No close similarities between the type strains of H. palleronii and H. taeniospiralis were detected in hybridization experiments with the genomic DNAs. On basis of these results, the new species Hydrogenophaga intermedia sp. nov. is proposed, with the type strain S1T (= DSM 5680).
Collapse
Affiliation(s)
- M Contzen
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | | | | | | | |
Collapse
|
43
|
Schulz S, Dong W, Groth U, Cook AM. Enantiomeric degradation of 2-(4-Sulfophenyl)Butyrate via 4-sulfocatechol in Delftia acidovorans SPB1. Appl Environ Microbiol 2000; 66:1905-10. [PMID: 10788358 PMCID: PMC101431 DOI: 10.1128/aem.66.5.1905-1910.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enrichment cultures with enantiomeric 2-(4-sulfophenyl)butyrate (SPB) as the sole added source(s) of carbon and energy for growth yielded a pure culture of a degradative bacterium, which was identified as Delftia acidovorans SPB1. The organism utilized the enantiomers sequentially. R-SPB was utilized first (specific growth rate [mu] = 0.28 h(-1)), with transient excretion of an unknown intermediate, which was identified as 4-sulfocatechol (4SC). Utilization of S-SPB was slower (mu = 0.016 h(-1)) and was initiated only after the first enantiomer was exhausted. Suspensions of cells grown in S-SPB excreted 4SC, so metabolism of the two enantiomers converged at 4SC. The latter was degraded by ortho cleavage via 3-sulfo-cis,cis-muconate. Strain SPB1 grew with 4SC and with 1-(4-sulfophenyl)octane (referred to herein as model LAS) but not with commercial linear alkylbenzenesulfonate (LAS) surfactant, which is subterminally substituted but nontoxic. It would appear that metabolism of the model LAS does not represent metabolism of commercial LAS.
Collapse
Affiliation(s)
- S Schulz
- Departments of Biology, The University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|