1
|
Kogay R, Zhaxybayeva O. Co-evolution of gene transfer agents and their alphaproteobacterial hosts. J Bacteriol 2024; 206:e0039823. [PMID: 38240570 PMCID: PMC10883770 DOI: 10.1128/jb.00398-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024] Open
Abstract
Gene transfer agents (GTAs) are enigmatic elements that resemble small viruses and are known to be produced during nutritional stress by some bacteria and archaea. The production of GTAs is regulated by quorum sensing, under which a small fraction of the population acts as GTA producers, while the rest becomes GTA recipients. In contrast to canonical viruses, GTAs cannot propagate themselves because they package pieces of the producing cell's genome. In alphaproteobacteria, GTAs are mostly vertically inherited and reside in their hosts' genomes for hundreds of millions of years. While GTAs' ability to transfer genetic material within a population and their long-term preservation suggest an increased fitness of GTA-producing microbes, the associated benefits and type of selection that maintains GTAs are poorly understood. By comparing rates of evolutionary change in GTA genes to the rates in gene families abundantly present across 293 alphaproteobacterial genomes, we detected 59 gene families that likely co-evolve with GTA genes. These gene families are predominantly involved in stress response, DNA repair, and biofilm formation. We hypothesize that biofilm formation enables the physical proximity of GTA-producing cells, limiting GTA-derived benefits only to a group of closely related cells. We further conjecture that the population structure of biofilm-forming sub-populations ensures that the trait of GTA production is maintained despite the inevitable rise of "cheating" genotypes. Because release of GTA particles kills the producing cell, maintenance of GTAs is an exciting example of social evolution in a microbial population.IMPORTANCEGene transfer agents (GTAs) are viruses domesticated by some archaea and bacteria as vehicles for carrying pieces of the host genome. Produced under certain environmental conditions, GTA particles can deliver DNA to neighboring, closely related cells. The function of GTAs remains uncertain. While making GTAs is suicidal for a cell, GTA-encoding genes are widespread in genomes of alphaproteobacteria. Such GTA persistence implies functional benefits but raises questions about how selection maintains this lethal trait. By showing that GTA genes co-evolve with genes involved in stress response, DNA repair, and biofilm formation, we provide support for the hypothesis that GTAs facilitate DNA exchange during the stress conditions and present a model for how GTAs persist in biofilm-forming bacterial populations despite being lethal.
Collapse
Affiliation(s)
- Roman Kogay
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
The Novel Monooxygenase Gene dipD in the dip Gene Cluster of Alcaligenes faecalis JQ135 Is Essential for the Initial Catabolism of Dipicolinic Acid. Appl Environ Microbiol 2022; 88:e0036022. [PMID: 35766505 PMCID: PMC9317849 DOI: 10.1128/aem.00360-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dipicolinic acid (DPA), an essential pyridine derivative biosynthesized in Bacillus spores, constitutes a major proportion of global biomass carbon pool. Alcaligenes faecalis strain JQ135 could catabolize DPA through the "3HDPA (3-hydroxydipicolinic acid) pathway." However, the genes involved in this 3HDPA pathway are still unknown. In this study, a dip gene cluster responsible for DPA degradation was cloned from strain JQ135. The expression of dip genes was induced by DPA and negatively regulated by DipR. A novel monooxygenase gene, dipD, was crucial for the initial hydroxylation of DPA into 3HDPA and proposed to encode the key catalytic component of the multicomponent DPA monooxygenase. The heme binding protein gene dipF, ferredoxin reductase gene dipG, and ferredoxin genes dipJ/dipK/dipL were also involved in the DPA hydroxylation and proposed to encode other components of the multicomponent DPA monooxygenase. The 18O2 stable isotope labeling experiments confirmed that the oxygen atom in the hydroxyl group of 3HDPA came from dioxygen molecule rather than water. The protein sequence of DipD exhibits no significant sequence similarities with known oxygenases, suggesting that DipD was a new member of oxygenase family. Moreover, bioinformatic survey suggested that the dip gene cluster was widely distributed in many Alpha-, Beta-, and Gammaproteobacteria, including soil bacteria, aquatic bacteria, and pathogens. This study provides new molecular insights into the catabolism of DPA in bacteria. IMPORTANCE Dipicolinic acid (DPA) is a natural pyridine derivative that serves as an essential component of the Bacillus spore. DPA accounts for 5 to 15% of the dry weight of spores. Due to the huge number of spores in the environment, DPA is also considered to be an important component of the global biomass carbon pool. DPA could be decomposed by microorganisms and enter the global carbon cycling; however, the underlying molecular mechanisms are rarely studied. In this study, a DPA catabolic gene cluster (dip) was cloned and found to be widespread in Alpha-, Beta-, and Gammaproteobacteria. The genes responsible for the initial hydroxylation of DPA to 3-hydroxyl-dipicolinic acid were investigated in Alcaligenes faecalis strain JQ135. The present study opens a door to elucidate the mechanism of DPA degradation and its possible role in DPA-based carbon biotransformation on earth.
