1
|
Wang M, Wei ZW, Ryan KS. A heme-dependent enzyme forms the hydrazine in the antibiotic negamycin. Nat Chem Biol 2025:10.1038/s41589-025-01898-0. [PMID: 40312596 DOI: 10.1038/s41589-025-01898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 03/11/2025] [Indexed: 05/03/2025]
Abstract
Negamycin, a hydrazine-containing dipeptide-like antibiotic, was first isolated in 1970 from three strains of Streptomyces purpeofuscus. Its pronounced antibacterial properties render it an appealing candidate for combating multi-drug-resistant Gram-negative bacteria. Additionally, the unique readthrough-promoting activity makes it a subject for research as a potential therapeutic agent for Duchenne muscular dystrophy and other hereditary diseases. Here we use the unusual (R)-β-lysine found in negamycin as a guide to identify the biosynthetic pathway of negamycin and then carry out gene deletion and chemical complementation, stable isotope feeding and enzyme assays to elucidate the key precursors for negamycin assembly. Our work identified NegB as a lysine-2,3-aminomutase that converts lysine into (R)-β-lysine and NegJ as a heme-dependent, N-N bond-forming enzyme. We show that NegJ, together with a ferredoxin encoded outside of the negamycin gene cluster, directly forms hydrazinoacetic acid from glycine and nitrite. NegJ is a novel biocatalyst for N-N bond formation, and our work highlights its potential for genome mining of N-N bond-containing natural products.
Collapse
Affiliation(s)
- Menghua Wang
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zi-Wang Wei
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Giovannercole F, Gafeira Gonçalves L, Armengaud J, Varela Coelho A, Khomutov A, De Biase D. Integrated multi-omics unveil the impact of H-phosphinic analogs of glutamate and α-ketoglutarate on Escherichia coli metabolism. J Biol Chem 2024; 300:107803. [PMID: 39307306 PMCID: PMC11533085 DOI: 10.1016/j.jbc.2024.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
Desmethylphosphinothricin (L-Glu-γ-PH) is the H-phosphinic analog of glutamate with carbon-phosphorus-hydrogen (C-P-H) bonds. In L-Glu-γ-PH the phosphinic group acts as a bioisostere of the glutamate γ-carboxyl group allowing the molecule to be a substrate of Escherichia coli glutamate decarboxylase, a pyridoxal 5'-phosphate-dependent α-decarboxylase. In addition, the L-Glu-γ-PH decarboxylation product, GABA-PH, is further metabolized by bacterial GABA-transaminase, another pyridoxal 5'-phosphate-dependent enzyme, and succinic semialdehyde dehydrogenase, a NADP+-dependent enzyme. The product of these consecutive reactions, the so-called GABA shunt, is succinate-PH, the H-phosphinic analog of succinate, a tricarboxylic acid cycle intermediate. Notably, L-Glu-γ-PH displays antibacterial activity in the same concentration range of well-established antibiotics in E. coli. The dipeptide L-Leu-Glu-γ-PH was shown to display an even higher efficacy, likely as a consequence of an improved penetration into the bacteria. Herein, to further understand the intracellular effects of L-Glu-γ-PH, 1H NMR-based metabolomics, and LC-MS-based shotgun proteomics were used. This study included also the keto-derivative of L-Glu-γ-PH, α-ketoglutarate-γ-PH (α-KG-γ-PH), which also exhibits antimicrobial activity. L-Glu-γ-PH and α-KG-γ-PH are found to similarly impact bacterial metabolism, although the overall effect of α-KG-γ-PH is more pervasive. Notably, α-KG-γ-PH is converted intracellularly into L-Glu-γ-PH, but the opposite was not found. In general, both molecules impact the pathways where aspartate, glutamate, and glutamine are used as precursors for the biosynthesis of related metabolites, activate the acid stress response, and deprive cells of nitrogen. This work highlights the multi-target drug potential of L-Glu-γ-PH and α-KG-γ-PH and paves the way for their exploitation as antimicrobials.
