1
|
Cui R, Li J, Hong Y, Guo L, Wang YH, Bai YF, Li DF. Insights into Chemoreceptor MCP2201-Sensing D-Malate. Int J Mol Sci 2025; 26:4902. [PMID: 40430039 PMCID: PMC12112095 DOI: 10.3390/ijms26104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2025] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025] Open
Abstract
Bacterial chemoreceptors sense extracellular stimuli and drive bacteria toward a beneficial environment or away from harm. Their ligand-binding domains (LBDs) are highly diverse in terms of sequence and structure, and their ligands cover various chemical molecules that could serve as nitrogen, carbon, and energy sources. The mechanism of how this diverse range of LBDs senses different ligands is essential to signal transduction. Previously, we reported that the chemoreceptor MCP2201 from Comamonas testosteroni CNB-1 sensed citrate and L-malate, altered the ligand-free monomer-dimer equilibrium of LBD to citrate-bound monomer (with limited monomer) and L-malate-bound dimer, and triggered positive and negative chemotactic responses. Here, we present our findings, showing that D-malate binds to MCP2201, induces LBD dimerization, and triggers the chemorepellent response exactly as L-malate did. A single site mutation, T105A, can alter the D-malate-bound LBD dimer into a monomer-dimer equilibrium and switch the negative chemotactic response to D-malate to a positive one. Differences in attractant-bound LBD oligomerization, such as citrate-bound wildtype LBD monomer and D-malate-bound T105A dimer, indicated that LBD oligomerization is a consequence of signal transduction instead of a trigger. Our study expands our knowledge of chemoreceptor-sensing ligands and provides insight into the evolution of bacterial chemoreceptors.
Collapse
Affiliation(s)
- Rui Cui
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Hong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Lu Guo
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
| | - Yun-Hao Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430079, China;
| | - Yi-Fei Bai
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
| | - De-Feng Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Umar S, Yu W, Xuan H, Ahmed I, Zhong C, Morowitz M, Rogers MB, Attard MI, Sampath V. Neonatal gut microbiota succession in mice mapped over time, site, injury and single immunoglobulin interleukin-1 related receptor genotype. iScience 2025; 28:112243. [PMID: 40248118 PMCID: PMC12005339 DOI: 10.1016/j.isci.2025.112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Abstract
Microbial succession during postnatal gut development in mice is likely impacted by site of sampling, time, intestinal injury, and host genetics. We investigated this in wild-type and Sigirr transgenic mice that encode the p.Y168X mutation identified in a neonate with necrotizing enterocolitis (NEC). Temporal profiling of the ileal and colonic microbiome after birth to weaning revealed a clear pattern of progression from a less diverse, Proteobacteria/Escherichia_Shigella dominant community to a more diverse, Firmicutes/Bacteroidetes dominant community. Formula milk feeding, a risk factor for necrotizing enterocolitis, decreased Firmicutes and increased Proteobacteria leading to enrichment of bacterial genes denoting exaggerated glycolysis and increased production of acetate and lactate. Sigirr transgenic mice exhibited modest baseline differences in microbiota composition but exaggerated formula feeding-induced dysbiosis, mucosal inflammation, and villus injury. Postnatal intestinal microbiota succession in mice resembles human neonates and is shaped by developmental maturity, ileal vs. colonic sampling, formula feeding, and Sigirr genotype.
Collapse
Affiliation(s)
- Shahid Umar
- Department of Surgery, University of Kansas Medical Center, USA
| | - Wei Yu
- Department of Pediatrics/Neonatology, Children’s Mercy Hospital, Kansas City, USA
| | - Hao Xuan
- Department of Electrical Engineering and Computer Science, University of Kansas, USA
| | - Ishfaq Ahmed
- Department of Math, Science and Computer Technology, Kansas City Community College, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, USA
| | - Michael Morowitz
- Division of Pediatric General and Thoracic Surgery, University of Pittsburgh Children’s Hospital, Pittsburgh, PA, USA
| | - Mathew Brian Rogers
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Mark Ivan Attard
- Neonatal Unit, Aberdeen Maternity Hospital, Aberdeen AB25 2ZL, UK
| | - Venkatesh Sampath
- Department of Electrical Engineering and Computer Science, University of Kansas, USA
| |
Collapse
|
3
|
Esfahani SG, Alcalde RE, Valocchi AJ, Sanford RA, Werth CJ. Modeling the Migration and Growth of Shewanella Oneidensis MR-1 in a Diffusion-Dominated Microfluidic Gradient Chamber Under the Influence of an Antibiotic Concentration Gradient. Biotechnol Bioeng 2025. [PMID: 40241290 DOI: 10.1002/bit.28991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Motility and chemotaxis allow bacteria to migrate from areas that become depleted in energy yielding substrates to more favorable locations, possibly enhancing the biodegradation of pollutants in soil and groundwater. However, in some cases substrates are co-mingled with one or more toxic solutes that inhibit pollutant degradation and/or microbial growth, and the impacts on motility and chemotaxis represent a knowledge gap. In this study, a one-dimensional diffusion reaction model is developed and used to simulate dissimilatory biological reduction of nitrate to ammonia (DNRA) presented in a previously published microfluidic gradient chamber (MGC) experiment, where spatial abundances of Shewanella oneidensis MR-1 cells were recorded over 5 days in a diffusion limited porous media domain as it degraded nitrate and lactate introduced from opposite boundaries, and at one boundary co-mixed with the antibiotic ciprofloxacin. The model considers S. oneidensis chemotaxis toward nitrate and nitrite, random motility, and growth inhibition by ciprofloxacin. Parameters were adjusted within ranges commonly reported in the literature to obtain results that agreed with the data. Simulation results indicate that motility and not chemotaxis, in combination with inhibition of cell growth by ciprofloxacin, controls the distribution of cells in the toxic region (containing ciprofloxacin) of the MGC. This suggests that cell motility may facilitate nitrate removal in soil and groundwater by enabling microorganisms to migrate toward nitrate contaminated regions with elevated antibiotic concentrations.
Collapse
Affiliation(s)
- Somayeh G Esfahani
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Reinaldo E Alcalde
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Albert J Valocchi
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Robert A Sanford
- Department of Geology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Gao B, Ford RM. Dimensionless Parameters Define Criteria for Optimal Flow Velocity in Enhancing Chemotactic Response toward Residual Contaminants in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5080-5087. [PMID: 40056108 PMCID: PMC11924221 DOI: 10.1021/acs.est.4c08491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Chemotactic bacteria may overcome challenges posed by nonaqueous-phase liquid (NAPL) contaminants of low solubility in groundwater and limited bioavailability in tight pores by preferentially migrating to NAPL sources. We explored the transport of chemotactic bacteria to NAPL ganglia at varying pore water velocities in a dual-permeability microfluidic device and using computer-simulated solutions of transport equations. In our experiments, bacteria exhibited a chemotactic response toward NAPL ganglia at the junctures of low- and high-permeability regions (i.e., micropockets), and the extent of retention initially increased with velocity and then decreased at the highest velocity. A dimensional analysis revealed that maximum accumulations occurred at moderate values of the Péclet number P e c = v m d p χ o ∼10 in our system. We also found that accumulation dynamics in micropockets can be represented by a logistic equation incorporating convection and chemotaxis time scales τ f = L i v f and τ che = l a 2 χ o , respectively. By analyzing seven literature studies on chemotaxis, we identified an exposure time scale to chemicals τ exp = d p v f that was useful for evaluating the chemotaxis efficiency. Our study provided unique insights into the effect of fluid flow on chemotaxis in porous media by demonstrating that increasing the fluid velocity to some extent can promote chemotaxis. The dimensionless parameters inform the design of efficient bioremediation strategies for contaminated porous media.
Collapse
Affiliation(s)
- Beibei Gao
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Roseanne M. Ford
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
5
|
Zhuang Z, Sethupathy S, Bajón-Fernández Y, Ali S, Niu L, Zhu D. Microbial chemotaxis in degradation of xenobiotics: Current trends and opportunities. Microbiol Res 2025; 290:127935. [PMID: 39476517 DOI: 10.1016/j.micres.2024.127935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 12/12/2024]
Abstract
Chemotaxis, the directed movement of microbes in response to chemical gradients, plays a crucial role in the biodegradation of xenobiotics, such as pesticides, industrial chemicals, and pharmaceuticals, which pose significant environmental and health risks. Emerging trends in genomics, proteomics, and synthetic biology have advanced our understanding and control of these processes, thereby enabling the development of engineered microorganisms with tailored chemotactic responses and degradation capabilities. This process plays an essential physiological role in processes, such as surface sensing, biofilm formation, quorum detection, pathogenicity, colonization, symbiotic interactions with the host system, and plant growth promotion. Field applications have demonstrated the potential of bioremediation for cleaning contaminated environments. Therefore, it helps to increase the bioavailability of pollutants and enables bacteria to access distantly located pollutants. Despite considerable breakthroughs in decoding the regulatory mechanisms of bacterial chemotaxis, there are still gaps in knowledge that need to be resolved to harness its potential for sensing and degrading pollutants in the environment. This review covers the role of bacterial chemotaxis in the degradation of xenobiotics present in the environment, focusing on chemotaxis-based bacterial and microfluidic biosensors for environmental monitoring. Finally, we highlight the current challenges and future perspectives for developing more effective and sustainable strategies to mitigate the environmental impact of xenobiotics.