Collapse
|
3
|
DNA photolyase from Antarctic marine bacterium Rhodococcus sp. NJ-530 can repair DNA damage caused by ultraviolet. 3 Biotech 2021; 11:102. [PMID: 33552830 DOI: 10.1007/s13205-021-02660-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
Marine bacterium Rhodococcus sp. NJ-530 has developed several ultraviolet (UV) adaptive characteristics for survival and growth in extreme Antarctic environment. Rhodococcus sp. NJ-530 DNA photolyase encoded by a 1146 bp photolyase-homologous region (phr) was identified in genome. Quantitative real-time PCR demonstrated that transcriptional levels of phr were highly up-regulated by ultraviolet-B (UV-B) radiation (90 μW·cm-2) and increased to a maximum of 149.17-fold after exposure for 20 min. According to the results of SDS-PAGE and western blot, PHR was effectively induced by isopropyl-β-d-1-thiogalactopyranoside (IPTG) at the genetically engineered BL21(DE3)-pET-32a( +)-phr construct under the condition of 15 °C for 16 h and 37 °C for 4 h. In terms of in vivo activity, compared with a phr-defective E. coli strain, phr-transformed E. coli exhibited higher survival rate under high UV-B intensity of 90 μW·cm-2. Meanwhile, the purified PHR, with blue light, presented obvious photorepair activity toward UV-induced DNA damage in vitro assays. To sum up, studying the mechanisms of Rhodococcus sp. NJ-530 photolyase is of great interest to understand the adaptation of polar bacteria to high UV radiation, and such data present important therapeutic value for further UV-induced human skin and genetic damage diseases. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02660-8.
Collapse
|
4
|
Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. FRONTIERS IN PLANT SCIENCE 2020; 11:597642. [PMID: 33384704 PMCID: PMC7769811 DOI: 10.3389/fpls.2020.597642] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Butcher BG, Bao Z, Wilson J, Stodghill P, Swingle B, Filiatrault M, Schneider D, Cartinhour S. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response. PLoS One 2017; 12:e0180340. [PMID: 28700608 PMCID: PMC5507510 DOI: 10.1371/journal.pone.0180340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/14/2017] [Indexed: 01/14/2023] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae adapts to changes in the environment by modifying its gene expression profile. In many cases, the response is mediated by the activation of extracytoplasmic function (ECF) sigma factors that direct RNA polymerase to transcribe specific sets of genes. In this study we focus on PSPTO_1043, one of ten ECF sigma factors in P. syringae pv. tomato DC3000 (DC3000). PSPTO_1043, together with PSPTO_1042, encode an RpoERsp/ChrR-like sigma/anti-sigma factor pair. Although this gene pair is unique to the P. syringae group among the pseudomonads, homologous genes can be found in photosynthetic genera such as Rhodospirillum, Thalassospira, Phaeospirillum and Parvibaculum. Using ChIP-Seq, we detected 137 putative PSPTO_1043 binding sites and identified a likely promoter motif. We characterized 13 promoter candidates, six of which regulate genes that appear to be found only in P. syringae. PSPTO_1043 responds to the presence of singlet oxygen (1O2) and tert-butyl hydroperoxide (tBOOH) and several of the genes regulated by PSPTO_1043 appear to be involved in response to oxidative stress.