Collapse
Affiliation(s)
- Fabio Giovannercole
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Luís Gafeira Gonçalves
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Ceze, France
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alex Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| |
Collapse
|
3
|
Handel F, Kulik A, Mast Y. Investigation of the Autoregulator-Receptor System in the Pristinamycin Producer Streptomyces pristinaespiralis. Front Microbiol 2020; 11:580990. [PMID: 33101255 PMCID: PMC7554373 DOI: 10.3389/fmicb.2020.580990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Pristinamycin biosynthesis in Streptomyces pristinaespiralis is governed by a complex hierarchical signaling cascade involving seven different transcriptional regulators (SpbR, PapR1, PapR2, PapR3, PapR4, PapR5, and PapR6). The signaling cascade is triggered by γ-butyrolactone (GBL)-like effector molecules, whereby the chemical structure of the effector, as well as its biosynthetic origin is unknown so far. Three of the pristinamycin transcriptional regulators (SpbR, PapR3, and PapR5) belong to the type of γ-butyrolactone receptor (GBLR). GBLRs are known to either act as “real” GBLRs, which bind GBLs as ligands or as “pseudo” GBLRs binding antibiotics or intermediates thereof as effector molecules. In this study, we performed electromobility shift assays (EMSAs) with SpbR, PapR3, and PapR5, respectively, in the presence of potential ligand samples. Thereby we could show that all three GBLRs bind synthetic 1,4-butyrolactone but not pristinamycin as ligand, suggesting that SpbR, PapR3, and PapR5 act as “real” GBLRs in S. pristinaespiralis. Furthermore, we identified a cytochrome P450 monooxygenase encoding gene snbU as potential biosynthesis gene for the GBLR-interacting ligand. Inactivation of snbU resulted in an increased pristinamycin production, which indicated that SnbU has a regulatory influence on pristinamycin production. EMSAs with culture extract samples from the snbU mutant did not influence the target binding ability of SpbR, PapR3, and PapR5 anymore, in contrast to culture supernatant samples from the S. pristinaespiralis wild-type or the pristinamycin deficient mutant papR2::apra, which demonstrates that SnbU is involved in the synthesis of the GBLR-interacting ligand.
Collapse
Affiliation(s)
- Franziska Handel
- Department of Microbiology/Biotechnology, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andreas Kulik
- Department of Microbiology/Biotechnology, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Department Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
5
|
A Complex Signaling Cascade Governs Pristinamycin Biosynthesis in Streptomyces pristinaespiralis. Appl Environ Microbiol 2015; 81:6621-36. [PMID: 26187956 DOI: 10.1128/aem.00728-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023] Open
Abstract
Pristinamycin production in Streptomyces pristinaespiralis Pr11 is tightly regulated by an interplay between different repressors and activators. A γ-butyrolactone receptor gene (spbR), two TetR repressor genes (papR3 and papR5), three SARP (Streptomyces antibiotic regulatory protein) genes (papR1, papR2, and papR4), and a response regulator gene (papR6) are carried on the large 210-kb pristinamycin biosynthetic gene region of Streptomyces pristinaespiralis Pr11. A detailed investigation of all pristinamycin regulators revealed insight into a complex signaling cascade, which is responsible for the fine-tuned regulation of pristinamycin production in S. pristinaespiralis.
