1
|
Abe K. Biological and biochemical studies on cell surface functions in microorganisms used in brewing and fermentation industry. Biosci Biotechnol Biochem 2025; 89:649-667. [PMID: 39993924 DOI: 10.1093/bbb/zbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
When brewing microorganisms, which include bacteria and fungi, act on solid cereal substrates, the microbial cell surface interacts with the substrate. When microorganisms use sugars and amino acids released by hydrolysis of the substrate, this occurs on the cell surface. Throughout my career, I have focused on functional studies of cell surface molecules such as solute transporters, cell wall components, and bio-surfactants and applied the knowledge obtained to the development of fermentation technologies. In this review, I describe (i) catabolite control by sugar transporters and energy generation coupled with amino acid decarboxylation in lactic acid bacteria; (ii) recruitment of a polyesterase by the fungal bio-surfactant proteins to polyesters and subsequent promotion of polyester hydrolysis; and (iii) hyphal aggregation via cell wall α-1,3-glucan and galactosaminogalactan in aspergilli and the development of a novel liquid culture method with hyphal dispersed mutants lacking these two polysaccharides.
Collapse
Affiliation(s)
- Keietsu Abe
- Laboratory of Fermentation Microbiology, Department of Agrochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Wang X, Li J, Ji X, Wang D, Kong Z, Dai X, Chen J, Zhang D. The sensor protein VdSLN1 is involved in regulating melanin biosynthesis and pathogenicity via MAPK pathway in Verticillium dahliae. Fungal Genet Biol 2025; 176:103960. [PMID: 39788483 DOI: 10.1016/j.fgb.2025.103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
The vascular wilt fungus Verticillium dahliae is a destructive soil-borne pathogen that causes yield loss on various economically important crops. Membrane-spanning sensor protein SLN1 have been demonstrated to contribute to virulence in varying degrees among numerous devastating fungal pathogens. However, the biological function of SLN1 in V. dahliae remains unclear. In this study, we identified the membrane-spanning sensor protein encoding gene VdSLN1 and it interacts physically with Vst50 and regulates the expression of MAPK module Vst50-Vst11-Vst7. The expression of VdSLN1 was also positively regulated by the MAPK signaling pathways transmembrane-associated members VdSho1 and VdMsb2, suggesting that the expression of VdSLN1 is associated with VdSho1 and VdMsb2. In addition, we found that VdSLN1, similar to VdSho1 and VdMsb2, is not required for V. dahliae vegetative growth and response to various abiotic stresses. While, ΔVdSLN1 mutant exhibited slightly reduced ability to penetrate a cellophane membrane and melanin synthesis compared with the wild type strain. Further experiments indicate that VdSLN1, VdSho1 and VdMsb2 has an additive effect on the virulence, cellophane penetration and melanin biosynthesis and of V. dahliae. In short, VdSLN1, though not essential, plays a role in cellophane penetration, melanin biosynthesis, also contributes to the virulence, as the downstream factor of VdSho1 and VdMsb2.
Collapse
Affiliation(s)
- XiaYu Wang
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - JunJiao Li
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - XiaoBin Ji
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Wang
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - ZhiQiang Kong
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - XiaoFeng Dai
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - JieYin Chen
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - DanDan Zhang
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
3
|
Huang Z, Wu D, Yang S, Fu W, Ma D, Yao Y, Lin H, Yuan J, Yang Y, Zhuang Z. Regulation of Fungal Morphogenesis and Pathogenicity of Aspergillus flavus by Hexokinase AfHxk1 through Its Domain Hexokinase_2. J Fungi (Basel) 2023; 9:1077. [PMID: 37998882 PMCID: PMC10671980 DOI: 10.3390/jof9111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
As a filamentous pathogenic fungus with high-yield of aflatoxin B1, Aspergillus flavus is commonly found in various agricultural products. It is crucial to develop effective strategies aimed at the prevention of the contamination of A. flavus and aflatoxin. Hexokinase AfHxk1 is a critical enzyme in fungal glucose metabolism. However, the role of AfHxk1 in A. flavus development, aflatoxin biosynthesis, and virulence has not yet been explored. In this study, afHxk1 gene deletion mutant (ΔafHxk1), complementary strain (Com-afHxk1), and the domain deletion strains (afHxk1ΔD1 and afHxk1ΔD2) were constructed by homologous recombination. Phenotype study and RT-qPCR revealed that AfHxk1 upregulates mycelium growth and spore and sclerotia formation, but downregulates AFB1 biosynthesis through related classical signaling pathways. Invading models and environmental stress analysis revealed that through involvement in carbon source utilization, conidia germination, and the sensitivity response of A. flavus to a series of environmental stresses, AfHxk1 deeply participates in the regulation of pathogenicity of A. flavus to crop kernels and Galleria mellonella larvae. The construction of domain deletion strains, afHxk1ΔD1 and afHxk1ΔD2, further revealed that AfHxk1 regulates the morphogenesis, mycotoxin biosynthesis, and the fungal pathogenicity mainly through its domain, Hexokinase_2. The results of this study revealed the biological role of AfHxk1 in Aspergillus spp., and might provide a novel potential target for the early control of the contamination of A. flavus.