Collapse
Affiliation(s)
- Bronwyn G. Butcher
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - Zhongmeng Bao
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - Janet Wilson
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - Paul Stodghill
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
- * E-mail:
| | - Bryan Swingle
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - Melanie Filiatrault
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - David Schneider
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - Samuel Cartinhour
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| |
Collapse
|
6
|
Braga GUL, Rangel DEN, Flint SD, Miller CD, Anderson AJ, Roberts DW. Damage and recovery from UV-B exposure in conidia of the entomopathogensVerticillium lecaniiandAphanocladium album. Mycologia 2017. [DOI: 10.1080/15572536.2003.11833149] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Stephan D. Flint
- Department of Rangeland Resources and the Ecology Center, Utah State University, Logan, Utah 84322-5230
| | | | | | - Donald W. Roberts
- Department of Biology, Utah State University, Logan, Utah 84322-5305
| |
Collapse
|
7
|
Albarracín VH, Simon J, Pathak GP, Valle L, Douki T, Cadet J, Borsarelli CD, Farias ME, Gärtner W. First characterisation of a CPD-class I photolyase from a UV-resistant extremophile isolated from High-Altitude Andean Lakes. Photochem Photobiol Sci 2015; 13:739-50. [PMID: 24637630 DOI: 10.1039/c3pp50399b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV-resistant Acinetobacter sp. Ver3 isolated from High-Altitude Andean Lakes (HAAL) in Argentinean Puna, one of the highest UV exposed ecosystems on Earth, showed efficient DNA photorepairing ability, coupled to highly efficient antioxidant enzyme activities in response to UV-B stress. We herein present the cloning, expression, and functional characterization of a cyclobutane pyrimidine dimer (CPD)-class I photolyase (Ver3Phr) from this extremophile to prove its involvement in the previously noted survival capability. Spectroscopy of the overexpressed and purified protein identified flavin adenine dinucleotide (FAD) and 5,10-methenyltetrahydrofolate (MTHF) as chromophore and antenna molecules, respectively. All functional analyses were performed in parallel with the ortholog E. coli photolyase. Whereas the E. coli enzyme showed the FAD chromophore as a mixture of oxidised and reduced states, the Ver3 chromophore always remained partly (including the semiquinone state) or fully reduced under all experimental conditions tested. Functional complementation of Ver3Phr in Phr(-)-RecA E. coli strains was assessed by traditional UFC counting and measurement of DNA bipyrimidine photoproducts by HPLC coupled with electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) detection. The results identified strong photoreactivation ability in vivo of Ver3Phr while its nonphotoreactivation function, probably related with the stimulation of nucleotide excision repair (NER), was not as manifest as for EcPhr. Whether this is a question of the approach using an exogenous photolyase incorporated in a non-genuine host or a fundamental different behaviour of a novel enzyme from an exotic environment will need further studies.
Collapse
Affiliation(s)
- Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000- S. M. de Tucumán, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Draft genome sequence of Pseudomonas syringae pathovar syringae strain FF5, causal agent of stem tip dieback disease on ornamental pear. J Bacteriol 2012; 194:3733-4. [PMID: 22740663 DOI: 10.1128/jb.00567-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae FF5 causes stem tip dieback disease on ornamental pear (Pyrus calleryana). Its genome encodes a complete type III secretion system (T3SS) and HopAC1, HopM1, AvrE1, HopI1, HopAA1, HopJ1, HopAH2, HopAH1, HopAG1, and HopAZ1. Lacking detectable homologues of other T3SS effectors, it may encode novel, undiscovered effectors.