Collapse
|
6
|
Michta E, Schad K, Blin K, Ort-Winklbauer R, Röttig M, Kohlbacher O, Wohlleben W, Schinko E, Mast Y. The bifunctional role of aconitase in Streptomyces viridochromogenes Tü494. Environ Microbiol 2012; 14:3203-19. [PMID: 23116164 DOI: 10.1111/1462-2920.12006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/24/2012] [Indexed: 12/01/2022]
Abstract
In many organisms, aconitases have dual functions; they serve as enzymes in the tricarboxylic acid cycle and as regulators of iron metabolism. In this study we defined the role of the aconitase AcnA in Streptomyces viridochromogenes Tü494, the producer of the herbicide phosphinothricyl-alanyl-alanine, also known as phosphinothricin tripeptide or bialaphos. A mutant in which the aconitase gene acnA was disrupted showed severe defects in morphology and physiology, as it was unable to form any aerial mycelium, spores nor phosphinothricin tripeptide. AcnA belongs to the iron regulatory proteins (IRPs). In addition to its catalytic function, AcnA plays a regulatory role by binding to iron responsive elements (IREs) located on the untranslated region of certain mRNAs. A mutation preventing the formation of the [4Fe-4S] cluster of AcnA eliminated its catalytic activity, but did not inhibit RNA-binding ability. In silico analysis of the S. viridochromogenes genome revealed several IRE-like structures. One structure is located upstream of recA, which is involved in the bacterial SOS response, and another one was identified upstream of ftsZ, which is required for the onset of sporulation in streptomycetes. The functionality of different IRE structures was proven with gel shift assays and specific IRE consensus sequences were defined. Furthermore, RecA was shown to be upregulated on post-transcriptional level under oxidative stress conditions in the wild-type strain but not in the acnA mutant, suggesting a regulatory role of AcnA in oxidative stress response.
Collapse
Affiliation(s)
- Ewelina Michta
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT), Mikrobiologie/Biotechnologie, Fakultät für Biologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The P-C bonds in phosphonate and phosphinate natural products endow them with a high level of stability and the ability to mimic phosphate esters and carboxylates. As such, they have a diverse range of enzyme targets that act on substrates containing such functionalities. Recent years have seen a renewed interest in discovery efforts focused on this class of compounds as well as in understanding their biosynthetic pathways. This chapter focuses on current knowledge of these biosynthetic pathways as well as tools for phosphonate discovery.
Collapse
|
8
|
Identification and functional characterization of phenylglycine biosynthetic genes involved in pristinamycin biosynthesis in Streptomyces pristinaespiralis. J Biotechnol 2010; 155:63-7. [PMID: 21146568 DOI: 10.1016/j.jbiotec.2010.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/03/2010] [Accepted: 12/01/2010] [Indexed: 11/24/2022]
Abstract
Pristinamycin I (PI), a streptogramin type B antibiotic produced by Streptomyces pristinaespiralis, contains the aproteinogenic amino acid L-phenylglycine. Recent sequence analysis led to the identification of a set of putative phenylglycine biosynthetic genes. Successive inactivation of the individual genes resulted in a loss of PI production. Production was restored by supplementation with externally added L-phenylglycine, which demonstrates that these genes are involved in phenylglycine biosynthesis and thus probably disclosing the last essential pristinamycin biosynthetic genes. Finally, a putative pathway for phenylglycine synthesis is proposed.
Collapse
|
9
|
Schinko E, Schad K, Eys S, Keller U, Wohlleben W. Phosphinothricin-tripeptide biosynthesis: an original version of bacterial secondary metabolism? PHYTOCHEMISTRY 2009; 70:1787-1800. [PMID: 19878959 DOI: 10.1016/j.phytochem.2009.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
Streptomyces viridochromogenes Tü494 produces the herbicide phosphinothricyl-alanyl-alanine (phosphinothricin-tripeptide=PTT; bialaphos). Its bioactive moiety phosphinothricin competitively inhibits bacterial and plant glutamine synthetases. The biosynthesis of PTT includes the synthesis of the unusual amino acid N-acetyl-demethyl-phosphinothricin and a three step condensation via non-ribosomal peptide synthetases. Two characteristics within the PTT biosynthesis make it suitable to study the evolution of secondary metabolism biosynthesis. First, PTT biosynthesis represents the only known system where all peptide synthetase modules are located on separate proteins. This 'single enzyme system' might be an archetype of the multimodular and multienzymatic non-ribosomal peptide synthetases in evolutionary terms. The second interesting feature of PTT biosynthesis is the pathway-specific aconitase Pmi that is involved in the supply of N-acetyl-demethyl-phosphinothricin. Pmi is highly similar to the tricarboxylic acid aconitase AcnA. They share 64% identity at the DNA level and both belong to the Iron-Regulatory-Protein/AcnA family. Despite their high sequence similarity, AcnA and Pmi catalyze different reactions and are not able to substitute for each other. Thus, the enzyme pair AcnA/Pmi presents an example of the evolution of a secondary metabolite-specific enzyme from a primary metabolism enzyme.
