1
|
Wang Y, Hou Y, Liu X, Lin N, Dong Y, Liu F, Xia W, Zhao Y, Xing W, Chen J, Chen C. Rapid visual nucleic acid detection of Vibrio alginolyticus by recombinase polymerase amplification combined with CRISPR/Cas13a. World J Microbiol Biotechnol 2023; 40:51. [PMID: 38146036 DOI: 10.1007/s11274-023-03847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/18/2023] [Indexed: 12/27/2023]
Abstract
Vibrio alginolyticus (V. alginolyticus) is a common pathogen in the ocean. In addition to causing serious economic losses in aquaculture, it can also infect humans. The rapid detection of nucleic acids of V. alginolyticus with high sensitivity and specificity in the field is very important for the diagnosis and treatment of infection caused by V. alginolyticus. Here, we established a simple, fast and effective molecular method for the identification of V. alginolyticus that does not rely on expensive instruments and professionals. The method integrates recombinase polymerase amplification (RPA) technology with CRISPR system in a single PCR tube. Using this method, the results can be visualized by lateral flow dipstick (LFD) in less than 50 min, we named this method RPA-CRISPR/Cas13a-LFD. The method was confirmed to achieve high specificity for the detection of V. alginolyticus with no cross-reactivity with similar Vibrio and common clinical pathogens. This diagnostic method shows high sensitivity; the detection limit of the RPA-CRISPR/Cas13a-LFD is 10 copies/µL. We successfully identified 35 V. alginolyticus strains from a total of 55 different bacterial isolates and confirmed their identity by (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS). We also applied this method on infected mice blood, and the results were both easily and rapidly obtained. In conclusion, RPA-CRISPR/Cas13a-LFD offers great potential as a useful tool for reliable and rapid diagnosis of V. alginolyticus infection, especially in limited conditions.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Yachao Hou
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Xinping Liu
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
| | - Na Lin
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China
| | - Youyou Dong
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
| | - Fei Liu
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China
| | - Wenrong Xia
- Bei Jing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Bei Jing Institute of Basic Medical Sciences, Beijing, China
| | - Weiwei Xing
- Bei Jing Institute of Basic Medical Sciences, Beijing, China.
| | - Jin Chen
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China.
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Changguo Chen
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
2
|
Adesiyan IM, Bisi-Johnson MA, Ogunfowokan AO, Okoh AI. Occurrence and antibiogram signatures of some Vibrio species recovered from selected rivers in South West Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42458-42476. [PMID: 33813704 DOI: 10.1007/s11356-021-13603-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Vibrio species, widely distributed in water environments, has emerged as a prominent cause of water and food-related disease outbreaks posing significant risk to human and animal health worldwide. About 40% of presumptive isolates recovered from four selected rivers in Southwest Nigeria and, established as Vibrio species genus through polymerase chain reaction techniques., were subjected to antibiotic susceptibility testing against a panel of 18 commonly used antibiotics. The relative prevalence of key Vibrio species (V. parahaemolyticus, V. vulnificus, V. mimicus, V. harveyi, and V. cholerae) was in the order 17%, 13.3%, 4.4%, 2.2%, and 2.2% respectively. Antibiotic resistance by all Vibrio species was mostly observed against doxycycline (71-89%), erythromycin (86-100%), tetracycline (71-89%), rifampicin (86-100%), and sulfamethoxazole (87-100%), though susceptibility to meropenem (86-100%), cephalothin (60-100%), norfloxacin (93-100%), ciprofloxacin (88-100%), amikacin (64-100%), gentamicin (57-74%), and trimethoprim/sulfamethoxazole (57-81%) was equally observed in all species. Vibrio mimicus expressed highest resistance against streptomycin and chloramphenicol (64%), while V. vulnificus (52%) and V. cholerae (57%) had the highest resistance against cephalothin. High resistance against ampicillin (57%) and amoxicillin (50%) was exhibited by V. cholerae and V. mimicus respectively. Indexes of multiple antibiotic resistances (MARI) among Vibrio species ranged between 0.11 and 0.72 with the highest MAR index of 0.72 observed in one isolate of V. vulnificus. This study reveals high prevalence of Vibrio species in the selected rivers as well as elevated resistance against some first-line antibiotics, which suggests possible inappropriate antimicrobial usage around study communities. We conclude that the freshwater resources investigated are unfit for domestic, industrial, and recreational uses without treatment prior to use and are potential reservoirs of antibiotic-resistant Vibrio species in this environment.
Collapse
Affiliation(s)
- Ibukun M Adesiyan
- Department of Biological Sciences, Achievers University, Owo, Ondo State, Nigeria.