Collapse
|
9
|
Monitoring of biofilm production by Pseudomonas aeruginosa strains under different conditions of UVC irradiation and phage infection. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0487-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
10
|
Induction of Weigle reactivation of cyanophage PP in Plectonema boryanum. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-011-0305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
11
|
|
12
|
Amin MT, Han MY. Roof-harvested rainwater for potable purposes: application of solar collector disinfection (SOCO-DIS). WATER RESEARCH 2009; 43:5225-5235. [PMID: 19783275 DOI: 10.1016/j.watres.2009.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 05/28/2023]
Abstract
The efficiency of solar disinfection (SODIS), recommended by the World Health Organization, has been determined for rainwater disinfection, and potential benefits and limitations discussed. The limitations of SODIS have now been overcome by the use of solar collector disinfection (SOCO-DIS), for potential use of rainwater as a small-scale potable water supply, especially in developing countries. Rainwater samples collected from the underground storage tanks of a rooftop rainwater harvesting (RWH) system were exposed to different conditions of sunlight radiation in 2-L polyethylene terephthalate bottles in a solar collector with rectangular base and reflective open wings. Total and fecal coliforms were used, together with Escherichia coli and heterotrophic plate counts, as basic microbial and indicator organisms of water quality for disinfection efficiency evaluation. In the SOCO-DIS system, disinfection improved by 20-30% compared with the SODIS system, and rainwater was fully disinfected even under moderate weather conditions, due to the effects of concentrated sunlight radiation and the synergistic effects of thermal and optical inactivation. The SOCO-DIS system was optimized based on the collector configuration and the reflective base: an inclined position led to an increased disinfection efficiency of 10-15%. Microbial inactivation increased by 10-20% simply by reducing the initial pH value of the rainwater to 5. High turbidities also affected the SOCO-DIS system; the disinfection efficiency decreased by 10-15%, which indicated that rainwater needed to be filtered before treatment. The problem of microbial regrowth was significantly reduced in the SOCO-DIS system compared with the SODIS system because of residual sunlight effects. Only total coliform regrowth was detected at higher turbidities. The SOCO-DIS system was ineffective only under poor weather conditions, when longer exposure times or other practical means of reducing the pH were required for the treatment of stored rainwater for potable purposes.
Collapse
Affiliation(s)
- M T Amin
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan.
| | | |
Collapse
|
13
|
Süss J, Volz S, Obst U, Schwartz T. Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection. WATER RESEARCH 2009; 43:3705-3716. [PMID: 19576614 DOI: 10.1016/j.watres.2009.05.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 05/15/2009] [Accepted: 05/26/2009] [Indexed: 05/28/2023]
Abstract
As nucleic acids are major targets in bacteria during standardised UV disinfection (254 nm), inactivation rates also depend on bacterial DNA repair. Due to UV-related DNA modifications, PCR-based approaches allow for a direct detection of DNA damage and repair during UV disinfection. By applying different primer sets, the correlation between amplicon length and PCR amplification became obvious. The longer the targeted DNA fragment was, the more UV-induced DNA lesions inhibited the PCR. Regeneration of Pseudomonas aeruginosa, Enterococcus faecium, and complex wastewater communities was recorded over a time period of 66 h. While phases of intensive repair and proliferation were found for P. aeruginosa, no DNA repair was detected by qPCR in E. faecium. Cultivation experiments verified these results. Despite high UV mediated inactivation rates original wastewater bacteria seem to express an enhanced robustness against irradiation. Regeneration of dominant and proliferation of low-abundant, probably UV-resistant species contributed to a strong post-irradiation recovery accompanied by a selection for beta-Proteobacteria.