Collapse
Affiliation(s)
- Eva Schinko
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
10
|
Analysis of RegA, a pathway-specific regulator of the friulimicin biosynthesis in Actinoplanes friuliensis. J Biotechnol 2008; 140:99-106. [PMID: 19159651 DOI: 10.1016/j.jbiotec.2008.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 12/09/2008] [Accepted: 12/15/2008] [Indexed: 11/22/2022]
Abstract
The rare actinomycete Actinoplanes friuliensis is the producer of the lipopeptide antibiotic friulimicin, which is active against a broad range of Gram-positive bacteria such as methicillin-resistant Enterococcus spec. and Staphylococcus aureus (MRE, MRSA) strains. Friulimicin consists of a decapeptide core and an acyl residue linked to an exocyclic amino acid. The complete biosynthetic gene cluster consisting of 24 open reading frames was characterized by sequence analysis and the transcription units were subsequently determined by RT-PCR experiments. In addition to several genes for biosynthesis, self-resistance and transport four different regulatory genes (regA, regB, regC and regD) were identified within the cluster. To analyse the role of the pathway-specific regulatory protein RegA in the friulimicin biosynthesis, the corresponding gene was inactivated resulting in friulimicin non-producing mutants. Furthermore, several protein-binding sites within the friulimicin gene cluster were identified by gel retardation assays. By real-time RT-PCR experiments, it was shown that the majority of the friulimicin biosynthetic genes is positively regulated by RegA.
Collapse
|
11
|
Eys S, Schwartz D, Wohlleben W, Schinko E. Three thioesterases are involved in the biosynthesis of phosphinothricin tripeptide in Streptomyces viridochromogenes Tü494. Antimicrob Agents Chemother 2008; 52:1686-96. [PMID: 18285472 PMCID: PMC2346660 DOI: 10.1128/aac.01053-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/12/2007] [Accepted: 02/13/2008] [Indexed: 11/20/2022] Open
Abstract
Phosphinothricin tripeptide (PTT) is a peptide antibiotic produced by Streptomyces viridochromogenes Tü494, and it is synthesized by nonribosomal peptide synthetases. The PTT biosynthetic gene cluster contains three peptide synthetase genes: phsA, phsB, and phsC. Each of these peptide synthetases comprises only one module. In neither PhsB nor PhsC is a typical C-terminal thioesterase domain present. In contrast, a single thioesterase GXSXG motif has been identified in the N terminus of the first peptide synthetase, PhsA. In addition, two external thioesterase genes, theA and theB, are located within the PTT biosynthetic gene cluster. To analyze the thioesterase function as well as the assembly of the peptide synthetases within PTT biosynthesis, several mutants were generated and analyzed. A phsA deletion mutant (MphsA) was complemented with two different phsA constructs that were carrying mutations in the thioesterase motif. In one construct, the thioesterase motif comprising 45 amino acids of phsA were deleted. In the second construct, the conserved serine residue of the GXSXG motif was replaced by an alanine. In both cases, the complementation of MphsA did not restore PTT biosynthesis, revealing that the thioesterase motif in the N terminus of PhsA is required for PTT production. In contrast, TheA and TheB might have editing functions, as an interruption of the theA and theB genes led to reduced PTT production, whereas an overexpression of both genes in the wild type enhanced the PTT yield. The presence of an active single thioesterase motif in the N terminus of PhsA points to a novel mechanism of product release.