Collapse
Affiliation(s)
- Zhipeng Zhuang
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yadira Bajón-Fernández
- Water Science Institute, School of Water, Energy and Environment, Cranfield University, MK430AL, UK
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lili Niu
- Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
6
|
Dong H, Chen B, Wang H, Cronan JE. The puzzle of two tandem acyl-CoA ligases of Pseudomonas putida F1. Appl Environ Microbiol 2024; 90:e0126724. [PMID: 39404437 PMCID: PMC11577802 DOI: 10.1128/aem.01267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 11/21/2024] Open
Abstract
The Pseudomonas putida F1 genome and those of many other pseudomonads contain two tandem genes encoding acyl-CoA ligases Pput_1340 (fadD1) and Pput_1339 (fadD2) with Pput_1339 (fadD2) being the upstream gene. The fadD designation was assigned when both genes were found to complement the growth of an Escherichia coli acyl-CoA synthetase fadD deletion strain with oleic acid as sole carbon source. Site-directed mutagenesis showed that residues of the ATP/AMP domain required for function of E. coli FadD were also essential for full function of FadD1 and FadD2. Growth of the constructed ∆fadD1, ∆fadD2, and ∆fadD1∆fadD2 strains was tested in minimal medium with different chain length fatty acids as sole carbon sources. Lack of FadD1 significantly retarded growth with different chain length fatty acids and lack of both FadD1 and FadD2 further retarded growth. Derivatives of the ∆fabA∆desA unsaturated fatty acid auxotrophic strain carrying a deletion of either ∆fadD1 or ∆fadD2 were constructed. Growth of the ∆fabA∆desA∆fadD1 strain was very weak, whereas the ∆fabA∆desA∆fadD2 strain grew as well as the ∆fabA∆desA parent strain. Overexpression of either fadD1 or fadD2 restored growth of the ∆fabA∆desA∆fadD1 strain with fadD2 overexpression having a greater effect than fadD1 overexpression. The ∆fadD1 or ∆fadD2 genes are cotranscribed although the expression level of fadD1 is much higher than that of fadD2. This is attributed to a fadD1 promoter located within the upstream FadD2 coding sequence. IMPORTANCE Pseudomonas bacteria demonstrate a great deal of metabolic diversity and consequently colonize a wide range of ecological niches. A characteristic of these bacteria is a pair of genes in tandem annotated as acyl-CoA ligases involved in fatty acid degradation. The Pseudomonas putida F1 genome is annotated as having at least nine genes encoding acyl-CoA ligases which are scattered around the chromosome excepting the tandem pair. Since similar tandem pairs are found in other pseudomonads, we have constructed and characterized deletion mutants of the tandem ligases. We report that the encoded proteins are authentic acyl-CoA ligases involved in fatty acid degradation.
Collapse
Affiliation(s)
- Huijuan Dong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bo Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - John E. Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
González-Cortés JJ, Lamprea-Pineda PA, Valle A, Ramírez M, Van Langenhove H, Demeestere K, Walgraeve C. Effect of toluene on siloxane biodegradation and microbial communities in biofilters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:119-129. [PMID: 38875913 DOI: 10.1016/j.wasman.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The removal of volatile methyl siloxanes (VMS) from landfill biogas is crucial for clean energy utilization. VMS are usually found together with aromatic compounds in landfill biogas of which toluene is the major representative. In the present study, two biofilters (BFs) packed with either woodchips and compost (WC) or perlite (PER) were used to study the (co-) removal of octamethyltrisiloxane (L3) and octamethylcyclotetrasiloxane (D4) from gas in presence and absence of toluene, used as a representative aromatic compound. The presence of low inlet toluene concentrations (315 ± 19 - 635 ± 80 mg toluene m-3) enhanced the VMS elimination capacity (EC) in both BFs by a factor of 1.8 to 12.6. The highest removal efficiencies for D4 (57.1 ± 1.1 %; EC = 0.12 ± 0.01 gD4 m-3 h-1) and L3 (52.0 ± 0.6 %; EC = 0.23 ± 0.01 gL3 m-3 h-1) were observed in the BF packed with WC. The first section of the BFs (EBRT = 9 min), where toluene was (almost) completely removed, accounted for the majority (87.7 ± 0.6 %) of the total VMS removal. Microbial analysis revealed the impact of VMS and toluene in the activated sludge, showing a clear selection for certain genera in samples influenced by VMS in the presence (X2) or absence (X1) of toluene, such as Pseudomonas (X1 = 0.91 and X2 = 12.0 %), Sphingobium (X1 = 0.09 and X2 = 4.04 %), Rhodococcus (X1 = 0.42 and X2 = 3.91 %), and Bacillus (X1 = 7.15 and X2 = 3.84 %). The significant maximum EC values obtained by the BFs (0.58 gVMS m-3 h-1) hold notable significance in a combined system framework as they could enhance the longevity of traditional physicochemical methods to remove VMS like activated carbon in diverse environmental scenarios.
Collapse
Affiliation(s)
- J J González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain; Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - P A Lamprea-Pineda
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - A Valle
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, Cadiz, Spain
| | - M Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain
| | - H Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - K Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - C Walgraeve
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Xu Q, Ali S, Afzal M, Nizami AS, Han S, Dar MA, Zhu D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172967. [PMID: 38705297 DOI: 10.1016/j.scitotenv.2024.172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.
Collapse
Affiliation(s)
- Qi Xu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Afzal
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Song Han
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
9
|
Liu M, Yu X, Yang M, Shu W, Cao F, Liu Q, Wang J, Jiang Y. The co-presence of polystyrene nanoplastics and ofloxacin demonstrates combined effects on the structure, assembly, and metabolic activities of marine microbial community. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132315. [PMID: 37604038 DOI: 10.1016/j.jhazmat.2023.132315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Nanoplastic is increasing in environments and can address toxic effects on various organisms. Particle size, concentration, and surface functionalization most influence nanoplastic toxicity. Besides, nanoplastic can adsorb other contaminants (e.g., antibiotics) to aggravate its adverse effects. The combined effects of nanoplastics and antibiotics on planktonic/benthic microbial communities, however, are still largely unknown. In this study, the combined effects of polystyrene nanoplastic and ofloxacin on the structure, assembly, and metabolic activities of marine microbial communities were investigated based on amplicon sequencing data. The results mainly demonstrate that: (1) nanoplastic and ofloxacin have greater impacts on prokaryotic communities than eukaryotic ones; (2) niche breadths of planktonic prokaryotes and benthic eukaryotes were shrank with both high nanoplastic and ofloxacin concentrations; (3) increased ofloxacin mainly reduces nodes/edges of co-occurrence networks, while nanoplastic centralizes network modularity; (4) increased nanoplastic under high ofloxacin concentration induces more differential prokaryotic pathways in planktonic communities, while benthic communities are less influenced. The present work indicates that co-presence of nanoplastics and ofloxacin has synergistic combined effects on community structure shifts, niche breadth shrinking, network simplifying, and differential prokaryotic pathways inducing in marine microbial communities, suggesting nanoplastics and its combined impacts with other pollutions should be paid with more concerns.
Collapse
Affiliation(s)
- Mingjian Liu
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaowen Yu
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengyao Yang
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wangxinze Shu
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Furong Cao
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- MoE Laboratory of Marine Chemistry Theory and Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266101, China.
| | - Jun Wang
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yong Jiang
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Dai X, Lv J, Fu P, Guo S. Microbial remediation of oil-contaminated shorelines: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93491-93518. [PMID: 37572250 DOI: 10.1007/s11356-023-29151-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Frequent marine oil spills have led to increasingly serious oil pollution along shorelines. Microbial remediation has become a research hotspot of intertidal oil pollution remediation because of its high efficiency, low cost, environmental friendliness, and simple operation. Many microorganisms are able to convert oil pollutants into non-toxic substances through their growth and metabolism. Microorganisms use enzymes' catalytic activities to degrade oil pollutants. However, microbial remediation efficiency is affected by the properties of the oil pollutants, microbial community, and environmental conditions. Feasible field microbial remediation technologies for oil spill pollution in the shorelines mainly include the addition of high-efficiency oil degrading bacteria (immobilized bacteria), nutrients, biosurfactants, and enzymes. Limitations to the field application of microbial remediation technology mainly include slow start-up, rapid failure, long remediation time, and uncontrolled environmental impact. Improving the environmental adaptability of microbial remediation technology and developing sustainable microbial remediation technology will be the focus of future research. The feasibility of microbial remediation techniques should also be evaluated comprehensively.