Collapse
Affiliation(s)
- Zongting Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Sile Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dongmei Ma
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Yanling Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| |
Collapse
|
4
|
Kanamaru K, Izuhara K, Kimura M, Kobayashi T. Generation of mitochondrial reactive oxygen species through a histidine kinase, HysA in Aspergillus nidulans. J GEN APPL MICROBIOL 2022; 68:17-23. [PMID: 35387910 DOI: 10.2323/jgam.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kyoko Kanamaru
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Science, Nagoya University.,present address: Graduate School of Bioscience and Biotechnology, Chubu University
| | - Kiyoshiro Izuhara
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Science, Nagoya University
| | - Makoto Kimura
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Science, Nagoya University
| | - Tetsuo Kobayashi
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Science, Nagoya University
| |
Collapse
|
5
|
MaSln1, a Conserved Histidine Protein Kinase, Contributes to Conidiation Pattern Shift Independent of the MAPK Pathway in Metarhizium acridum. Microbiol Spectr 2022; 10:e0205121. [PMID: 35343772 PMCID: PMC9045129 DOI: 10.1128/spectrum.02051-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a conserved sensor kinase in the HOG-MAPK pathway, Sln1 plays distinct functions in different fungi. In this study, the roles of MaSln1 in Metarhizium acridum were analyzed using gene knockout and rescue strategies. Deletion of MaSln1 did not affect conidial germination, conidial yield, or resistance to chemical agents. However, fungal tolerance to heat shock and UV-B were significantly reduced after deletion of MaSln1. Insect bioassays showed that fungal pathogenicity was significantly impaired when MaSln1 was deleted. Further studies showed that MaSln1 did not affect either germination or appressorium formation of M. acridum on locust wings, but it significantly increased appressorium turgor pressure. In addition, disruption of MaSln1 resulted in a conidiation pattern shift in M. acridum. Microscopic observation revealed, however, that some genes located in the MAPK signaling pathway, including MaSho1, MaHog1, MaMk1, and MaSlt2, were not involved in the conidiation pattern shift on SYA medium (microcycle medium). Meanwhile, of the 143 differently expressed genes (DEGs) identified by RNA-seq, no genes related to the MAPK pathway were found, suggesting that MaSln1 regulation of the conidiation pattern shift was probably independent of the conserved MAPK signaling pathway. It was found that 22 of the 98 known DEGs regulated by MaSln1 were involved in mycelial growth, cell division, and cytoskeleton formation, indicating that MaSln1 likely regulates the expression of genes related to cell division and morphogenesis, thus regulating the conidiation pattern shift in M. acridum. IMPORTANCE The productivity and quality of conidia are both crucial for mycopesticides. In this study, we systematically analyzed the roles of MaSln1 in fungal pathogens. Most importantly, our results revealed that deletion of MaSln1 resulted in a conidiation pattern shift in M. acridum. However, some other genes, located in the MAPK signaling pathway, were not involved in the conidiation pattern shift. RNA-seq revealed no genes related to the MAPK pathway, suggesting that the regulation of the conidiation pattern shift by MaSln1 was probably independent of the conserved MAPK signaling pathway. This study provided a new insight into the functions of Sln1 and laid a foundation for exploring the mechanisms of conidiation pattern shifts in M. acridum.