Collapse
Affiliation(s)
- S Eys
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
12
|
Müller C, Nolden S, Gebhardt P, Heinzelmann E, Lange C, Puk O, Welzel K, Wohlleben W, Schwartz D. Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic Friulimicin in Actinoplanes friuliensis. Antimicrob Agents Chemother 2007; 51:1028-37. [PMID: 17220414 PMCID: PMC1803135 DOI: 10.1128/aac.00942-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinoplanes friuliensis produces the lipopeptide antibiotic friulimicin, which is a cyclic peptide with one exocyclic amino acid linked to a branched-chain fatty acid acyl residue. The structural relationship to daptomycin and the excellent antibacterial performance of friulimicin make the antibiotic an attractive drug candidate. The complete friulimicin biosynthetic gene cluster of 24 open reading frames from A. friuliensis was sequenced and analyzed. In addition to genes for regulation, self-resistance, and transport, the cluster contains genes encoding peptide synthetases, proteins involved in the synthesis and linkage of the fatty acid component of the antibiotic, and proteins involved in the synthesis of the nonproteinogenic amino acids pipecolinic acid, methylaspartic acid, and 2,3-diaminobutyric acid. By using heterologous gene expression in Escherichia coli, we provide biochemical evidence for the stereoselective synthesis of L-pipecolinic acid by the deduced protein of the lysine cyclodeaminase gene pip. Furthermore, we show the involvement of the dabA and dabB genes in the biosynthesis of 2,3-diaminobutyric acid by gene inactivation and subsequent feeding experiments.
Collapse
Affiliation(s)
- C Müller
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.ZV., Hans-Knöll-Institut, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schwartz D, Grammel N, Heinzelmann E, Keller U, Wohlleben W. Phosphinothricin tripeptide synthetases in Streptomyces viridochromogenes Tü494. Antimicrob Agents Chemother 2006; 49:4598-607. [PMID: 16251301 PMCID: PMC1280124 DOI: 10.1128/aac.49.11.4598-4607.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tripeptide backbone of phosphinothricin (PT) tripeptide (PTT), a compound with herbicidal activity from Streptomyces viridochromogenes, is assembled by three stand-alone peptide synthetase modules. The enzyme PhsA (66 kDa) recruits the PT-precursor N-acetyl-demethylphosphinothricin (N-Ac-DMPT), whereas the two alanine residues of PTT are assembled by the enzymes PhsB and PhsC (129 and 119 kDa, respectively). During or after assembly, the N-Ac-DMPT residue in the peptide is converted to PT by methylation and deacetylation. Both phsB and phsC appear to be cotranscribed together with two other genes from a single promoter and they are located at a distance of 20 kb from the gene phsA, encoding PhsA, in the PTT biosynthesis gene cluster of S. viridochromogenes. PhsB and PhsC represent single nonribosomal peptide synthetase elongation modules lacking a thioesterase domain. Gene inactivations, genetic complementations, determinations of substrate specificity of the heterologously produced proteins, and comparison of PhsC sequence with the amino terminus of the alanine-activating nonribosomal peptide synthetase PTTSII from S. viridochromogenes confirmed the role of the two genes in the bialanylation of Ac-DMPT. The lack of an integral thioesterase domain in the PTT assembly system points to product release possibly involving two type II thioesterase genes (the1 and the2) located in the PTT gene cluster alone or in conjunction with an as yet unknown mechanism of product release.