Collapse
Affiliation(s)
- Xiaoli Dai
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 10089, China.
| | - Jing Lv
- China University of Petroleum-Beijing, Beijing, 102249, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Hainan, 570228, China
| | - Shaohui Guo
- China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
11
|
Konya A, Fiddler BA, Bunch O, Hess KZ, Ferguson C, Krzmarzick MJ. Lead or cadmium co-contamination alters benzene and toluene degrading bacterial communities. Biodegradation 2023; 34:357-369. [PMID: 36840890 PMCID: PMC10191895 DOI: 10.1007/s10532-023-10021-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
Co-contamination of hydrocarbons with heavy metals in soils often complicates and hinders bioremediation. A comprehensive characterization of site-specific degraders at contaminated sites can help determine if in situ bioremediation processes are sufficient. This study aimed to identify differences in benzene and toluene degradation rates and the microbial communities enriched under aerobic conditions when different concentrations of Cd and Pb are introduced. Microcosms were used to study the degradation of 0.23 mM benzene or 0.19 mM toluene under various concentrations of Pb (up to 240 µM) and Cd (up to 440 µM). Soil collected from a stormwater retention basin receiving runoff from a large parking lot was utilized to seed the microcosms. The hydrocarbon degradation time and rates were measured. After further rounds of amendment and degradation of benzene and toluene, 16S rRNA gene amplicon sequencing and quantitative PCR were used to ascertain the microbial communities enriched under the various concentrations of the heavy metals. The initial degradation time for toluene and benzene was 7 to 9 days and 10 to 13 days, respectively. Degradation rates were similar for each hydrocarbon despite the concentration and presence of metal co-contaminant, however, the enriched microbial communities under each condition differed. Microcosms without metal co-contaminant contained a diversity of putative benzene and toluene degrading bacteria. Cd strongly reduced the richness of the microbial communities. With higher levels of heavy metals, genera such as Ralstonia, Cupriavidus, Azoarcus, and Rhodococcus became more dominant under various conditions. The study finds that highly efficient benzene- and toluene-degrading consortia can develop under variations of heavy metal co-contamination, but the consortia are dependent on the heavy metal type and concentrations.
Collapse
Affiliation(s)
- Aniko Konya
- Environmental Science Graduate Program, Oklahoma State University, Stillwater, OK, USA
| | - Brice A Fiddler
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Olivia Bunch
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Kendra Z Hess
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Cade Ferguson
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Mark J Krzmarzick
- Environmental Science Graduate Program, Oklahoma State University, Stillwater, OK, USA.
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
12
|
Wang YC, Lv YH, Wang C, Jiang GY, Han MF, Deng JG, Hsi HC. Microbial community evolution and functional trade-offs of biofilm in odor treatment biofilters. WATER RESEARCH 2023; 235:119917. [PMID: 37003115 DOI: 10.1016/j.watres.2023.119917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Biofilters inoculated with activated sludge are widely used for odor control in WWTP. In this process, biofilm community evolution plays an important role in the function of reactor and is closely related to reactor performance. However, the trade-offs in biofilm community and bioreactor function during the operation are still unclear. Herein, an artificially constructed biofilter for odorous gas treatment was operated for 105 days to study the trade-offs in the biofilm community and function. Biofilm colonization was found to drive community evolution during the start-up phase (phase 1, days 0-25). Although the removal efficiency of the biofilter was unsatisfactory at this phase, the microbial genera related to quorum sensing and extracellular polymeric substance secretion led to the rapid accumulation of the biofilm (2.3 kg biomass/m3 filter bed /day). During the stable operation phase (phase 2, days 26-80), genera related to target-pollutant degradation showed increases in relative abundance, which accompanied a high removal efficiency and a stable accumulation of biofilm (1.1 kg biomass/m3 filter bed/day). At the clogging phase (phase 3, days 81-105), a sharp decline in the biofilm accumulation rate (0.5 kg biomass/m3 filter bed /day) and fluctuating removal efficiency were observed. The quorum quenching-related genera and quenching genes of signal molecules increased, and competition for resources among species drove the evolution of the community in this phase. The results of this study highlight the trade-offs in biofilm community and functions during the operation of bioreactors, which could help improve bioreactor performance from a biofilm community perspective.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| |
Collapse
|
13
|
Chen T, Wu Y, Wang J, Philippe CFX. Assessing the Biodegradation of BTEX and Stress Response in a Bio-Permeable Reactive Barrier Using Compound-Specific Isotope Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148800. [PMID: 35886652 PMCID: PMC9322891 DOI: 10.3390/ijerph19148800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022]
Abstract
By using compound-specific isotope analysis (CSIA) in combination with high-throughput sequencing analysis (HTS), we successfully evaluated the benzene and toluene biodegradation in a bio-permeable reactive barrier (bio-PRB) and the stress response of the microbial community. Under stress conditions, a greater decline in the biodegradation rate of BTEX was observed compared with the apparent removal rate. Both an increase in the influent concentration and the addition of trichloroethylene (TCE) inhibited benzene biodegradation, while toluene biodegradation was inhibited by TCE. Regarding the stress response, the relative abundance of the dominant bacterial community responsible for the biodegradation of BTEX increased with the influent concentration. However, the dominant bacterial community did not change, and its relative abundance was restored after the influent concentration decreased. On the contrary, the addition of TCE significantly changed the bacterial community, with Aminicenantes becoming the dominant phyla for co-metabolizing TCE and BTEX. Thus, TCE had a more significant influence on the bio-PRB than an increasing influent concentration, although these two stress conditions showed a similar degree of influence on the apparent removal rate of benzene and toluene. The present work not only provides a new method for accurately evaluating the biodegradation performance and microbial community in a bio-PRB, but also expands the application of compound-specific isotope analysis in the biological treatment of wastewater.
Collapse
Affiliation(s)
- Tianyu Chen
- Stake Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China;
| | - Yan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (Y.W.); (C.F.-X.P.)
| | - Jinnan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (Y.W.); (C.F.-X.P.)
- Correspondence:
| | - Corvini François-Xavier Philippe
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (Y.W.); (C.F.-X.P.)
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Basel, Switzerland
| |
Collapse
|
14
|
Bodhankar GA, Tohidifar P, Foust ZL, Ordal GW, Rao CV. Characterization of Opposing Responses to Phenol by Bacillus subtilis Chemoreceptors. J Bacteriol 2022; 204:e0044121. [PMID: 35007157 PMCID: PMC9017305 DOI: 10.1128/jb.00441-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis employs 10 chemoreceptors to move in response to chemicals in its environment. While the sensing mechanisms have been determined for many attractants, little is known about the sensing mechanisms for repellents. In this work, we investigated phenol chemotaxis in B. subtilis. Phenol is an attractant at low, micromolar concentrations and a repellent at high, millimolar concentrations. McpA was found to be the principal chemoreceptor governing the repellent response to phenol and other related aromatic compounds. In addition, the chemoreceptors McpC and HemAT were found to govern the attractant response to phenol and related compounds. Using chemoreceptor chimeras, McpA was found to sense phenol using its signaling domain rather than its sensing domain. These observations were substantiated in vitro, where direct binding of phenol to the signaling domain of McpA was observed using saturation transfer difference nuclear magnetic resonance. These results further advance our understanding of B. subtilis chemotaxis and further demonstrate that the signaling domain of B. subtilis chemoreceptors can directly sense chemoeffectors. IMPORTANCE Bacterial chemotaxis is commonly thought to employ a sensing mechanism involving the extracellular sensing domain of chemoreceptors. Some ligands, however, appear to be sensed by the signaling domain. Phenolic compounds, commonly found in soil and root exudates, provide environmental cues for soil microbes like Bacillus subtilis. We show that phenol is sensed as both an attractant and a repellent. While the mechanism for sensing phenol as an attractant is still unknown, we found that phenol is sensed as a repellent by the signaling domain of the chemoreceptor McpA. This study furthers our understanding of the unconventional sensing mechanisms employed by the B. subtilis chemotaxis pathway.
Collapse
Affiliation(s)
- Girija A. Bodhankar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Payman Tohidifar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zachary L. Foust
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - George W. Ordal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
A Review of the Advantages, Disadvantages and Limitations of Chemotaxis Assays for Campylobacter spp. Int J Mol Sci 2022; 23:ijms23031576. [PMID: 35163499 PMCID: PMC8836060 DOI: 10.3390/ijms23031576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
Reproducible qualitative and quantitative assessment of bacterial chemotactic motility, particularly in response to chemorepellent effectors, is experimentally challenging. Here we compare several established chemotaxis assays currently used to investigate Campylobacter jejuni chemotaxis, with the aim of improving the correlation between different studies and establishing the best practices. We compare the methodologies of capillary, agar, and chamber-based assays, and discuss critical technical points, in terms of reproducibility, accuracy, and the advantages and limitations of each.
Collapse
|
16
|
The Arginine Catabolism-Derived Amino Acid L-ornithine Is a Chemoattractant for Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10020264. [PMID: 35208720 PMCID: PMC8875649 DOI: 10.3390/microorganisms10020264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is a common, opportunistic bacterial pathogen among patients with cystic fibrosis, asthma, and chronic obstructive pulmonary disease. During the course of these diseases, l-ornithine, a non-proteinogenic amino acid, becomes more abundant. P. aeruginosa is chemotactic towards other proteinogenic amino acids. Here, we evaluated the chemotaxis response of P. aeruginosa towards l-ornithine. Our results show that l-ornithine serves as a chemoattractant for several strains of P. aeruginosa, including clinical isolates, and that the chemoreceptors involved in P. aeruginosa PAO1 are PctA and PctB. It seems likely that P. aeruginosa’s chemotactic response to l-ornithine might be a common feature and thus could potentially contribute to pathogenesis processes during colonization and infection scenarios.