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile Ife, Osun-State, 220005, Nigeria.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
| | | | - Aderemi O Ogunfowokan
- Department of Industrial Chemistry, The Technical University, Ibadan,, Oyo State, Nigeria
- Department of Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental Health Sciences College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Pham TH, Cheng TC, Wang PC, Chen SC. Genotypic diversity, and molecular and pathogenic characterization of Photobacterium damselae subsp. piscicida isolated from different fish species in Taiwan. JOURNAL OF FISH DISEASES 2020; 43:757-774. [PMID: 32419196 DOI: 10.1111/jfd.13173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Photobacteriosis, caused by Photobacterium damselae subsp. piscicida (Phdp), is a serious disease in marine fish species worldwide. To date, the epidemiological characterization of this pathogen in Taiwan remains limited. In this study, we collected 39 Phdp isolates obtained from different farmed fish for phenotypic and genotypic analysis. Phenotype bioassays using API-20E and API-20NE systems showed that the Phdp is a homogeneous group. However, genotyping using the pulsed-field gel electrophoresis (PFGE) technique revealed genetic variability among Phdp isolates when 13 and 11 different PFGE band patterns were obtained with SmaI and NotI as restriction enzymes, respectively. Phylogenetic analysis using 16S rDNA and the Fur gene clustered Taiwanese isolates and other species of P. damselae in the same clade. In contrast, the ToxR phylogenetic tree, a powerful discriminatory marker, separated the two subspecies. Furthermore, the virulence-associated genes, AIP56, P55, PDP_0080, Sod and Irp1, were detected from all isolates. Virulence testing with nine representative isolates in cobia (Rachycentron canadum) and Asian sea bass (Lates calcarifer) showed that some were highly pathogenic with 80%-100% mortality rates. This study provides epidemiological data of Phdp infections in farmed fish in Taiwan, which is necessary to develop comprehensive prevention and control strategies for the disease.
Collapse
Affiliation(s)
- Trung Hieu Pham
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ta-Chih Cheng
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
4
|
|
5
|
Crisafi F, Denaro R, Genovese M, Cappello S, Mancuso M, Genovese L. Comparison of 16SrDNA and toxR genes as targets for detection of Vibrio anguillarum in Dicentrarchus labrax kidney and liver. Res Microbiol 2011; 162:223-30. [DOI: 10.1016/j.resmic.2010.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/12/2010] [Indexed: 11/24/2022]
|
6
|
Zhou S, Hou Z, Li N, Qin Q. Development of a SYBR Green I real-time PCR for quantitative detection of Vibrio alginolyticus in seawater and seafood. J Appl Microbiol 2008; 103:1897-906. [PMID: 17953599 DOI: 10.1111/j.1365-2672.2007.03420.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AIM Vibrio alginolyticus is an economically important micro-organism. The main aim of the present study was to develop a real-time polymerase chain reaction (PCR) assay for rapid, sensitive and effective quantification of V. alginolyticus in seawater and seafood. METHODS AND RESULTS Purified DNA of V. alginolyticus, artificially inoculated seawater and seafood tissue homogenates were subjected to the gyrB-targeted real-time PCR assay. Natural seawater and seafood samples were analysed by this real-time PCR protocol. Specificity tests showed that positive result was obtained only with V. alginolyticus strains. The detection sensitivity was determined to be 0.4 pg of genomic DNA equivalent to 72 cells per PCR in pure culture and 100 cells in 1 ml of seawater or seafood tissue homogenates. Single cell detection is achieved after 3 h of sample enrichment. CONCLUSIONS A sensitive and specific SYBR Green I-based real-time PCR assay targeting gyrB gene was successfully developed to quantify V. alginolyticus within 6 h in seawater and seafood samples. SIGNIFICANCE AND IMPACT OF THE STUDY No report on the molecular-based method was available for quantitative detection of V. alginolyticus. This work will provide a novel method for evaluation of the risk of V. alginolyticus to marine environmental health and seafood safety.