Collapse
Affiliation(s)
- Jacqueline Süss
- Forschungszentrum Karlsruhe, Institute of Functional Interfaces, Microbiology of Natural and Technical Interfaces Department, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | | | | | | |
Collapse
|
14
|
Schröder HC, Di Bella G, Janipour N, Bonaventura R, Russo R, Müller WEG, Matranga V. DNA damage and developmental defects after exposure to UV and heavy metals in sea urchin cells and embryos compared to other invertebrates. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 39:111-37. [PMID: 17152696 DOI: 10.1007/3-540-27683-1_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The depletion of the stratospheric ozone layer and the resulting increase in hazardous ultraviolet-B (UV-B) radiation reaching the Earth are of major concern not only for terrestrial but also for aquatic organisms. UV-B is able to penetrate clear water to ecologically significant depths. This chapter deals with the effects of UV radiation on DNA integrity in marine benthic organisms, in particular sea urchins in comparison to other marine invertebrates (sponges and corals). These animals cannot escape the damaging effects of UV-B radiation and may be additionally exposed to pollution from natural or anthropogenic sources. Besides eggs and larvae that lack a protective epidermal layer and are particularly prone to the damaging effects of UV radiation, coelomocytes from the sea urchin Paracentrotus lividus were used as a "cellular sensor" to analyse the effects on DNA caused by UV-B, heavy metals (cadmium), and their combined actions. From our data we conclude that sea urchin coelomocytes as well as cells from other marine invertebrates are useful bioindicators of UV-B and heavy metal stress, responding to these stressors with different extents of DNA damage.
Collapse
Affiliation(s)
- H C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Duesbergweg 6, 55099 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Gunasekera TS, Sundin GW. Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a. J Appl Microbiol 2006; 100:1073-83. [PMID: 16630008 DOI: 10.1111/j.1365-2672.2006.02841.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To assess the role of DNA repair and photoreactivation in the solar radiation survival of the plant pathogen and leaf surface epiphyte Pseudomonas syringae pv. syringae (Pss). METHODS AND RESULTS Mutants of Pss B728a, with insertional mutations within the nucleotide excision repair gene uvrA, photolyase gene phr, or uvrA phr double mutants, were constructed to examine the importance of individual repair mechanisms in solar UV radiation (UVR) survival. The survival of either the uvrA mutant or the phr mutant was reduced by approx. 10(2)-fold following exposure to a dose of 4.5 kJ m(-2) solar UVB (290-320 nm wavelengths) while the uvrA phr double mutant was reduced >10(6)-fold by the same dose. We constructed a transcriptional fusion between the Pss recA promoter and gfp to examine the induction of the SOS response in wild-type and mutant strains. Initiation of the recA mediated SOS response was more rapid and peaked at higher levels in mutant strains suggesting both increased DNA damage in mutant strains and also that photoreactivation and nucleotide excision repair remove DNA damage as it is incurred which is reflected in a delay of recA expression. Visualization of expression of B728a cells containing the recA::gfp reporter on UVB-irradiated bean leaves highlighted the movement of cells to intercellular spaces over time and that SOS induction was detectable when leaves were irradiated 48 h following leaf inoculation. CONCLUSIONS This study indicated that solar UVB is detrimental to Pss B728a, DNA repair mechanisms play an important role in strain survival and expression of the SOS regulon on leaf surfaces contributes to survival of UVR-exposed cells during plant colonization. SIGNIFICANCE AND IMPACT OF THE STUDY This work links previous laboratory-based UVR analyses with solar UVB dose-response analyses and highlights the role of photoreactivation in delaying induction of the SOS response following solar irradiation. Knowledge of population dynamics following direct solar irradiation will enhance our understanding of the biology of Pss in the phyllosphere.