Collapse
|
17
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
18
|
De Vela RJ, Wigley K, Baronian K, Gostomski PA. Effect of metabolic uncouplers on the performance of toluene-degrading biotrickling filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41881-41895. [PMID: 33791957 DOI: 10.1007/s11356-021-13708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The biomass control potential of three metabolic uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), carbonyl cyanide m-chlorophenylhydrazone (CCCP), and m-chlorophenol (m-CP)) was tested in biotrickling filters (BTFs) degrading toluene. The experiments employed two types of reactors: a traditional column design and a novel differential BTF (DBTF) reactor developed by De Vela and Gostomski (J Environ Eng 147:04020159, 2021). Uncouplers caused the toluene elimination capacity (EC) (~33 g/m3h for column reactors and ~600 g/m3h for DBTF) to decrease by 15-97% in a dose-dependent fashion. The EC completely recovered in the column reactor in 3 to 13 days, while only partial recovery happened in the DBTF. Short-term (1 to 3 days) true uncoupling was indicated by the 20-160% increase in %CO2 recovery, depending on concentration. FCCP and CCCP increased the pressure drop due to increased extracellular polymeric substances (EPS) production for protection against the uncouplers. The 4.0-mM m-CP weakened the biofilm in the BTF bed, as evidenced by the 130-500% increase in the total organic carbon in the liquid sump of the column and DBTF reactors. Moreover, a microbial shift led to the proliferation of genera that degrade uncouplers, further demonstrating that the uncouplers tested were not a sustainable biomass control strategy in BTFs.
Collapse
Affiliation(s)
- Roger Jay De Vela
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand.
- Camarines Norte State College, F. Pimentel Avenue, 4600, Daet, Camarines Norte, Philippines.
| | - Kathryn Wigley
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Kim Baronian
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Peter Alan Gostomski
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
19
|
Marella TK, Bhattacharjya R, Tiwari A. Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms. Microb Cell Fact 2021; 20:135. [PMID: 34266439 PMCID: PMC8281487 DOI: 10.1186/s12934-021-01627-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/03/2021] [Indexed: 02/01/2023] Open
Abstract
Diatoms are unicellular photosynthetic protists which constitute one of the most successful microalgae contributing enormously to global primary productivity and nutrient cycles in marine and freshwater habitats. Though they possess the ability to biosynthesize high value compounds like eicosatetraenoic acid (EPA), fucoxanthin (Fx) and chrysolaminarin (Chrl) the major bottle neck in commercialization is their inability to attain high density growth. However, their unique potential of acquiring diverse carbon sources via varied mechanisms enables them to adapt and grow under phototrophic, mixotrophic as well as heterotrophic modes. Growth on organic carbon substrates promotes higher biomass, lipid, and carbohydrate productivity, which further triggers the yield of various biomolecules. Since, the current mass culture practices primarily employ open pond and tubular photobioreactors for phototrophic growth, they become cost intensive and economically non-viable. Therefore, in this review we attempt to explore and compare the mechanisms involved in organic carbon acquisition in diatoms and its implications on mixotrophic and heterotrophic growth and biomolecule production and validate how these strategies could pave a way for future exploration and establishment of sustainable diatom biorefineries for novel biomolecules.
Collapse
Affiliation(s)
- Thomas Kiran Marella
- Algae Biomass and Energy System R&D Center (ABES), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
20
|
Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol 2021; 61:366-379. [PMID: 33687766 DOI: 10.1002/jobm.202000661] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Lamba J, Anand S, Dutta J, Chatterjee S, Nagar S, Celin SM, Rai PK. Study on aerobic degradation of 2,4,6-trinitrotoluene (TNT) using Pseudarthrobacter chlorophenolicus collected from the contaminated site. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:80. [PMID: 33486600 DOI: 10.1007/s10661-021-08869-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
2,4,6-trinitrotoluene or TNT, a commonly used explosive, can pollute soil and groundwater. Conventional remediation practices for the TNT-contaminated sites are neither eco-friendly nor cost-effective. However, exploring bacteria to biodegrade TNT into environment-friendly compound(s) is an interesting area to explore. In this study, an indigenous bacterium, Pseudarthrobacter chlorophenolicus, strain S5-TSA-26, isolated from explosive contaminated soil, was investigated for potential aerobic degradation of TNT for the first time. The isolated strain of P. chlorophenolicus was incubated in a minimal salt medium (MSM) containing 120 mg/L TNT for 25 days at specified conditions. TNT degradation pattern by the bacterium was monitored at regular interval using UV-Vis spectrophotometry, high-performance liquid chromatography, and liquid chromatography mass spectrophotometric, by estimating nitrate, nitrite, and ammonium ion concentration and other metabolites such as 2,4-dinitrotoluene (DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), and 2,4-diamino-6-nitrotoluene (2-DANT). It was observed that, in the presence of TNT, there was no reduction in growth of the bacterium although it multiplied well in the presence of TNT along with no considerable morphological changes. Furthermore, it was found that TNT degraded completely within 15 days of incubation. Thus, from this study, it may be concluded that the bacterium has the potential for degrading TNT completely with the production of non-toxic by-products and might be an important bacterium for treating TNT (i.e., a nitro-aromatic compound)-contaminated sites.
Collapse
Affiliation(s)
- Jyoti Lamba
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| | - Shalini Anand
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India.
| | - Jayanti Dutta
- Human Resource Development Centre, Panjab University, Chandigarh, 160 014, India
| | - Soumya Chatterjee
- Defence Research Laboratory, Defence Research and Development Organisation, Tezpur, Assam, 784 001, India
| | - Shilpi Nagar
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
- Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
| | - S Mary Celin
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| | - Pramod Kumar Rai
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| |
Collapse
|
22
|
Ahmad F, Zhu D, Sun J. Bacterial chemotaxis: a way forward to aromatic compounds biodegradation. ENVIRONMENTAL SCIENCES EUROPE 2020; 32:52. [DOI: 10.1186/s12302-020-00329-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 07/23/2024]
Abstract
AbstractWorldwide industrial development has released hazardous polycyclic aromatic compounds into the environment. These pollutants need to be removed to improve the quality of the environment. Chemotaxis mechanism has increased the bioavailability of these hydrophobic compounds to microorganisms. The mechanism, however, is poorly understood at the ligand and chemoreceptor interface. Literature is unable to furnish a compiled review of already published data on up-to-date research on molecular aspects of chemotaxis mechanism, ligand and receptor-binding mechanism, and downstream signaling machinery. Moreover, chemotaxis-linked biodegradation of aromatic compounds is required to understand the chemotaxis role in biodegradation better. To fill this knowledge gap, the current review is an attempt to cover PAHs occurrence, chemical composition, and potential posed risks to humankind. The review will cover the aspects of microbial signaling mechanism, the structural diversity of methyl-accepting chemotaxis proteins at the molecular level, discuss chemotaxis mechanism role in biodegradation of aromatic compounds in model bacterial genera, and finally conclude with the potential of bacterial chemotaxis for aromatics biodegradation.
Collapse
|
23
|
Valderrama-Gómez MÁ, Schomer RA, Savageau MA, Parales RE. TaxisPy: A Python-based software for the quantitative analysis of bacterial chemotaxis. J Microbiol Methods 2020; 175:105918. [PMID: 32512119 DOI: 10.1016/j.mimet.2020.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
Several species of bacteria are able to modify their swimming behavior in response to chemical attractants or repellents. Methods for the quantitative analysis of bacterial chemotaxis such as quantitative capillary assays are tedious and time-consuming. Computer-based video analysis of swimming bacteria represents a valuable method to directly assess their chemotactic response. Even though multiple studies have used this approach to elucidate various aspects of bacterial chemotaxis, to date, no computer software for such analyses is freely available. Here, we introduce TaxisPy, a Python-based software for the quantitative analysis of bacterial chemotaxis. The software comes with an intuitive graphical user interface and can be accessed easily through Docker on any operating system. Using a video of freely swimming cells as input, TaxisPy estimates the culture's average tumbling frequency over time. We demonstrate the utility of the software by assessing the effect of different concentrations of the attractant shikimate on the swimming behavior of Pseudomonas putida F1 and by capturing the adaptation process that Escherichia coli undergoes after being exposed to l-aspartate.
Collapse
Affiliation(s)
- Miguel Á Valderrama-Gómez
- Department of Microbiology & Molecular Genetics, College of Biological Sciences, University of California, Davis, USA.
| | - Rebecca A Schomer
- Department of Microbiology & Molecular Genetics, College of Biological Sciences, University of California, Davis, USA
| | - Michael A Savageau
- Department of Microbiology & Molecular Genetics, College of Biological Sciences, University of California, Davis, USA; Department of Biomedical Engineering, University of California, Davis, USA
| | - Rebecca E Parales
- Department of Microbiology & Molecular Genetics, College of Biological Sciences, University of California, Davis, USA
| |
Collapse
|
24
|
Sampedro I, Pérez-Mendoza D, Toral L, Palacios E, Arriagada C, Llamas I. Effects of Halophyte Root Exudates and Their Components on Chemotaxis, Biofilm Formation and Colonization of the Halophilic Bacterium Halomonas Anticariensis FP35 T. Microorganisms 2020; 8:E575. [PMID: 32316222 PMCID: PMC7232322 DOI: 10.3390/microorganisms8040575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
Increase in soil salinity poses an enormous problem for agriculture and highlights the need for sustainable crop production solutions. Plant growth-promoting bacteria can be used to boost the growth of halophytes in saline soils. Salicornia is considered to be a promising salt-accumulating halophyte for capturing large amounts of carbon from the atmosphere. In addition, colonization and chemotaxis could play an important role in Salicornia-microbe interactions. In this study, the role of chemotaxis in the colonization of the halophilic siredophore-producing bacteria, Halomonas anticariensis FP35T, on Salicornia hispanica plants was investigated. The chemotactic response of FP35T to Salicornia root exudates showed optimum dependence at a salt concentration of 5 % NaCl (w/v). Oleanolic acid, the predominant compound in the exudates detected by HPLC and identified by UPLC-HRMS Q-TOF, acts as a chemoattractant. In vitro experiments demonstrated the enhanced positive effects of wild-type H. anticariensis strain FP35T on root length, shoot length, germination and the vigour index of S. hispanica. Furthermore, these positive effects partially depend on an active chemotaxis system, as the chemotaxis mutant H. anticariensis FP35 ΔcheA showed reduced plant growth promotion for all the parameters tested. Overall, our results suggest that chemotaxis responses to root exudates play an important role in interactions between Salicornia and halophilic bacteria, enhance their colonization and boost plant growth promotion. Preliminary results also indicate that root exudates have a positive impact on H. anticariensis FP35T biofilm formation under saline conditions, an effect which totally depends on the presence of the cheA gene.