Collapse
Affiliation(s)
- S Zhou
- State Key Laboratory of Biocontrol, College of Life Science, Sun Yat-sen University, Guangzhou, People's Rebublic of China
| | | | | | | |
Collapse
|
7
|
Kothary MH, McCardell BA, Frazar CD, Deer D, Tall BD. Characterization of the zinc-containing metalloprotease encoded by zpx and development of a species-specific detection method for Enterobacter sakazakii. Appl Environ Microbiol 2007; 73:4142-51. [PMID: 17483271 PMCID: PMC1932767 DOI: 10.1128/aem.02729-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterobacter sakazakii causes a severe form of neonatal meningitis that occurs as sporadic cases as well as outbreaks. The disease has been epidemiologically associated with consumption of reconstituted, dried infant formulas. Very little information is available regarding pathogenicity of the organism and production of virulence factors. Clinical and environmental strains were screened for production of factors which have activity against Chinese hamster ovary (CHO) cells in tissue culture. Polymyxin B lysate and sonicate preparations but not culture supernatants from the strains caused "rounding" of CHO cells. Subsequent studies showed that the CHO cell-rounding factor is a proteolytic enzyme that has activity against azocasein. The cell-bound protease was isolated by using a combination of polymyxin B lysis, followed by sonication of cells harvested from tryptone broth. The protease was purified to homogeneity by sequential ammonium sulfate precipitation, gel filtration chromatography with Sephadex G-100, hydrophobic interaction chromatography with phenyl-Sepharose CL-4B, and a second gel filtration with Sephadex G-100. In addition to activity against azocasein, the purified protease also exhibits activity against azocoll and insoluble casein but not elastin. The protease has a molecular weight of 38,000 and an isoelectric point of 4.4. It is heat labile and for maximal activity against azocasein has an optimum temperature of 37 degrees C and a pH range of 5 to 7. Proteolytic activity is inhibited by ortho-phenanthroline and Zincov but is not affected by phenylmethylsulfonyl fluoride, N-ethylmaleimide, and trypsin inhibitors, which demonstrates that the protease is a zinc-containing metalloprotease. The metalloprotease does not hemagglutinate chicken or sheep erythrocytes. Twenty-three to 27 of the first 42 N-terminal amino acid residues of the metalloprotease are identical to proteases produced by Serratia proteamaculans, Pectobacterium carotovorum, and Anabaena sp. PCR analysis using primers designed from a consensus nucleotide sequence showed that 135 E. sakazakii strains possessed the metalloprotease gene, zpx, and 25 non-E. sakazakii strains did not. The cloned zpx gene of strain 29544 consists of 1,026 nucleotides, and the deduced amino acid sequence of the metalloprotease has 341 amino acid residues, which corresponds to a theoretical protein size of 37,782 with a theoretical pI of 5.23. The sequence possesses three well-characterized zinc-binding and active-site motifs present in other bacterial zinc metalloproteases.
Collapse
Affiliation(s)
- M H Kothary
- MOD 1 Facility, Virulence Mechanisms Branch, Division of Virulence Assessment, OARSA, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA.
| | | | | | | | | |
Collapse
|
8
|
Franco PF, Hedreyda CT. Amplification and sequence analysis of the full length toxR gene in Vibrio harveyi. J GEN APPL MICROBIOL 2007; 52:281-7. [PMID: 17310071 DOI: 10.2323/jgam.52.281] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study was focused on obtaining the complete gene sequence of the toxR gene in V. harveyi by using toxR-targeted PCR to amplify 5' and 3' regions flanking the 576-bp Vibrio harveyi (NBRC 15634) toxR gene fragment previously amplified using degenerate PCR. To obtain the 5' flanking sequences, a forward PCR primer (VhtoxRpv) was designed based on known sequences upstream of toxR in V. parahaemolyticus and V. vulnificus. The reverse primer (VctoxR2R) was based on the sequence of the 576-bp Vibrio harveyi toxR fragment. The resulting 750-bp amplicon was sequenced, providing the 5' sequences of the V. harveyi (NBRC 15634) toxR gene. The 3' flanking region was amplified using a primer pair toxRS1 and toxRS2 based on V. parahaemolyticus and V. vulnificus toxR and toxS, resulting in a 900-bp amplicon that contained the remaining 3' sequences of the V. harveyi NBRC 15634 toxR. This paper reports, for the first time, a complete 882-bp nucleotide sequence for toxR in Vibrio harveyi. Sequence analysis and alignment revealed that the complete toxR gene in V. harveyi shares 87% sequence similarity with toxR of V. parahaemolyticus, 84% similarity with V. fluvialis, 83% with V. vulnificus and partial sequence of V. campbellii. The phylogenetic trees revealed wider divergence in toxR compared to 16S rRNA genes, so that V. harveyi could easily be distinguished from V. campbellii and V. parahaemolyticus.