Collapse
|
6
|
Yoshimi A, Hagiwara D, Ono M, Fukuma Y, Midorikawa Y, Furukawa K, Fujioka T, Mizutani O, Sato N, Miyazawa K, Maruyama JI, Marui J, Yamagata Y, Nakajima T, Tanaka C, Abe K. Downregulation of the ypdA Gene Encoding an Intermediate of His-Asp Phosphorelay Signaling in Aspergillus nidulans Induces the Same Cellular Effects as the Phenylpyrrole Fungicide Fludioxonil. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:675459. [PMID: 37744139 PMCID: PMC10512292 DOI: 10.3389/ffunb.2021.675459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/26/2021] [Indexed: 09/26/2023]
Abstract
Many eukaryotic histidine-to-aspartate (His-Asp) phosphorelay systems consist of three types of signal transducers: a His-kinase (HK), a response regulator (RR), and a histidine-containing phosphotransfer intermediate (HPt). In general, the HPt acts as an intermediate between the HK and the RR and is indispensable for inducing appropriate responses to environmental stresses. In a previous study, we attempted but were unable to obtain deletion mutants of the ypdA gene in order to characterize its function in the filamentous fungus Aspergillus nidulans. In the present study, we constructed the CypdA strain in which ypdA expression is conditionally regulated by the A. nidulans alcA promoter. We constructed CypdA strains with RR gene disruptions (CypdA-sskAΔ, CypdA-srrAΔ, and CypdA-sskAΔsrrAΔ). Suppression of YpdA induced by ypdA downregulation activated the downstream HogA mitogen-activated protein kinase cascade. YpdA suppression caused severe growth defects and abnormal hyphae, with features such as enhanced septation, a decrease in number of nuclei, nuclear fragmentation, and hypertrophy of vacuoles, both regulated in an SskA-dependent manner. Fludioxonil treatment caused the same cellular responses as ypdA suppression. The growth-inhibitory effects of fludioxonil and the lethality caused by ypdA downregulation may be caused by the same or similar mechanisms and to be dependent on both the SskA and SrrA pathways.
Collapse
Affiliation(s)
- Akira Yoshimi
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Kyoto University, Kyoto, Japan
| | - Daisuke Hagiwara
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Miyako Ono
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yasuyuki Fukuma
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yura Midorikawa
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kentaro Furukawa
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Fujioka
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Osamu Mizutani
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Natsuko Sato
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ken Miyazawa
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Junichiro Marui
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Youhei Yamagata
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tasuku Nakajima
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Chihiro Tanaka
- Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keietsu Abe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Cai E, Sun S, Deng Y, Huang P, Sun X, Wang Y, Chang C, Jiang Z. Histidine Kinase Sln1 and cAMP/PKA Signaling Pathways Antagonistically Regulate Sporisorium scitamineum Mating and Virulence via Transcription Factor Prf1. J Fungi (Basel) 2021; 7:jof7080610. [PMID: 34436149 PMCID: PMC8397173 DOI: 10.3390/jof7080610] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Many prokaryotes and eukaryotes utilize two-component signaling pathways to counter environmental stress and regulate virulence genes associated with infection. In this study, we identified and characterized a conserved histidine kinase (SsSln1), which is the sensor of the two-component system of Sln1-Ypd1-Ssk1 in Sporisorium scitamineum. SsSln1 null mutant exhibited enhanced mating and virulence capabilities in S. scitamineum, which is opposite to what has been reported in Candida albicans. Further investigations revealed that the deletion of SsSLN1 enhanced SsHog1 phosphorylation and nuclear localization and thus promoted S. scitamineum mating. Interestingly, SsSln1 and cAMP/PKA signaling pathways antagonistically regulated the transcription of pheromone-responsive transcription factor SsPrf1, for regulating S. scitamineum mating and virulence. In short, the study depicts a novel mechanism in which the cross-talk between SsSln1 and cAMP/PKA pathways antagonistically regulates mating and virulence by balancing the transcription of the SsPRF1 gene in S. scitamineum.
Collapse
Affiliation(s)
- Enping Cai
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Shuquan Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Environmental Monitoring and Remediation Engineering Technology Research Center, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Yizhen Deng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Peishen Huang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Xian Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Yuting Wang
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Changqing Chang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (C.C.); (Z.J.); Tel.: +86-020-757-3225 (C.C.); +86-020-3860-4779 (Z.J.)
| | - Zide Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Correspondence: (C.C.); (Z.J.); Tel.: +86-020-757-3225 (C.C.); +86-020-3860-4779 (Z.J.)
| |
Collapse
|
8
|
Zhao Y, Lee MK, Lim J, Moon H, Park HS, Zheng W, Yu JH. The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans. J Microbiol 2021; 59:746-752. [PMID: 34219207 DOI: 10.1007/s12275-021-1055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
The VosA-VelB heterocomplex governs expression of several genes associated with fungal development and secondary metabolism. In this study, we have investigated the functions of one of the VosA-VelB-activated developmental genes vadJ in development and production of the mycotoxin sterigmatocystin in the model fungus Aspergillus nidulans. The vadJ gene is predicted to encode a 957-amino acid length protein containing a highly conserved sensor histidine kinase domain. The deletion of vosA or velB resulted in decreased mRNA levels of vadJ throughout the life cycle, suggesting that VosA and VelB are necessary for proper expression of vadJ. Nullifying vadJ led to highly restricted colony growth, lowered formation of asexual spores, and about two-fold reduction in conidial viability. Conversely, the deletion of vadJ resulted in elevated production of sexual fruiting bodies and sterigmatocystin. These suggest that VadJ is necessary for proper coordination of asexual and sexual development, and sterigmatocystin production. In accordance with this idea, the deletion of vadJ led to elevated mRNA levels of the two key sexual developmental activators esdC and nsdD. In summary, the putative sensor histidine kinase VadJ represses sexual development and sterigmatocystin production, but activates asexual development in A. nidulans.