Collapse
Affiliation(s)
- Dirk Schwartz
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
14
|
Heinzelmann E, Berger S, Müller C, Härtner T, Poralla K, Wohlleben W, Schwartz D. An acyl-CoA dehydrogenase is involved in the formation of the Δcis3 double bond in the acyl residue of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. Microbiology (Reading) 2005; 151:1963-1974. [PMID: 15942003 DOI: 10.1099/mic.0.27844-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lipopeptide antibiotic friulimicin, produced by Actinoplanes friuliensis, is an effective drug against Gram-positive bacteria, such as methicillin-resistant Staphylococcus epidermidis and Staphylococcus aureus strains. Friulimicin consists of a cyclic peptide core of ten amino acids and an acyl residue linked to an exocyclic amino acid. The acyl residue is essential for antibiotic activity, varies in length from C13 to C15, and carries a characteristic double bond at position Δcis3. Sequencing of a DNA fragment adjacent to a previously described fragment encoding some of the friulimicin biosynthetic genes revealed several genes whose gene products resemble enzymes of lipid metabolism. One of these genes, lipB, encodes an acyl-CoA dehydrogenase homologue. To elucidate the function of the LipB protein, a lipB insertion mutant was generated and the friulimicin derivative (FR242) produced by the mutant was purified. FR242 had antibiotic activity lower than friulimicin in a bioassay. Gas chromatography showed that the acyl residue of wild-type friulimicin contains a double bond, whereas a saturated bond was present in FR242. These results were confirmed by the heterologous expression of lipB in Streptomyces lividans T7, which led to the production of unsaturated fatty acids not found in the S. lividans T7 parent strain. These results indicate that the acyl-CoA dehydrogenase LipB is involved in the introduction of the unusual Δcis3 double bond into the acyl residue of friulimicin.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase/metabolism
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/isolation & purification
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Antimicrobial Cationic Peptides
- Bacterial Proteins/genetics
- Chromatography, Gas
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Drug Resistance, Bacterial
- Fatty Acids, Unsaturated/analysis
- Fatty Acids, Unsaturated/isolation & purification
- Gene Deletion
- Gene Order
- Genes, Bacterial
- Micromonosporaceae/enzymology
- Molecular Sequence Data
- Molecular Structure
- Mutagenesis, Insertional
- Peptides/chemistry
- Peptides/isolation & purification
- Peptides/metabolism
- Peptides/pharmacology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Streptomyces lividans/genetics
- Streptomyces lividans/metabolism
Collapse
Affiliation(s)
- Eva Heinzelmann
- Fakultät Biologie, Mikrobiologisches Institut, Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Susanne Berger
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie-Hans-Knöll-Institut, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Claudia Müller
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie-Hans-Knöll-Institut, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Thomas Härtner
- Fakultät Biologie, Mikrobiologisches Institut, Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Karl Poralla
- Fakultät Biologie, Mikrobiologisches Institut, Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Fakultät Biologie, Mikrobiologisches Institut, Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Dirk Schwartz
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie-Hans-Knöll-Institut, Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
15
|
Luft T, Li SM, Scheible H, Kammerer B, Heide L. Overexpression, purification and characterization of SimL, an amide synthetase involved in simocyclinone biosynthesis. Arch Microbiol 2005; 183:277-85. [PMID: 15812631 DOI: 10.1007/s00203-005-0770-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/22/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
Simocyclinone D8 is a potent inhibitor of bacterial gyrase, produced by Streptomyces antibioticus Tu 6040. It contains an aminocoumarin moiety, similar to that of novobiocin, which is linked by an amide bond to a structurally complex acyl moiety, consisting of an aromatic angucycline polyketide nucleus, the deoxysugar olivose and a tetraene dicarboxylic acid. We have now investigated the enzyme SimL, responsible for the formation of the amide bond of simocyclinone. The gene was cloned, expressed in S. lividans T7, and the protein was purified to near homogeneity, and characterized. The 60 kDa protein catalyzed both the ATP-dependent activation of the acyl component as well as its transfer to the amino group of the aminocoumarin ring, with no requirement for a 4'-phosphopantetheinyl cofactor. Besides its natural substrate, simocyclinone C4, SimL also accepted a range of cinnamic and benzoic acid derivatives and several other, structurally very diverse acids. These findings make SimL a possible tool for the creation of new aminocoumarin antibiotics.