Collapse
Affiliation(s)
- Prima Fe Franco
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | | |
Collapse
|
9
|
Curtis SK, Kothary MH, Blodgett RJ, Raybourne RB, Ziobro GC, Tall BD. Rugosity in Grimontia hollisae. Appl Environ Microbiol 2006; 73:1215-24. [PMID: 17189437 PMCID: PMC1828682 DOI: 10.1128/aem.02553-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grimontia hollisae, formerly Vibrio hollisae, produces both smooth and rugose colonial variants. The rugose colony phenotype is characterized by wrinkled colonies producing copious amounts of exopolysaccharide. Cells from a rugose colony grown at 30 degrees C form rugose colonies, while the same cells grown at 37 degrees C form smooth colonies, which are characterized by a nonwrinkled, uncrannied appearance. Stress response studies revealed that after exposure to bleach for 30 min, rugose survivors outnumbered smooth survivors. Light scatter information obtained by flow cytometry indicated that rugose cells clumped into clusters of three or more cells (average, five cells) and formed two major clusters, while smooth cells formed only one cluster of single cells or doublets. Fluorescent lectin-binding flow cytometry studies revealed that the percentages of rugose cells that bound either wheat germ agglutinin (WGA) or Galanthus nivalis lectin (GNL) were greater than the percentages of smooth cells that bound the same lectins (WGA, 35% versus 3.5%; GNL, 67% versus 0.21%). These results indicate that the rugose exopolysaccharide consists partially of N-acetylglucosamine and mannose. Rugose colonies produced significantly more biofilm material than did smooth colonies, and rugose colonies grown at 30 degrees C produced more biofilm material than rugose colonies grown at 37 degrees C. Ultrastructurally, rugose colonies show regional cellular differentiation, with apical and lateral colonial regions containing cells embedded in a matrix stained by Alcian Blue. The cells touching the agar surface are packed tightly together in a palisade-like manner. The central region of the colony contains irregularly arranged, fluid-filled spaces and loosely packed chains or arrays of coccoid and vibrioid cells. Smooth colonies, in contrast, are flattened, composed of vibrioid cells, and lack distinct regional cellular differences. Results from suckling mouse studies showed that both orally fed rugose and smooth variants elicited significant, but similar, amounts of fluid accumulated in the stomach and intestines. These observations comprise the first report of expression and characterization of rugosity by G. hollisae and raise the possibility that expression of rugose exopolysaccharide in this organism is regulated at least in part by growth temperature.
Collapse
Affiliation(s)
- S K Curtis
- U.S. Food and Drug Administration, College Park, MD 20740, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kumar HS, Parvathi A, Karunasagar I, Karunasagar I. A gyrB-based PCR for the detection of Vibrio vulnificus and its application for direct detection of this pathogen in oyster enrichment broths. Int J Food Microbiol 2006; 111:216-20. [PMID: 16854484 DOI: 10.1016/j.ijfoodmicro.2006.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/08/2006] [Accepted: 05/14/2006] [Indexed: 10/24/2022]
Abstract
A polymerase chain reaction (PCR) method based on the gyrB (encoding gyrase B or topoisomerase II) gene sequence was developed for the detection of Vibrio vulnificus in seafood. The gyrB primers detected all laboratory isolates of V. vulnificus and did not cross react with other Vibiro and non-Vibrio species examined in this study. The sensitivity of detection of V. vulnificus by gyrB PCR was 300 CFU/g in artificially seeded oyster homogenate without enrichment while, 30 CFU/g could be detected following 18 h enrichment in alkaline peptone water (APW). The gyrB-specific PCR was employed for the direct detection of V. vulnificus in oyster enrichment broths. The assay detected V. vulnificus in 75% of natural oyster samples after 18 h enrichment in APW. The gyrB-based PCR described here offers a simple and specific one step PCR method for the detection of V. vulnificus in seafood enrichment broths.
Collapse
Affiliation(s)
- H Sanath Kumar
- Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575 002, India
| | | | | | | |
Collapse
|
11
|
Chakraborty R, Sinha S, Mukhopadhyay AK, Asakura M, Yamasaki S, Bhattacharya SK, Nair GB, Ramamurthy T. Species-specific identification of Vibrio fluvialis by PCR targeted to the conserved transcriptional activation and variable membrane tether regions of the toxR gene. J Med Microbiol 2006; 55:805-808. [PMID: 16687605 DOI: 10.1099/jmm.0.46395-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Rupa Chakraborty
- National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata - 700010, India
| | - Sutapa Sinha
- National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata - 700010, India
| | - Asish K Mukhopadhyay
- National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata - 700010, India
| | - Masahiro Asakura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - S K Bhattacharya
- National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata - 700010, India
| | - G Balakrish Nair
- International Center for Diarrhoeal Disease Research Centre, Dhaka, Bangladesh
| | - T Ramamurthy
- National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata - 700010, India
| |
Collapse
|
12
|
Rañoa DRE, Hedreyda CT. Sequence analysis of partial toxR gene from Philippine Vibrio isolates and design of toxR-targeted primers for detection. J GEN APPL MICROBIOL 2006; 51:343-51. [PMID: 16474194 DOI: 10.2323/jgam.51.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Vibriosis in penaeid species cultured in the Philippines results in massive mortalities and consequently in severe economic losses in the shrimp industry. Rapid and accurate detection of the causative agent of the disease is imperative. In this study, toxR gene sequence analysis of ten Vibrio isolates (from several provinces of the Philippines) implicated in disease affecting the penaeid shrimp (Penaeus monodon) was performed in order to develop a toxR-targeted PCR detection of similar strains of shrimp pathogens. Analysis of the partial toxR gene revealed 97-100% sequence similarity among the ten Philippine Vibrio isolates. Distinct sequence variation of the toxR gene, however, was observed between the Philippine Vibrio isolates and the type strains, with the Philippine isolates exhibiting only 92-93% and 74-75% sequence similarity with the type strain V. campbellii (NBRC 15631T) and V. harveyi (NBRC 15634T), respectively. The use of a PCR primer set that was designed based on toxR sequences of the Philippine Vibrio isolates amplified the expected 226-bp toxR fragment using templates from all ten Philippine Vibrio isolates. No amplified product was observed in PCR using templates from type strains of V. harveyi, V. campbellii, and other non-target bacteria, suggesting that the primers were specific for the Philippine Vibrio isolates. The toxR-targeted PCR primers reported in this study could be useful in the detection of Philippine Vibrio isolates associated with mortalities in the shrimp industry, which could not be detected in PCR using primers designed for type strains of V. harveyi and V. campbellii.