Collapse
Affiliation(s)
- Inmaculada Sampedro
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Daniel Pérez-Mendoza
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Laura Toral
- Xtrem Biotech S.L., European Business Innovation Center, Avenida de la Innovación, 1, 18016 Armilla, Granada, Spain;
| | - Esther Palacios
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - César Arriagada
- Department of Forestry Science, Bioremediation Laboratory, Faculty of Agricultural and Forestry Science, University of La Frontera, 01145 Temuco, Chile;
| | - Inmaculada Llamas
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, Spain
| |
Collapse
|
25
|
Dominance of Gas-Eating, Biofilm-Forming Methylobacterium Species in the Evaporator Cores of Automobile Air-Conditioning Systems. mSphere 2020; 5:5/1/e00761-19. [PMID: 31941811 PMCID: PMC6968652 DOI: 10.1128/msphere.00761-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Air-conditioning systems (ACS) are indispensable for human daily life; however, microbial community analysis in automobile ACS has yet to be comprehensively investigated. A bacterial community analysis of 24 heat exchanger fins from five countries (South Korea, China, the United States, India, and the United Arab Emirates [UAE]) revealed that Methylobacterium species are some of the dominant bacteria in automobile ACS. Furthermore, we suggested that the predominance of Methylobacterium species in automobile ACS is due to the utilization of mixed volatile organic compounds and their great ability for aggregation and biofilm formation. Microbial communities in the evaporator core (EC) of automobile air-conditioning systems have a large impact on indoor air quality, such as malodor and allergenicity. DNA-based microbial population analysis of the ECs collected from South Korea, China, the United States, India, and the United Arab Emirates revealed the extraordinary dominance of Methylobacterium species in EC biofilms. Mixed-volatile organic compound (VOC) utilization and biofilm-forming capabilities were evaluated to explain the dominance of Methylobacterium species in the ECs. The superior growth of all Methylobacterium species could be possible under mixed-VOC conditions. Interestingly, two lifestyle groups of Methylobacterium species could be categorized as the aggregator group, which sticks together but forms a small amount of biofilm, and the biofilm-forming group, which forms a large amount of biofilm, and their genomes along with phenotypic assays were analyzed. Pili are some of the major contributors to the aggregator lifestyle, and succinoglycan exopolysaccharide production may be responsible for the biofilm formation. However, the coexistence of these two lifestyle Methylobacterium groups enhanced their biofilm formation compared to that with each single culture. IMPORTANCE Air-conditioning systems (ACS) are indispensable for human daily life; however, microbial community analysis in automobile ACS has yet to be comprehensively investigated. A bacterial community analysis of 24 heat exchanger fins from five countries (South Korea, China, the United States, India, and the United Arab Emirates [UAE]) revealed that Methylobacterium species are some of the dominant bacteria in automobile ACS. Furthermore, we suggested that the predominance of Methylobacterium species in automobile ACS is due to the utilization of mixed volatile organic compounds and their great ability for aggregation and biofilm formation.
Collapse
|
26
|
Chemotaxis of Pseudomonas putida F1 to Alcohols Is Mediated by the Carboxylic Acid Receptor McfP. Appl Environ Microbiol 2019; 85:AEM.01625-19. [PMID: 31471307 DOI: 10.1128/aem.01625-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
Although alcohols are toxic to many microorganisms, they are good carbon and energy sources for some bacteria, including many pseudomonads. However, most studies that have examined chemosensory responses to alcohols have reported that alcohols are sensed as repellents, which is consistent with their toxic properties. In this study, we examined the chemotaxis of Pseudomonas putida strain F1 to n-alcohols with chain lengths of 1 to 12 carbons. P. putida F1 was attracted to all n-alcohols that served as growth substrates (C2 to C12) for the strain, and the responses were induced when cells were grown in the presence of alcohols. By assaying mutant strains lacking single or multiple methyl-accepting chemotaxis proteins, the receptor mediating the response to C2 to C12 alcohols was identified as McfP, the ortholog of the P. putida strain KT2440 receptor for C2 and C3 carboxylic acids. Besides being a requirement for the response to n-alcohols, McfP was required for the response of P. putida F1 to pyruvate, l-lactate, acetate, and propionate, which are detected by the KT2440 receptor, and the medium- and long-chain carboxylic acids hexanoic acid and dodecanoic acid. β-Galactosidase assays of P. putida F1 carrying an mcfP-lacZ transcriptional fusion showed that the mcfP gene is not induced in response to alcohols. Together, our results are consistent with the idea that the carboxylic acids generated from the oxidation of alcohols are the actual attractants sensed by McfP in P. putida F1, rather than the alcohols themselves.IMPORTANCE Alcohols, released as fermentation products and produced as intermediates in the catabolism of many organic compounds, including hydrocarbons and fatty acids, are common components of the microbial food web in soil and sediments. Although they serve as good carbon and energy sources for many soil bacteria, alcohols have primarily been reported to be repellents rather than attractants for motile bacteria. Little is known about how alcohols are sensed by microbes in the environment. We report here that catabolizable n-alcohols with linear chains of up to 12 carbons serve as attractants for the soil bacterium Pseudomonas putida, and rather than being detected directly, alcohols appear to be catabolized to acetate, which is then sensed by a specific cell-surface chemoreceptor protein.
Collapse
|
27
|
Shim S, Stone HA, Ford RM. Chemotaxis in shear flow: Similarity solutions of the steady‐state chemoattractant and bacterial distributions. AIChE J 2019. [DOI: 10.1002/aic.16713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suin Shim
- Department of Mechanical and Aerospace Engineering Princeton University Princeton New Jersey
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering Princeton University Princeton New Jersey
| | - Roseanne M. Ford
- Department of Chemical Engineering School of Engineering and Applied Science, University of Virginia Charlottesville Virginia
| |
Collapse
|
28
|
Lamb E, Trimble MJ, McCarter LL. Cell-cell communication, chemotaxis and recruitment in Vibrio parahaemolyticus. Mol Microbiol 2019; 112:99-113. [PMID: 30938898 DOI: 10.1111/mmi.14256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2019] [Indexed: 01/16/2023]
Abstract
Motile bacteria are proficient at finding optimal environments for colonization. Often, they use chemotaxis to sense nutrient availability and dangerous concentrations of toxic chemicals. For many bacteria, the repertoire of chemoreceptors is large, suggesting they possess a broad palate with respect to sensing. However, knowledge of the molecules detected by chemotaxis signal transduction systems is limited. Some bacteria, like Vibrio parahaemolyticus, are social and swarm in groups on surfaces. This marine bacterium and human pathogen secretes the S signal autoinducer, which cues degradation of intracellular c-di-GMP leading to transcription of the swarming program. Here, we report that the S signal also directs motility at a behavioral level by serving as a chemoattractant. The data demonstrate that V. parahaemolyticus senses the S signal using SscL and SscS, homologous methyl-accepting chemotaxis proteins. SscL is required by planktonic bacteria for S signal chemotaxis. SscS plays a role during swarming, and mutants lacking this chemoreceptor swarm faster and produce colonies with more deeply branched swarming fronts than the wild type or the sscL mutant. Other Vibrio species can swim toward the S signal, suggesting a recruitment role for this cell-cell communication molecule in the context of polymicrobial marine communities.
Collapse
Affiliation(s)
- Evan Lamb
- The Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael J Trimble
- The Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Linda L McCarter
- The Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
29
|
Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M. Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:177-189. [PMID: 30445319 DOI: 10.1016/j.scitotenv.2018.11.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 05/07/2023]
Abstract
Pesticides are an important agricultural input, and the introduction of new active ingredients with increased efficiencies drives their higher production and consumption worldwide. Inappropriate application and storage of these chemicals often contaminate plant tissues, air, water, or soil environments. The presence of pesticides can lead to developing tolerance, resistance or persistence and even the capabilities to degrade them by the microbiomes of theses environments. The pesticide-degrading microorganisms gain and employ several mechanisms for attraction (chemotaxis), membrane transport systems, efflux pumps, enzymes and genetical make-up with plasmid and chromosome encoded catabolic genes for degradation. Even the evolution and the mechanisms of inheritance for pesticide-degradation as a functional trait in several microorganisms are beginning to be understood. Because of the commonalities in the microbial responses of sensing and uptake, and adaptation due to the selection pressures of pesticides and antimicrobial substances including antibiotics, the pesticide-degraders have higher chances of possessing antimicrobial resistance as a surplus functional trait. This review critically examines the probabilities of pesticide contamination of soil and foliage, the knowledge gaps in the regulation and storage of pesticide chemicals, and the human implications of pesticide-degrading microorganisms with antimicrobial resistance in the global strategy of 'One Health'.