Collapse
Affiliation(s)
- T S Gunasekera
- Center for Microbial Ecology and Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
16
|
Qiu X, Sundin GW, Chai B, Tiedje JM. Survival of Shewanella oneidensis MR-1 after UV radiation exposure. Appl Environ Microbiol 2005; 70:6435-43. [PMID: 15528503 PMCID: PMC525172 DOI: 10.1128/aem.70.11.6435-6443.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We systematically investigated the physiological response as well as DNA damage repair and damage tolerance in Shewanella oneidensis MR-1 following UVC, UVB, UVA, and solar light exposure. MR-1 showed the highest UVC sensitivity among Shewanella strains examined, with D37 and D10 values of 5.6 and 16.5% of Escherichia coli K-12 values. Stationary cells did not show an increased UVA resistance compared to exponential-phase cells; instead, they were more sensitive at high UVA dose. UVA-irradiated MR-1 survived better on tryptic soy agar than Luria-Bertani plates regardless of the growth stage. A 20% survival rate of MR-1 was observed following doses of 3.3 J of UVC m(-2), 568 J of UVB m(-2), 25 kJ of UVA m(-2), and 558 J of solar UVB m(-2), respectively. Photoreactivation conferred an increased survival rate to MR-1 of as much as 177- to 365-fold, 11- to 23-fold, and 3- to 10-fold following UVC, UVB, and solar light irradiation, respectively. A significant UV mutability to rifampin resistance was detected in both UVC- and UVB-treated samples, with the mutation frequency in the range of 10(-5) to 10(-6). Unlike in E. coli, the expression levels of the nucleotide excision repair (NER) component genes uvrA, uvrB, and uvrD were not damage inducible in MR-1. Complementation of Pseudomonas aeruginosa UA11079 (uvrA deficient) with uvrA of MR-1 increased the UVC survival of this strain by more than 3 orders of magnitude. Loss of damage inducibility of the NER system appears to contribute to the high sensitivity of this bacterium to UVR as well as to other DNA-damaging agents.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
17
|
Jacobs JL, Carroll TL, Sundin GW. The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. MICROBIAL ECOLOGY 2005; 49:104-13. [PMID: 15883865 DOI: 10.1007/s00248-003-1061-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 11/19/2003] [Indexed: 05/02/2023]
Abstract
Phenotypic mechanisms that enhance bacterial UVR survival typically include pigmentation and DNA repair mechanisms which provide protection from UVA and UVB wavelengths, respectively. In this study, we examined the contribution of pigmentation to field survival in Clavibacter michiganensis and evaluated differences in population dynamics and leaf colonization strategies. Two C. michiganensis pigment-deficient mutants were significantly reduced in UVA radiation survival in vitro; one of these mutants also exhibited reduced field populations on peanut when compared to the wild-type strain over the course of replicate 25-day experiments. The UVR-tolerant C. michiganensis strains G7.1 and G11.1 maintained larger epiphytic field populations on peanut compared to the UVR-sensitive C. michiganensis T5.1. Epiphytic field populations of C. michiganensis utilized the strategy of solar UVR avoidance during leaf colonization resulting in increased strain survival on leaves after UVC irradiation. These results further demonstrate the importance of UVR tolerance in the ability of bacterial strains to maintain population size in the phyllosphere. However, an examination of several bacterial species from the peanut phyllosphere and a collection of environmental Pseudomonas spp. revealed that sensitivity to UVA and UVC radiation was correlated in some but not all of these bacteria. These results underscore a need to further understand the biological effects of different solar wavelength groups on microbial ecology.
Collapse
Affiliation(s)
- J L Jacobs
- Department of Plant Pathology and Microbiology, Texas A & M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
18
|
Zhang S, Sundin GW. Long-term effect of mutagenic DNA repair on accumulation of mutations in Pseudomonas syringae B86-17. J Bacteriol 2004; 186:7807-10. [PMID: 15516596 PMCID: PMC524919 DOI: 10.1128/jb.186.22.7807-7810.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 08/12/2004] [Indexed: 11/20/2022] Open
Abstract
Forty replicate lineages of Pseudomonas syringae B86-17 cells expressing the rulAB mutagenic DNA repair (MDR) determinant or the rulB::Km MDR-deficient mutant GWS242 were passaged through single-cell bottlenecks (60 cycles), with a UV radiation (UVR) exposure given to half of the lineages at the beginning of each cycle. After every 10th bottleneck cycle, single-colony isolates from all 80 lineages were subjected to 39 phenotypic screens, with newly arising mutations detected in 60 and 0% of UVR-exposed or non-UVR-exposed B86-17 lineages, respectively, by the 60th cycle. Cellular fitness, measured as growth rate in a minimal medium, of UVR-exposed lineages of both B86-17 and GWS242 after 60 cycles was not significantly different from that of the ancestral strains. Although UVR exposure and MDR activity increased the occurrence of mutations in cells, a significant reduction in overall fitness was not observed.