Collapse
Affiliation(s)
- Diana Rose E Rañoa
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman, Quezon City
| | | |
Collapse
|
13
|
Castroverde CDM, San Luis BB, Monsalud RG, Hedreyda CT. Differential detection of vibrios pathogenic to shrimp by multiplex PCR. J GEN APPL MICROBIOL 2006; 52:273-80. [PMID: 17310070 DOI: 10.2323/jgam.52.273] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The research was focused on the multiplex polymerase chain reaction (PCR) differential detection of shrimp pathogens Vibrio harveyi, Vibrio campbellii and isolates from a variant strain of Vibrio (referred to as Philippine Vibrio isolates in this study) exhibiting characteristics distinct from these two species. Sequence alignment of the hemolysin gene from type strains Vibrio harveyi (NBRC 15634) and Vibrio campbellii (NBRC 15631), as well as 10 variant Philippine Vibrio isolates, was performed in order to design a set of hemolysin-targeted primers for the specific detection of the Philippine Vibrio isolates. Primer PNhemo amplified a 320-bp hemolysin gene fragment of the Philippine Vibrio isolates in PCR using 65 degrees C annealing temperature, but did not amplify the target gene fragment in type strains V. harveyi and V. campbellii. Another new primer (VcatoxR) targeting the toxR gene was designed for the specific detection of type strain V. campbellii under stringent 65 degrees C annealing temperature. PCR using VcatoxR primer resulted in the specific amplification of a 245-bp V. campbellii toxR fragment. The simultaneous use of three primer sets in PCR, including PNhemo and VcatoxR (the two new primers designed in this study), and a primer VhtoxR (previously reported for the specific detection of V. harveyi), resulted in differential profiles with 390-bp, 245-bp, and 320-bp amplicons for V. harveyi, V. campbellii, and variant Philippine Vibrio isolates, respectively. Presence of all three types of Vibrio shrimp pathogens in the sample could be detected with a multiplex PCR profile containing all the expected size amplicons.
Collapse
Affiliation(s)
- Christian Danve M Castroverde
- Molecular Microbiology Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman, Quezon City, Philippines
| | | | | | | |
Collapse
|
14
|
Parvathi A, Kumar HS, Karunasagar I, Karunasagar I. Study of the occurrence of Vibrio vulnificus in oysters in India by polymerase chain reaction (PCR) and heterogeneity among V. vulnificus by randomly amplified polymorphic DNA PCR and gyrB sequence analysis. Environ Microbiol 2005; 7:995-1002. [PMID: 15946295 DOI: 10.1111/j.1462-2920.2005.00770.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pathogenic bacterium Vibrio vulnificus is widely distributed in estuarine waters throughout the world. In this study, the presence of V. vulnificus in oysters was studied both by conventional culture and DNA-based molecular technique. Following enrichment in alkaline peptone water (APW), the bacteria were lysed and a nested polymerase chain reaction (PCR) for vvhA gene was performed. The effect of duration of enrichment on the sensitivity of detection by PCR was evaluated. The organism was isolated from 43% of samples after 18 h enrichment in APW by conventional culture method. Nested PCR amplifying a fragment of vvhA gene detected the organism in 11%, 60% and 81% of samples following 0, 6 and 18 h of enrichment. All the biochemically identified V. vulnificus strains possessed vvhA gene and belonged to biotype 1. The genetic relatedness among the strains was studied by randomly amplified polymorphic DNA (RAPD) PCR and gyrB sequence analysis. The results suggest the presence of two distinct clonal groups of V. vulnificus in oysters in India. The study demonstrates, for the first time that gyrB sequence analysis could be used to study the genetic diversity of V. vulnificus.