Collapse
Affiliation(s)
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Nambrattil Sethunathan
- Flat No. 103, Ushodaya Apartments, Sri Venkateswara Officers Colony, Ramakrishnapuram, Secunderabad 500056, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER) and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.
| |
Collapse
|
30
|
Abdelraheem A, H El-Shazly A, Elkady M. Comparable investigation of polyaniline behavior towards gaseous ammonia and toluene adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3991-3999. [PMID: 30552613 DOI: 10.1007/s11356-018-3877-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
With raising awareness of gaseous air pollutants and their harmful impact, adsorption is considered one of the most prominent techniques for gaseous emissions control. The usage of polyaniline as a gas adsorbent is an innovative idea. This work aims to compare the efficacy of synthesized polyaniline nanotubes (PANT) as a novel adsorbent towards inorganic gases (ammonia NH3) and volatile organic compounds (toluene vapor). PANT was prepared via a sol-gel preparation technique. The molecular structure of prepared PANT was characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The morphological structure was confirmed using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The PANT adsorbent surface area was determined using Brunner Emmett Teller (BET). Dynamic behavior of simulated feed gas mixture of NH3 and toluene in air were examined using a fixed bed adsorption arrangement. The same adsorption conditions (inlet concentration, gas mixture feed flow rate, and a fixed amount of adsorbent) were applied for both NH3 and toluene adsorption test. The NH3 and toluene removal efficiencies were 100% and 96% respectively. Consequently, PANT is an auspicious adsorbent that can be utilized to control the indoor and outdoor gaseous air emissions. Graphical Abstracts ᅟ.
Collapse
Affiliation(s)
- Amira Abdelraheem
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab Alexandria, Egypt.
- Occupational Health and Air Pollution Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt.
| | - Ahmed H El-Shazly
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab Alexandria, Egypt
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Marwa Elkady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab Alexandria, Egypt
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Applications (SRTA City), Alexandria, Egypt
| |
Collapse
|
31
|
Tabernacka A, Zborowska E, Pogoda K, Żołądek M. Removal of tetrachloroethene from polluted air by activated sludge. ENVIRONMENTAL TECHNOLOGY 2019; 40:470-479. [PMID: 29098945 DOI: 10.1080/09593330.2017.1397759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
A one-step technological system containing activated sludge fed with synthetic domestic wastewater was applied to treat waste air polluted with tetrachloroethene (PCE). In the first stage of the experiment, air passed through a bioscrubber; in the second and third stages, it passed through the bioreactor containing activated sludge and bacteria immobilised in oak chips. These bacteria are active in PCE biodegradation. Process efficiency in the final stage of the experiment was high; the elimination capacity was 0.23 g m-3 h-1 with the PCE mass loading rate of 0.58 g m-3 h-1. It has been shown that in the activated sludge bioreactor, bacteria adapted to PCE biodegradation and the wood chips protected microorganisms from the toxic effects of pollution. The dominant strains of bacteria immobilised in wood chips have been identified. Most of them were Gram-negative rods - Pseudomonas aeruginosa, Pseudomonas putida, Ralstonia pickettii and Ochrobactrum anthropii. Only one strain was Gram-positive and of cylindrical shape. The results of the study indicate the potential of immobilised bacteria capable of degrading chlorinated aliphatic hydrocarbons for the air and wastewater treatment. The low cost of the treatment process is an advantage.
Collapse
Affiliation(s)
- Agnieszka Tabernacka
- a Biology Division, Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| | - Ewa Zborowska
- a Biology Division, Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| | - Katarzyna Pogoda
- a Biology Division, Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| | - Marcin Żołądek
- a Biology Division, Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| |
Collapse
|
32
|
Bradford LM, Vestergaard G, Táncsics A, Zhu B, Schloter M, Lueders T. Transcriptome-Stable Isotope Probing Provides Targeted Functional and Taxonomic Insights Into Microaerobic Pollutant-Degrading Aquifer Microbiota. Front Microbiol 2018; 9:2696. [PMID: 30483229 PMCID: PMC6243674 DOI: 10.3389/fmicb.2018.02696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
While most studies using RNA-stable isotope probing (SIP) to date have focused on ribosomal RNA, the detection of 13C-labeled mRNA has rarely been demonstrated. This approach could alleviate some of the major caveats of current non-target environmental “omics.” Here, we demonstrate the feasibility of total RNA-SIP in an experiment where hydrocarbon-degrading microbes from a BTEX-contaminated aquifer were studied in microcosms with 13C-labeled toluene under microoxic conditions. From the total sequencing reads (∼30 mio. reads per density-resolved RNA fraction), an average of 1.2% of reads per sample were identified as non-rRNA, including mRNA. Members of the Rhodocyclaceae (including those related to Quatrionicoccus spp.) were most abundant and enriched in 13C-rRNA, while well-known aerobic degraders such as Pseudomonas spp. remained unlabeled. Transcripts related to cell motility, secondary metabolite formation and xenobiotics degradation were highly labeled with 13C. mRNA of phenol hydroxylase genes were highly labeled and abundant, while other transcripts of toluene-activation were not detected. Clear labeling of catechol 2,3-dioxygenase transcripts supported previous findings that some of these extradiol dioxygenases were adapted to low oxygen concentrations. We introduce a novel combination of total RNA-SIP with calculation of transcript-specific enrichment factors (EFs) in 13C-RNA, enabling a targeted approach to process-relevant gene expression in complex microbiomes.
Collapse
Affiliation(s)
- Lauren M Bradford
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gisle Vestergaard
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.,Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllö, Hungary
| | - Baoli Zhu
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Schloter
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllö, Hungary
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
33
|
Balaraman P, Plettner E. Chemotaxis by Pseudomonas putida (ATCC 17453) towards camphor involves cytochrome P450 cam (CYP101A1). Biochim Biophys Acta Gen Subj 2018; 1863:304-312. [PMID: 30391161 DOI: 10.1016/j.bbagen.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 11/29/2022]
Abstract
The camphor-degrading microorganism, Pseudomonas putida strain ATCC 17453, is an aerobic, gram-negative soil bacterium that uses camphor as its sole carbon and energy source. The genes responsible for the catabolic degradation of camphor are encoded on the extra-chromosomal CAM plasmid. A monooxygenase, cytochrome P450cam, mediates hydroxylation of camphor to 5-exo-hydroxycamphor as the first and committed step in the camphor degradation pathway, requiring a dioxygen molecule (O2) from air. Under low O2 levels, P450cam catalyzes the production of borneol via an unusual reduction reaction. We have previously shown that borneol downregulates the expression of P450cam. To understand the function of P450cam and the consequences of down-regulation by borneol under low O2 conditions, we have studied chemotaxis of camphor induced and non-induced P. putida strain ATCC 17453. We have tested camphor, borneol, oxidized camphor metabolites and known bacterial attractants (d)-glucose, (d) - and (l)-glutamic acid for their elicitation chemotactic behavior. In addition, we have used 1-phenylimidazole, a P450cam inhibitor, to investigate if P450cam plays a role in the chemotactic ability of P. putida in the presence of camphor. We found that camphor, a chemoattractant, became toxic and chemorepellent when P450cam was inhibited. We have also evaluated the effect of borneol on chemotaxis and found that the bacteria chemotaxed away from camphor in the presence of borneol. This is the first report of the chemotactic behaviour of P. putida ATCC 17453 and the essential role of P450cam in this process.
Collapse
Affiliation(s)
- Priyadarshini Balaraman
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Erika Plettner
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
34
|
Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:858-870. [PMID: 29660711 DOI: 10.1016/j.jenvman.2018.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities are an essential part of plant rhizosphere and participate in the functioning of plants, including rhizoremediation of petroleum contaminants. Rhizoremediation is a promising technology for removal of polyaromatic hydrocarbons based on interactions between plants and microbiome in the rhizosphere. Root exudation in the rhizosphere provides better nutrient uptake for rhizosphere microbiome, and therefore it is considered to be one of the major factors of microbial community function in the rhizosphere that plays a key role in the enhanced PAH biodegradation. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, the interactions between microbiome and plant roots in the process of rhizosphere mediated remediation of PAH still needs attention. Most of the current researches target PAH degradation by plant or single microorganism, separately, whereas the interactions between plants and whole microbiome are overlooked and its role has been ignored. This review summarizes recent knowledge of PAH degradation in the rhizosphere in the process of plant-microbiome interactions based on emerging omics approaches such as metagenomics, metatranscriptomics, metabolomics and metaproteomics. These omics approaches with combinations to bioinformatics tools provide us a better understanding in integrated activity patterns between plants and rhizosphere microbes, and insight into the biochemical and molecular modification of the meta-organisms (plant-microbiome) to maximize rhizoremediation activity. Moreover, a better understanding of the interactions could lead to the development of techniques to engineer rhizosphere microbiome for better hydrocarbon degradation.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
35
|
Abstract
Although the mechanism of bacterial chemotaxis has been extensively studied in enteric bacteria, the hunt for novel and atypical chemoeffectors (in enterics and distantly-related species alike) has necessitated the modification of classic chemotaxis assays to deal with recalcitrant and potentially toxic chemicals. Here, we describe detailed protocols for the quantitative and qualitative assessment of chemotaxis responses that are categorized into short-term direct population response assays and long-term metabolism-based assays that can be used to identify novel chemoeffector molecules and the specific chemoreceptors involved. We emphasize the importance of behavior-based assays to verify the biochemical and physiological relevance of newly identified chemoeffector-receptor pairs.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jayna L Ditty
- Department of Biology, College of Arts and Sciences, University of St. Thomas, St. Paul, MN, USA.