Collapse
Affiliation(s)
- Thomas Luft
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
16
|
Blodgett JAV, Zhang JK, Metcalf WW. Molecular cloning, sequence analysis, and heterologous expression of the phosphinothricin tripeptide biosynthetic gene cluster from Streptomyces viridochromogenes DSM 40736. Antimicrob Agents Chemother 2005; 49:230-40. [PMID: 15616300 PMCID: PMC538901 DOI: 10.1128/aac.49.1.230-240.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fosmid library from genomic DNA of Streptomyces viridochromogenes DSM 40736 was constructed and screened for the presence of genes known to be involved in the biosynthesis of phosphinothricin tripeptide (PTT). Eight positives were identified, one of which was able to confer PTT biosynthetic capability upon Streptomyces lividans after integration of the fosmid into the chromosome of this heterologous host. Sequence analysis of the 40,241-bp fosmid insert revealed 29 complete open reading frames (ORFs). Deletion analysis demonstrated that a minimum set of 24 ORFs were required for PTT production in the heterologous host. Sequence analysis revealed that most of these PTT genes have been previously identified in either S. viridochromogenes or S. hygroscopicus (or both), although only 11 out of 24 of these ORFs have experimentally defined functions. Three previously unknown genes within the cluster were identified and are likely to have roles in the stepwise production of phosphonoformate from phosphonoacetaldehyde. This is the first report detailing the entire PTT gene cluster from any producing streptomycete.
Collapse
Affiliation(s)
- Joshua A V Blodgett
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | | | |
Collapse
|
17
|
Schwartz D, Berger S, Heinzelmann E, Muschko K, Welzel K, Wohlleben W. Biosynthetic gene cluster of the herbicide phosphinothricin tripeptide from Streptomyces viridochromogenes Tü494. Appl Environ Microbiol 2004; 70:7093-102. [PMID: 15574905 PMCID: PMC535184 DOI: 10.1128/aem.70.12.7093-7102.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 08/14/2004] [Indexed: 11/20/2022] Open
Abstract
The antibiotic phosphinothricin tripeptide (PTT) consists of two molecules of L-alanine and one molecule of the unusual amino acid phosphinothricin (PT) which are nonribosomally combined. The bioactive compound PT has bactericidal, fungicidal, and herbicidal properties and possesses a C-P-C bond, which is very rare in natural compounds. Previously uncharacterized flanking and middle regions of the PTT biosynthetic gene cluster from Streptomyces viridochromogenes Tü494 were isolated and sequenced. The boundaries of the gene cluster were identified by gene inactivation studies. Sequence analysis and homology searches led to the completion of the gene cluster, which consists of 24 genes. Four of these were identified as undescribed genes coding for proteins that are probably involved in uncharacterized early steps of antibiotic biosynthesis or in providing precursors of PTT biosynthesis (phosphoenolpyruvate, acetyl-coenzyme A, or L-alanine). The involvement of the genes orfM and trs and of the regulatory gene prpA in PTT biosynthesis was analyzed by gene inactivation and overexpression, respectively. Insight into the regulation of PTT was gained by determining the transcriptional start sites of the pmi and prpA genes. A previously undescribed regulatory gene involved in morphological differentiation in streptomycetes was identified outside of the left boundary of the PTT biosynthetic gene cluster.
Collapse
Affiliation(s)
- Dirk Schwartz
- Hans-Knöll-Institut für Naturstoff-Forschung, Jena, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Xu H, Heide L, Li SM. New Aminocoumarin Antibiotics Formed by a Combined Mutational and Chemoenzymatic Approach Utilizing the Carbamoyltransferase NovN. ACTA ACUST UNITED AC 2004; 11:655-62. [PMID: 15157876 DOI: 10.1016/j.chembiol.2004.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 02/05/2004] [Accepted: 02/06/2004] [Indexed: 11/24/2022]
Abstract
Five new aminocoumarin antibiotics were produced by a combined mutational and chemoenzymatic approach. For this purpose, the 3"-carbamoyltransferase NovN from the novobiocin producer Streptomyces spheroides was overexpressed in the heterologous host S. lividans as an N-terminal His(6) fusion protein and purified by nickel affinity chromatography. Five different 3"-unsubstituted aminocoumarin derivatives were isolated from mutants of the clorobiocin producer S. roseochromogenes, carrying single or multiple gene defects. All five compounds were readily accepted as substrates by NovN, and the 3"-carbamoylated products were isolated on a preparative scale. Their structures were elucidated by (1)H-NMR and mass spectroscopy, and their inhibitory activity on gyrase in vitro as well as their antibacterial activity was determined. The results give further insight into the structure-activity relationships of aminocoumarin antibiotics.