Collapse
Affiliation(s)
- Ammini Parvathi
- Department of Fishery Microbiology, University of Agricultural Sciences, College of Fisheries, Kankanady, Mangalore, India
| | | | | | | |
Collapse
|
15
|
Wong HC, Chen CH, Chung YJ, Liu SH, Wang TK, Lee CL, Chiou CS, Nishibuchi M, Lee BK. Characterization of new O3:K6 strains and phylogenetically related strains of Vibrio parahaemolyticus isolated in Taiwan and other countries. J Appl Microbiol 2005; 98:572-80. [PMID: 15715859 DOI: 10.1111/j.1365-2672.2004.02478.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS We analysed the genetic divergence in the pandemic new O3:K6 and phylogenetically related (new O3:K6-like) strains and compare these two groups in terms of virulence and other biological traits. METHODS AND RESULTS A total of 160 new O3:K6, new O3:K6-like and other strains of Vibrio parahaemolyticus isolated in Taiwan and other countries were collected and their clonal relationships analysed using SfiI-pulsed-field gel electrophoresis. All of the new O3:K6 and new O3:K6-like strains were grouped in cluster I with five new patterns identified. A O6:K18 strain was identified as a new member of the new O3:K6-like strains in addition to O4:K68, O1:KUT and O1:K25 strains. All of the lipopolysaccharide preparations of the selected strains exhibited closely spaced quadruplet banding patterns with similar mobility. The two groups of strains exhibited 100% sequence identity in the internal sequences of the toxR and laf genes, and also displayed similar virulence properties as determined with a suckling mouse model. CONCLUSIONS The new O3:K6 and new O3:K6-like strains were highly similar in virulence and in several other phenotypical and genotypical traits. SIGNIFICANCE AND IMPACT OF THE STUDY This work demonstrated the spread and divergence of the pandemic and related clone of V. parahaemolyticus with similar virulence.
Collapse
Affiliation(s)
- H-C Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Takahashi H, Iwade Y, Konuma H, Hara-Kudo Y. Development of a quantitative real-time PCR method for estimation of the total number of Vibrio parahaemolyticus in contaminated shellfish and seawater. J Food Prot 2005; 68:1083-8. [PMID: 15895747 DOI: 10.4315/0362-028x-68.5.1083] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A real-time PCR method targeting the toxR gene of Vibrio parahaemolyticus was developed to quantify the number of V. parahaemolyticus cells, including those of both the hemolysin-producing and nonproducing strains. The specificity of the primer and probe set was confirmed using 25 strains of V. parahaemolyticus and 30 strains of other microbial species. We determined the threshold cycle number using the real-time PCR and the number of V. parahaemolyticus cells by plate count using serially diluted pure culture and developed a standard curve for quantification. Standard curves for V. parahaemolyticus in seawater and seafood were established using artificially inoculated samples. The threshold cycle number and the number of V. parahaemolyticus cells were correlated with 10(1) to 10(7) CFU/ml in pure culture, seawater, and shellfish homogenate. The real-time PCR method developed in this study was compared with the most-probable-number method in seafood samples that were naturally contaminated. The differences in the number of V. parahaemolyticus cells as determined by the culture method and the PCR method were less than 10-fold.
Collapse
Affiliation(s)
- Hajime Takahashi
- National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan
| | | | | | | |
Collapse
|
17
|
Takahashi H, Hara-Kudo Y, Miyasaka J, Kumagai S, Konuma H. Development of a quantitative real-time polymerase chain reaction targeted to the toxR for detection of Vibrio vulnificus. J Microbiol Methods 2005; 61:77-85. [PMID: 15676198 DOI: 10.1016/j.mimet.2004.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 11/08/2004] [Indexed: 11/20/2022]
Abstract
The TaqMan assay, a quantitative real-time polymerase chain reaction (PCR), was developed to target the ToxR gene (toxR) of Vibrio vulnificus. The toxR of V. vulnificus was cloned and sequenced. Based on these results, we designed specific primers and a probe for use in the quantitative PCR assay. Twenty-nine strains of V. vulnificus that were obtained from various sources produced a single PCR product. The amount of final amplification product and threshold cycle number were the same among the strains. We used the method to detect V. vulnificus in seawater and oyster samples. We developed standard curves to quantitate V. vulnificus numbers using the PCR from seawater and oyster samples. The standard curves were not different from that of the pure culture of V. vulnificus. We found the assay was very sensitive detecting as few as 10 microbes per milliliter of seawater and oyster homogenate. Moreover, we evaluated the TaqMan assay to detect V. vulnificus in seawater samples. The numbers of V. vulnificus counted by the TaqMan assay were similar to those by a culture method in almost samples. The TaqMan assay was performed within 2 h compared to days using the culture method. The results indicate the TaqMan assay method used in this study was rapid, effective and quantitative for monitoring V. vulnificus contamination in seawater and seafoods such as oysters.