| |
Collapse
|
36
|
Bushnaf KM, Mangse G, Meynet P, Davenport RJ, Cirpka OA, Werner D. Mechanisms of distinct activated carbon and biochar amendment effects on petroleum vapour biofiltration in soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1260-1269. [PMID: 28920987 DOI: 10.1039/c7em00309a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We studied the effects of two percent by weight activated carbon versus biochar amendments in 93 cm long sand columns on the biofiltration of petroleum vapours released by a non-aqueous phase liquid (NAPL) source. Activated carbon greatly enhanced, whereas biochar slightly reduced, the biofiltration of volatile petroleum hydrocarbons (VPHs) over 430 days. Sorbent amendment benefitted the VPH biofiltration by retarding breakthrough during the biodegradation lag phase. Subsequently, sorbent amendment briefly reduced the mineralization of petroleum hydrocarbons by limiting their bioavailability. During the last and longest study period, when conditions became less supportive of microbial growth, because of inorganic nutrient scarcity, the sorbents again improved the pollution attenuation by preventing the degrading microorganisms from being overloaded with VPHs. A 16S rRNA gene based analysis showed sorbent amendment effects on soil microbial communities. Nocardioidaceae benefitted the most from petroleum hydrocarbons in activated carbon amended soil, whereas Pseudomonadacea predominated in unamended soil. Whilst the degrading microorganisms were overloaded with VPHs in the unamended soil, the reduced mobility and bioavailability of VPHs in the activated carbon amended soil led to the emergence of communities with higher specific substrate affinity, which removed bioavailable VPHs effectively at low concentrations. A numerical pollutant fate model reproduced these experimental observations by considering sorption effects on the pollutant migration and bioavailability for growth of VPH degrading biomass, which is limited by a maximum soil biomass carrying capacity. Activated carbon was a much stronger sorbent for VPHs than biochar, which explained the diverging effects of the two sorbents in this study.
Collapse
Affiliation(s)
- Khaled M Bushnaf
- Department of Earth and Environmental Sciences, El-mergab University, Khoms, Libya
| | | | | | | | | | | |
Collapse
|
37
|
Hughes JG, Zhang X, Parales JV, Ditty JL, Parales RE. Pseudomonas putida F1 uses energy taxis to sense hydroxycinnamic acids. MICROBIOLOGY-SGM 2017; 163:1490-1501. [PMID: 28954643 DOI: 10.1099/mic.0.000533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Soil bacteria such as pseudomonads are widely studied due to their diverse metabolic capabilities, particularly the ability to degrade both naturally occurring and xenobiotic aromatic compounds. Chemotaxis, the directed movement of cells in response to chemical gradients, is common in motile soil bacteria and the wide range of chemicals detected often mirrors the metabolic diversity observed. Pseudomonas putida F1 is a soil isolate capable of chemotaxis toward, and degradation of, numerous aromatic compounds. We showed that P. putida F1 is capable of degrading members of a class of naturally occurring aromatic compounds known as hydroxycinnamic acids, which are components of lignin and are ubiquitous in the soil environment. We also demonstrated the ability of P. putida F1 to sense three hydroxycinnamic acids: p-coumaric, caffeic and ferulic acids. The chemotaxis response to hydroxycinnamic acids was induced during growth in the presence of hydroxycinnamic acids and was negatively regulated by HcaR, the repressor of the hydroxycinnamic acid catabolic genes. Chemotaxis to the three hydroxycinnamic acids was dependent on catabolism, as a mutant lacking the gene encoding feruloyl-CoA synthetase (Fcs), which catalyzes the first step in hydroxycinnamic acid degradation, was unable to respond chemotactically toward p-coumaric, caffeic, or ferulic acids. We tested whether an energy taxis mutant could detect hydroxycinnamic acids and determined that hydroxycinnamic acid sensing is mediated by the energy taxis receptor Aer2.
Collapse
Affiliation(s)
- Jonathan G Hughes
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
| | - Xiangsheng Zhang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA.,Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, PR China
| | - Juanito V Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
| | - Jayna L Ditty
- Department of Biology, College of Arts and Sciences, University of St Thomas, St Paul, MN, USA
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
38
|
Zhong H, Liu G, Jiang Y, Yang J, Liu Y, Yang X, Liu Z, Zeng G. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review. Biotechnol Adv 2017; 35:490-504. [DOI: 10.1016/j.biotechadv.2017.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
|
39
|
Bhuyan T, Singh AK, Dutta D, Unal A, Ghosh SS, Bandyopadhyay D. Magnetic Field Guided Chemotaxis of iMushbots for Targeted Anticancer Therapeutics. ACS Biomater Sci Eng 2017; 3:1627-1640. [DOI: 10.1021/acsbiomaterials.7b00086] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tamanna Bhuyan
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amit Kumar Singh
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Deepanjalee Dutta
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aynur Unal
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Centre
for Nanotechnology, ‡Department of Mechanical Engineering, §Department of Biosciences
and Bioengineering, and ∥Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
40
|
Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front Microbiol 2016; 7:1836. [PMID: 27917161 PMCID: PMC5116465 DOI: 10.3389/fmicb.2016.01836] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.
Collapse
Affiliation(s)
- Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Matteo Daghio
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
- Department of Biological Sciences, Thompson Rivers University, KamloopsBC, Canada
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
| | | | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
41
|
Morales M, Sentchilo V, Bertelli C, Komljenovic A, Kryuchkova-Mostacci N, Bourdilloud A, Linke B, Goesmann A, Harshman K, Segers F, Delapierre F, Fiorucci D, Seppey M, Trofimenco E, Berra P, El Taher A, Loiseau C, Roggero D, Sulfiotti M, Etienne A, Ruiz Buendia G, Pillard L, Escoriza A, Moritz R, Schneider C, Alfonso E, Ben Jeddou F, Selmoni O, Resch G, Greub G, Emery O, Dubey M, Pillonel T, Robinson-Rechavi M, van der Meer JR. The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand. PLoS One 2016; 11:e0165850. [PMID: 27812150 PMCID: PMC5094676 DOI: 10.1371/journal.pone.0165850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX) may be accelerated by inoculation of specific biodegraders (bioaugmentation). Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h) changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction) of multiple gene clusters, such as toluene degradation pathway(s), chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis), osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium) and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.
Collapse
Affiliation(s)
- Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Andrea Komljenovic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Nadezda Kryuchkova-Mostacci
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Audrey Bourdilloud
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Burkhard Linke
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Keith Harshman
- Lausanne Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Francisca Segers
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabien Delapierre
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Damien Fiorucci
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mathieu Seppey
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Evgeniya Trofimenco
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pauline Berra
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Athimed El Taher
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Chloé Loiseau
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Dejan Roggero
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Madeleine Sulfiotti
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angela Etienne
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gustavo Ruiz Buendia
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Loïc Pillard
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angelique Escoriza
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Roxane Moritz
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cedric Schneider
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Esteban Alfonso
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fatma Ben Jeddou
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Selmoni
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Olivier Emery
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Video processing analysis for the determination and evaluation of the chemotactic response in bacterial populations. J Microbiol Methods 2016; 127:146-153. [PMID: 27291715 DOI: 10.1016/j.mimet.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/07/2023]
Abstract
The aim of the present work was to design a methodology based on video processing to obtain indicators of bacterial population motility that allow the quantitative and qualitative analysis and comparison of the chemotactic phenomenon with different attractants in the agarose-in plug bridge method. Video image sequences were processed applying Shannon's entropy to the intensity time series of each pixel, which conducted to a final pseudo colored image resembling a map of the dynamic bacterial clusters. Processed images could discriminate perfectly between positive and negative attractant responses at different periods of time from the beginning of the assay. An index of spatial and temporal motility was proposed to quantify the bacterial response. With this index, this video processing method allowed obtaining quantitative information of the dynamic changes in space and time from a traditional qualitative assay. We conclude that this computational technique, applied to the traditional agarose-in plug assay, has demonstrated good sensitivity for identifying chemotactic regions with a broad range of motility.