Collapse
Affiliation(s)
- Shouan Zhang
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Peoria, Illinois, USA
| | | |
Collapse
|
19
|
Schröder HC, Krasko A, Gundacker D, Leys SP, Müller IM, Müller WEG. Molecular and functional analysis of the (6-4) photolyase from the hexactinellid Aphrocallistes vastus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1651:41-9. [PMID: 14499587 DOI: 10.1016/s1570-9639(03)00233-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hexactinellid sponges (phylum Porifera) represent the phylogenetically oldest metazoans that evolved 570-750 million years ago. At this period exposure to ultraviolet (UV) light exceeded that of today and it may be assumed that this old taxon has developed a specific protection system against UV-caused DNA damage. A cDNA was isolated from the hexactinellid Aphrocallistes vastus which comprises high sequence similarity to genes encoding the protostomian and deuterostomian (6-4) photolyases. Subsequently functional studies were performed. It could be shown that the sponge gene, after transfection into mutated Escherichia coli, causes resistance of the bacteria against UV light. Recombinant sponge photolyase was prepared to demonstrate that this protein binds to DNA treated with UV light (causing the formation of thymine dimers). Finally, it is shown that the photolyase gene is strongly expressed in the upper part of the animals and not in their middle part or their base. It is concluded that sponges not only have an excision DNA repair system, as has been described earlier by us, but also a photolyase-based photo-reactivating system.
Collapse
Affiliation(s)
- Heinz C Schröder
- Abteilung Angewandte Molekularbiologie, Universität Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
21
|
Affiliation(s)
- Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
22
|
Abstract
Aerial plant surfaces harbor large numbers of microbes, some of which are deleterious to plants whereas others are benign or beneficial. Commercial formulations of bacteria antagonistic to plant pathogenic microbes and ice nucleation active bacteria have been utilized as an environmentally safe method to manage plant disease and to prevent frost damage. Molecular genetic tools, microscopic examination and whole-cell bacterial biosensors have provided extensive information on these microbes, their complex associations and their habitat. The aerial habitat influenced by plants, termed the phyllosphere, is particularly amenable to studies of microbial ecology and the information gained should lead to more effective means of plant protection.
Collapse
Affiliation(s)
- Steven E Lindow
- University of California, Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, California 94720, USA
| | | |
Collapse
|
23
|
Jacobs JL, Sundin GW. Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl Environ Microbiol 2001; 67:5488-96. [PMID: 11722897 PMCID: PMC93334 DOI: 10.1128/aem.67.12.5488-5496.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of solar UV-B radiation on the population dynamics and composition of the culturable bacterial community from peanut (Arachis hypogeae L.) was examined in field studies using plants grown under UV-B-transmitting (UV-B+) or UV-B-excluding (UV-B-) plastic filters. Our data demonstrate that solar UV-B selection alters phyllosphere bacterial community composition and that UV tolerance is a prevalent phenotype late in the season. The total bacterial population size was not affected by either UV-B treatment. However, isolates from the UV-B+ plots (n = 368) were significantly more UV tolerant than those from the UV-B- (n = 363) plots. UV sensitivity was determined as the minimal inhibitory dose of UV that resulted in an inhibition of growth compared to the growth of a nonirradiated control. The difference in minimal inhibitory doses among bacterial isolates from UV-B+ and UV-B- treatments was mainly partitioned among nonpigmented isolates, with pigmented isolates as a group being characterized as UV tolerant. A large increase in UV tolerance was observed within isolate groups collected late (89 and 96 days after planting) in the season. Identification of 200 late-season isolates indicated that the predominant UV-tolerant members of this group were Bacillus coagulans, Clavibacter michiganensis, and Curtobacterium flaccumfaciens. We selected C. michiganensis as a model UV-tolerant epiphyte to study if cell survival on UV-irradiated peanut leaves was increased relative to UV survival in vitro. The results showed an enhancement in the survival of C. michiganensis G7.1, especially following high UV-C doses (300 and 375 J m(-2)), that was evident between 24 and 96 h after inoculation. A dramatic increase in the in planta/in vitro survival ratio was observed over the entire 96-h experiment period for C. michiganensis T5.1.
Collapse
Affiliation(s)
- J L Jacobs
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, USA
| | | |
Collapse
|