Collapse
Affiliation(s)
- Hajime Takahashi
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | |
Collapse
|
18
|
Abstract
Vibrios are ubiquitous and abundant in the aquatic environment. A high abundance of vibrios is also detected in tissues and/or organs of various marine algae and animals, e.g., abalones, bivalves, corals, fish, shrimp, sponges, squid, and zooplankton. Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing. The 74 species of this group are distributed among four different families, i.e., Enterovibrionaceae, Photobacteriaceae, Salinivibrionaceae, and Vibrionaceae. Two new genera, i.e., Enterovibrio norvegicus and Grimontia hollisae, and 20 novel species, i.e., Enterovibrio coralii, Photobacterium eurosenbergii, V. brasiliensis, V. chagasii, V. coralliillyticus, V. crassostreae, V. fortis, V. gallicus, V. hepatarius, V. hispanicus, V. kanaloaei, V. neonatus, V. neptunius, V. pomeroyi, V. pacinii, V. rotiferianus, V. superstes, V. tasmaniensis, V. ezurae, and V. xuii, have been described in the last few years. Comparative genome analyses have already revealed a variety of genomic events, including mutations, chromosomal rearrangements, loss of genes by decay or deletion, and gene acquisitions through duplication or horizontal transfer (e.g., in the acquisition of bacteriophages, pathogenicity islands, and super-integrons), that are probably important driving forces in the evolution and speciation of vibrios. Whole-genome sequencing and comparative genomics through the application of, e.g., microarrays will facilitate the investigation of the gene repertoire at the species level. Based on such new genomic information, the taxonomy and the species concept for vibrios will be reviewed in the next years.
Collapse
Affiliation(s)
- Fabiano L Thompson
- Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium.
| | | | | |
Collapse
|
19
|
Masuda N, Yasukawa K, Isawa Y, Horie R, Saitoh J, Ishiguro T, Nakaguchi Y, Nishibuchi M, Hayashi T. Rapid detection of tdh and trh mRNAs of Vibrio parahaemolyticus by the transcription-reverse transcription concerted (TRC) method. J Biosci Bioeng 2004; 98:236-43. [PMID: 16233699 DOI: 10.1016/s1389-1723(04)00275-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 06/28/2004] [Indexed: 11/29/2022]
Abstract
We developed a novel method named the transcription-reverse transcription concerted (TRC) method and an instrument that allowed rapid and completely homogeneous real-time monitoring of RNA isothermal sequence amplification without any post-amplification analysis in our previous study [Ishiguro et al., Anal. Biochem., 314, 77-86 (2003)]. In this study, we newly established rapid and sensitive TRC systems for the detection of the mRNAs transcribed from two major virulence genes of Vibrio parahaemolyticus: the tdh gene encoding the thermostable direct hemolysin (tdh) and the trh gene encoding the thermostable direct hemolysin-related hemolysin. Examination of the standard RNAs prepared in vitro showed that a positive result, increase in the fluorescence intensity to the cut-off value within 25 min, was obtained for as few as 100 copies of RNA. The TRC method specific to the trh mRNA detected the mRNAs transcribed from the trh1 and trh2 genes, two representative trh variants sharing 84% sequence identity. The detection time gave a linear relationship to the logarithm of starting RNA copies ranging from 10(3) to 10(7) copies, showing that quantitative analysis is possible. The detection time for 10(3) copies of the standard RNAs ranged from 11 to 15 min. Examination of the total RNAs extracted from the standard strains of V. parahaemolyticus demonstrated that the new TRC systems are sufficiently sensitive to detect as few as 100 CFUs of the strains carrying the target genes. Total RNA preparations extracted from 24 strains of V. parahaemolyticus, 52 strains belonging to 31 other species of the genus Vibrio and 11 strains belonging to 8 species of non-Vibrio genera were examined. The results of the detection of tdh- and trh-specific mRNAs by the two TRC systems and those of the respective genes by the DNA colony hybridization method agreed. We conclude that the new TRC systems are rapid, highly sensitive, easy to manipulate, and are suitable for routine examination of virulent strains of V. parahaemolyticus in microbiological laboratories.
Collapse
Affiliation(s)
- Noriyoshi Masuda
- Scientific Instruments Division, Tosoh Corporation, 2743-1 Hayakawa, Ayase-shi, Kanagawa 252-1123, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Conejero MJU, Hedreyda CT. Isolation of partial toxR gene of Vibrio harveyi and design of toxR-targeted PCR primers for species detection. J Appl Microbiol 2003; 95:602-11. [PMID: 12911709 DOI: 10.1046/j.1365-2672.2003.02020.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To differentiate Vibrio harveyi from closely related Vibrio species by toxR sequence analysis and design primers for the specific detection of the shellfish pathogen. METHODS AND RESULTS The partial toxR homologue from the shellfish pathogen V. harveyi was isolated by PCR using degenerate primers. The 578-bp toxR fragment from V. harveyi, that exhibited highest homology with partial toxR of V. parahaemolyticus (68%), is predicted to encode for a polypeptide with 192 amino acid residues. Alignment of the V. harveyi toxR nucleotide and deduced amino acid sequence with those from other Vibrio species revealed the presence of the fairly characteristic conserved transcription activation and transmembrane domain as well as the divergent membrane tether region that may be targeted for the development of species-specific oligonucleotide primers. Consequently, PCR primers that could amplify a 390-bp gene fragment in V. harveyi were designed by targeting portions of the V. harveyi toxR that display variability with toxR sequences from other Vibrio species. The 390-bp-amplicon was detected in all V. harveyi strains examined except in the nontarget bacteria and unexpectedly, in two shrimp-derived strains (VIB 391 and STD 3-101) from Thailand and Ecuador. Results show that strains exhibiting the 390-bp amplicon mostly belong to the same cluster based on previous amplified fragment length polymorphism data while strains which were previously unclustered or unclassified did not display the 390-bp PCR product. CONCLUSIONS The toxR sequence variation could differentiate V. harveyi from closely related Vibrio species. A PCR protocol amplifying a 390-bp fragment of the V. harveyi toxR was established and could be useful in the specific and rapid detection of the species. SIGNIFICANCE AND IMPACT OF THE STUDY The molecular approaches reported in this study could facilitate the early diagnosis and surveillance of luminous vibriosis in hatchery-reared fish and shellfish species through rapid identification and specific detection of causal agent.