Collapse
Affiliation(s)
- Hui Xu
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | | | | |
Collapse
|
19
|
Schmutz E, Hennig S, Li SM, Heide L. Identification of a topoisomerase IV in actinobacteria: purification and characterization of ParYR and GyrBR from the coumermycin A1 producer Streptomyces rishiriensis DSM 40489. Microbiology (Reading) 2004; 150:641-647. [PMID: 14993313 DOI: 10.1099/mic.0.26867-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The biosynthetic gene clusters of the gyrase inhibitors coumermycin A(1) and clorobiocin contain two different resistance genes (gyrB(R) and parY(R)). Both genes code for B subunits of type II topoisomerases. The authors have now overexpressed and purified the encoded proteins, as well as the corresponding A subunits GyrA and ParX. Expression was carried out in Streptomyces lividans in the form of hexahistidine fusion proteins, allowing purification by nickel affinity chromatography. The complex of GyrA and GyrB(R) was found to catalyse ATP-dependent supercoiling of DNA, i.e. to function as a gyrase, whereas the complex of ParX and ParY(R) catalysed ATP-dependent decatenation and relaxation, i.e. the functions of topoisomerase IV (topo IV). This is believed to represent the first topo IV identified in the class of actinobacteria, and the first demonstration of the formation of a topo IV as a resistance mechanism of an antibiotic producer.
Collapse
Affiliation(s)
- Elisabeth Schmutz
- Eberhard-Karls-Universität Tübingen, Pharmazeutische Biologie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Susanne Hennig
- Eberhard-Karls-Universität Tübingen, Pharmazeutische Biologie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Shu-Ming Li
- Eberhard-Karls-Universität Tübingen, Pharmazeutische Biologie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Lutz Heide
- Eberhard-Karls-Universität Tübingen, Pharmazeutische Biologie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| |
Collapse
|
20
|
Heinzelmann E, Berger S, Puk O, Reichenstein B, Wohlleben W, Schwartz D. A glutamate mutase is involved in the biosynthesis of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. Antimicrob Agents Chemother 2003; 47:447-57. [PMID: 12543643 PMCID: PMC151761 DOI: 10.1128/aac.47.2.447-457.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinoplanes friuliensis produces the lipopeptide antibiotic friulimicin. This antibiotic is active against gram-positive bacteria such as multiresistant Enterococcus and Staphylococcus strains. It consists of 10 amino acids that form a ring structure and 1 exocyclic amino acid to which an acyl residue is attached. By a reverse genetic approach, biosynthetic genes were identified that are required for the nonribosomal synthesis of the antibiotic. In close proximity two genes (glmA and glmB) were found which are involved in the production of methylaspartate, one of the amino acids of the peptide core. Methylaspartate is synthesized by a glutamate mutase mechanism, which was up to now only described for glutamate fermentation in Clostridium sp. or members of the family ENTEROBACTERIACEAE: The active enzyme consists of two subunits, and the corresponding genes overlap each other. To demonstrate enzyme activity in a heterologous host, it was necessary to genetically fuse glmA and glmB. The resulting gene was overexpressed in Streptomyces lividans, and the fusion protein was purified in an active form. For gene disruption mutagenesis, a host-vector system was established which enables genetic manipulation of Actinoplanes spp. for the first time. Thus, targeted inactivation of biosynthetic genes was possible, and their involvement in friulimicin biosynthesis was demonstrated.
Collapse
Affiliation(s)
- E Heinzelmann
- Hans-Knöll-Institut für Naturstoff-Forschung, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|