Collapse
|
43
|
Huang Z, Ni B, Jiang CY, Wu YF, He YZ, Parales RE, Liu SJ. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds inComamonas testosteroni. Mol Microbiol 2016; 101:224-37. [DOI: 10.1111/mmi.13385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Zhou Huang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Bin Ni
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| | - Yu-Fan Wu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yun-Zhe He
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; University of California; Davis CA 95616 USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| |
Collapse
|
44
|
Schwarzer C, Fischer H, Machen TE. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells. PLoS One 2016; 11:e0150109. [PMID: 27031335 PMCID: PMC4816407 DOI: 10.1371/journal.pone.0150109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11) with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses) in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI) were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells). PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins) and massively (10–80 fold increase, termed “swarming”), but transiently (random swimming after 15 mins), to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW) and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC) and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i) PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii) PA use pili to bind to epithelial cells near wounds.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Hashmi MZ, Qin Z, Yao X, Ahmed Z, Xiaomei S, Shen C, Tang X. PCBs attenuation and abundance of Dehalococcoides spp., bphC, CheA, and flic genes in typical polychlorinated biphenyl-polluted soil under floody and dry soil conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3907-3913. [PMID: 26503002 DOI: 10.1007/s11356-015-5577-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
This study investigates PCBs attenuation and the abundance of active polychlorinated-degrading Dehalococcoides spp. biphenyl dioxygenase (bphC), chemotaxis (CheA), and flagellum (flic) genes in floody and dry soil conditions polluted with polychlorinated biphenyls. The results revealed that total PCBs, high chlorinated PCBs (>4 cl), and less chlorinated PCBs (<4 cl) decreased with the passage of time in floody and dry soil conditions. The reduction of total PCBs (13.87%) and less chlorinated PCBs (15.39%) was more in dry soil than floody soil, while high chlorinated PCBs showed more reduction in floody soil (8.06%) than dry soil. Dehaloccoides spp., bphC, CheA, and flic genes indicated temporal dynamics in abundance in floody and dry soil conditions. The highest abundance was 1.6 × 10(9), 3.7 × 10(4), and 3.6 × 10(2) copies in floody and 1.6 × 10(4) copies in dry soil for Dehalococcoides spp., bphC, CheA, and flic, respectively. Multivariate statistics (RDA) revealed that Dehaloccoides spp. were positively influenced by the higher chlorinated PCBs and soil physical properties, CheA gene with floody soil, flic gene with total PCBs and less chlorinated PCBs, and bphC gene was affected with moisture contents and less chlorinated PCBs. This study provides new insight in the attenuation of PCBs and the abundance of active Dehalococcoides spp. and genes in PCBs polluted soil under floody and dry soil conditions.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- College of Environmental and Natural Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, People's Republic of China
- Department of Meteorology, COMSATS Institute of Information Technology, Park road, Islamabad, Pakistan
- Institute of Health and Management Sciences, Green Avenue, Park Road, Islamabad, Pakistan
| | - Zhihui Qin
- College of Environmental and Natural Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xiaoyan Yao
- College of Environmental and Natural Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zulkifl Ahmed
- Department of Building and Architecture Engineering, Bahauddin Zakariya University, Multan, Pakistan
| | - Su Xiaomei
- College of Environmental and Natural Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Chaofeng Shen
- College of Environmental and Natural Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xianjin Tang
- College of Environmental and Natural Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
46
|
Wang X, Lanning LM, Ford RM. Enhanced Retention of Chemotactic Bacteria in a Pore Network with Residual NAPL Contamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:165-172. [PMID: 26633578 DOI: 10.1021/acs.est.5b03872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nonaqueous-phase liquid (NAPL) contaminants are difficult to eliminate from natural aquifers due, in part, to the heterogeneous structure of the soil. Chemotaxis enhances the mixing of bacteria with contaminant sources in low-permeability regions, which may not be readily accessible by advection and dispersion alone. A microfluidic device was designed to mimic heterogeneous features of a contaminated groundwater aquifer. NAPL droplets (toluene) were trapped within a fine pore network, and bacteria were injected through a highly conductive adjacent macrochannel. Chemotactic bacteria (Pseudomonas putida F1) exhibited greater accumulation near the pore network at 0.5 m/day than both the nonchemotactic control and the chemotactic bacteria at a higher groundwater velocity of 5 m/day. Chemotactic bacteria accumulated in the vicinity of NAPL droplets, and the accumulation was 15% greater than a nonchemotactic mutant. Indirect evidence showed that chemotactic bacteria were retained within the contaminated low-permeability region longer than nonchemotactic bacteria at 0.25 m/day. This retention was diminished at 5 m/day. Numerical solutions of the bacterial-transport equations were consistent with the experimental results. Because toluene is degraded by P. putida F1, the accumulation of chemotactic bacteria around NAPL sources is expected to increase contaminant consumption and improve the efficiency of bioremediation.
Collapse
Affiliation(s)
- Xiaopu Wang
- School of Petroleum Engineering, China University of Petroleum , Qingdao, Shandong, China 266580
- Department of Chemical Engineering, School of Engineering and Applied Science, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Larry M Lanning
- Department of Chemical Engineering, School of Engineering and Applied Science, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Roseanne M Ford
- Department of Chemical Engineering, School of Engineering and Applied Science, University of Virginia , Charlottesville, Virginia 22904, United States
| |
Collapse
|
47
|
Sampedro I, Kato J, Hill JE. Elastin degradation product isodesmosine is a chemoattractant for Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2015; 161:1496-503. [PMID: 25855762 PMCID: PMC10727130 DOI: 10.1099/mic.0.000090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/24/2022]
Abstract
Previous studies have demonstrated that Pseudomonas aeruginosa PAO1 is chemotactic towards proteinogenic amino acids, however, the chemotaxis response of this strain towards non-proteinogenic amino acids and the specific chemoreceptors involved in this response are essentially unknown. In this study, we analysed the chemotactic response of PAO1 towards two degradation products of elastin, the lysine-rich, non-proteinogenic amino acids, desmosine and isodesmosine. We observed that isodesmosine, a potential biomarker for different diseases, served as a chemoattractant for PAO1. A screen of 251methyl-accepting chemotaxis proteins mutants of PAO1 identified PctA as the chemoreceptor for isodesmosine. We also showed that the positive chemotactic response to isodesmosine is potentially common by demonstrating chemoattraction in 12 of 15 diverse (in terms of source of isolation) clinical isolates, suggesting that the chemotactic response to this non-proteinogenic amino acid might be a conserved feature of acute infection isolates and thus could influence the colonization of potential infection sites.
Collapse
Affiliation(s)
- Inmaculada Sampedro
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Jane E. Hill
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| |
Collapse
|
48
|
Wang X, Atencia J, Ford RM. Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Biotechnol Bioeng 2015; 112:896-904. [PMID: 25408100 DOI: 10.1002/bit.25497] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/01/2014] [Accepted: 11/12/2014] [Indexed: 01/06/2023]
Abstract
Chemotaxis has been shown to be beneficial for the migration of soil-inhabiting bacteria towards industrial chemical pollutants, which they degrade. Many studies have demonstrated the importance of this microbial property under various circumstances; however, few quantitative analyses have been undertaken to measure the two essential parameters that characterize the chemotaxis of bioremediation bacteria: the chemotactic sensitivity coefficient χ(0) and the chemotactic receptor constant K(c). The main challenge to determine these parameters is that χ(0) and K(c) are coupled together in non-linear mathematical models used to evaluate them. In this study we developed a method to accurately measure these parameters for Pseudomonas putida in the presence of toluene, an important pollutant in groundwater contamination. Our approach uses a multilayer microfluidic device to expose bacteria to a convection-free linear chemical gradient of toluene that is stable over time. The bacterial distribution within the gradient is measured in terms of fluorescence intensity, and is then used to fit the parameters Kc and χ(0) with mathematical models. Critically, bacterial distributions under chemical gradients at two different concentrations were used to solve for both parameters independently. To validate the approach, the chemotaxis parameters of Escherichia coli strains towards α-methylaspartate were experimentally derived and were found to be consistent with published results from related work.
Collapse
Affiliation(s)
- Xiaopu Wang
- Departmentof Chemical Engineering, School of Engineering Applied Science, University of Virginia, Charlottesville, Virginia, 22904
| | | | | |
Collapse
|
49
|
Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 2015; 46:7-21. [PMID: 26221084 PMCID: PMC4512045 DOI: 10.1590/s1517-838246120131354] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/06/2014] [Indexed: 11/26/2022] Open
Abstract
The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.
Collapse
Affiliation(s)
- Sandeep Bisht
- Department of Molecular Biology and Biotechnology, VCSG College of Horticulture, Uttarakhand University of Horticulture & Forestry, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| | - Bhavya Bhargava
- Department of Floriculture & Landscaping Architecture, VCSG College of Horticulture, Uttarakhand University of Horticulture & Forestry, Uttarakhand, India
| | - Shivesh Sharma
- Department of Biotechnology, National Institute of Technology, Allahabad, India
| | - Vivek Kumar
- Amity Institutite of Microbial Technology, Amity Univeristy, Noida, India
| | - Krishan D. Sharma
- VCSG College of Horticulture, Uttarakhand University of Horticulture & Forestry, Uttarakhand, India
| |
Collapse
|
50
|
Abstract
Pseudomonads sense changes in the concentration of chemicals in their environment and exhibit a behavioral response mediated by flagella or pili coupled with a chemosensory system. The two known chemotaxis pathways, a flagella-mediated pathway and a putative pili-mediated system, are described in this review. Pseudomonas shows chemotaxis response toward a wide range of chemicals, and this review includes a summary of them organized by chemical structure. The assays used to measure positive and negative chemotaxis swimming and twitching Pseudomonas as well as improvements to those assays and new assays are also described. This review demonstrates that there is ample research and intellectual space for future investigators to elucidate the role of chemotaxis in important processes such as pathogenesis, bioremediation, and the bioprotection of plants and animals.
Collapse
Affiliation(s)
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Tino Krell
- Department of Environmental Protection, CSIC, Estacion Experimental del Zaidin, Granada, Spain
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|