Collapse
Affiliation(s)
- M J U Conejero
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman Quezon City 1101, Philippines
| | | |
Collapse
|
21
|
Kwok AYC, Wilson JT, Coulthart M, Ng LK, Mutharia L, Chow AW. Phylogenetic study and identification of human pathogenic Vibrio species based on partial hsp60 gene sequences. Can J Microbiol 2002; 48:903-10. [PMID: 12489780 DOI: 10.1139/w02-089] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of hsp60 gene sequences for phylogenetic study and identification of pathogenic marine vibrios was investigated. A 600-bp partial hsp60 gene was amplified by PCR and sequenced from 29 strains representing 15 Vibrio species within the family Vibrionaceae. Sequence comparison of the amplified partial hsp60 gene revealed 71-82% sequence identity among different Vibrio species and 96-100% sequence identity among epidemiologically distinct strains with the same species designation. This degree of discrimination allows unambiguous differentiation of all Vibrio species included in the current study from each other, as well as from Aeromonas hydrophila and Plesiomonas shigelloides, which are often misidentified as Vibrio species by conventional biochemical methods. Based on the hsp60 gene sequences, two previously unidentified shrimp isolates were found to be more closely related to Vibrio alginolyticus (93-94% sequence identity) than to Vibrio parahaemolyticus (89% sequence identity), whereas 16S rRNA gene analysis was unable to differentiate among these closely related species (95-97% sequence identity). Our results indicate that the hsp60 gene may be a useful alternative target for phylogenetic analysis and species identification of marine Vibrios to complement more conventional identification systems.
Collapse
Affiliation(s)
- Anita Y C Kwok
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 3J5, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Okuda J, Nakai T, Chang PS, Oh T, Nishino T, Koitabashi T, Nishibuchi M. The toxR gene of Vibrio (Listonella) anguillarum controls expression of the major outer membrane proteins but not virulence in a natural host model. Infect Immun 2001; 69:6091-101. [PMID: 11553547 PMCID: PMC98738 DOI: 10.1128/iai.69.10.6091-6101.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the hypothesis that the ancestral role of the toxR gene in the family Vibrionaceae is control of the expression of outer membrane protein (OMP)-encoding genes for adaptation to environmental change, we investigated the role of the toxR gene in Vibrio anguillarum, an important fish pathogen. The toxR gene of V. angullarum (Va-toxR) was cloned from strain PT-87050 isolated from diseased ayu (Plecoglossus altivelis), and the sequence was analyzed. The toxR sequence was 63 to 51% identical to those reported for other species of the family Vibrionaceae. Distribution of the Va-toxR gene sequence in V. anguillarum strains of various serotypes was confirmed by using DNA probe and PCR methods. An isogenic toxR mutant of V. anguillarum PT-24, isolated from diseased ayu, was constructed by using an allelic exchange method. The wild-type strain and the toxR mutant did not differ in the ability to produce a protease(s) and a hemolysin(s) or in pathogenicity for ayu when examined by the intramuscular injection and immersion methods. A 35-kDa major OMP was not produced by the toxR mutant. However, a 46-kDa OMP was hardly detected in the wild-type strain but was produced as the major OMP by the toxR mutant. For the toxR mutant, the MICs of two beta-lactam antibiotics were higher and the minimum bactericidal concentration of sodium dodecyl sulfate was lower than for the wild-type strain. Analysis of the N-terminal amino acid sequences of the 35- and 46-kDa OMPs indicated that these proteins are the porin-like OMPs and are related to the toxR-regulated major OMPs of the family Vibrionaceae. The results indicate that the toxR gene is not involved in virulence expression in V. anguillarum PT-24 and that toxR regulation of major OMPs is universal in the family Vibrionaceae. These results support the hypothesis that the ancestral role of the toxR gene is regulation of OMP gene expression and that only in some Vibrio species has ToxR been appropriated for the regulation of a virulence gene(s).
Collapse
Affiliation(s)
- J Okuda
- Center for Southeast Asian Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|