Collapse
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Department of Life Science, Jiangsu Normal University, Jiangsu, 221116, P. R. China
| | - Mi-Kyung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Jieyin Lim
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Heungyun Moon
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Weifa Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Department of Life Science, Jiangsu Normal University, Jiangsu, 221116, P. R. China.
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, 53706, USA.
- Department of Systems Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
9
|
Yu Z, Ali A, Igbalajobi OA, Streng C, Leister K, Krauß N, Lamparter T, Fischer R. Two hybrid histidine kinases, TcsB and the phytochrome FphA, are involved in temperature sensing in
Aspergillus nidulans. Mol Microbiol 2019; 112:1814-1830. [DOI: 10.1111/mmi.14395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Zhenzhong Yu
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
- Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing 210095China
| | - Arin Ali
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Olumuyiwa Ayokunle Igbalajobi
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Christian Streng
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Kai Leister
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Norbert Krauß
- Botanical Institute Karlsruhe Institute of Technology (KIT) ‐ South Campus Karlsruhe D‐76131Germany
| | - Tilman Lamparter
- Botanical Institute Karlsruhe Institute of Technology (KIT) ‐ South Campus Karlsruhe D‐76131Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| |
Collapse
|
10
|
Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnol Adv 2019; 37:107392. [PMID: 31034961 DOI: 10.1016/j.biotechadv.2019.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
Abstract
Filamentous fungi respond to hundreds of nutritional, chemical and environmental signals that affect expression of primary metabolism and biosynthesis of secondary metabolites. These signals are sensed at the membrane level by G protein coupled receptors (GPCRs). GPCRs contain usually seven transmembrane domains, an external amino terminal fragment that interacts with the ligand, and an internal carboxy terminal end interacting with the intracellular G protein. There is a great variety of GPCRs in filamentous fungi involved in sensing of sugars, amino acids, cellulose, cell-wall components, sex pheromones, oxylipins, calcium ions and other ligands. Mechanisms of signal transduction at the membrane level by GPCRs are discussed, including the internalization and compartmentalisation of these sensor proteins. We have identified and analysed the GPCRs in the genome of Penicillium chrysogenum and compared them with GPCRs of several other filamentous fungi. We have found 66 GPCRs classified into 14 classes, depending on the ligand recognized by these proteins, including most previously proposed classes of GPCRs. We have found 66 putative GPCRs, representatives of twelve of the fourteen previously proposed classes of GPCRs, depending on the ligand recognized by these proteins. A staggering fortytwo putative members of the new GPCR class XIV, the so-called Pth11 sensors of cellulosic material as reported for Neurospora crassa and some other fungi, were identified. Several GPCRs sensing sex pheromones, known in yeast and in several fungi, were also identified in P. chrysogenum, confirming the recent unravelling of the hidden sexual capacity of this species. Other sensing mechanisms do not involve GPCRs, including the two-component systems (HKRR), the HOG signalling system and the PalH mediated pH transduction sensor. GPCR sensor proteins transmit their signals by interacting with intracellular heterotrimeric G proteins, that are well known in several fungi, including P. chrysogenum. These G proteins are inactive in the GDP containing heterotrimeric state, and become active by nucleotide exchange, allowing the separation of the heterotrimeric protein in active Gα and Gβγ dimer subunits. The conversion of GTP in GDP is mediated by the endogenous GTPase activity of the G proteins. Downstream of the ligand interaction, the activated Gα protein and also the Gβ/Gγ dimer, transduce the signals through at least three different cascades: adenylate cyclase/cAMP, MAPK kinase, and phospholipase C mediated pathways.
Collapse
|
11
|
Ren W, Liu N, Yang Y, Yang Q, Chen C, Gao Q. The Sensor Proteins BcSho1 and BcSln1 Are Involved in, Though Not Essential to, Vegetative Differentiation, Pathogenicity and Osmotic Stress Tolerance in Botrytis cinerea. Front Microbiol 2019; 10:328. [PMID: 30858841 PMCID: PMC6397835 DOI: 10.3389/fmicb.2019.00328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/08/2019] [Indexed: 01/18/2023] Open
Abstract
High-osmolarity glycerol (HOG) signaling pathway belongs to mitogen-activated protein kinase (MAPK) cascades that regulate responses of organism to diverse extracellular stimuli. The membrane spanning proteins Sho1 and Sln1 serve as biosensors of HOG pathway in Saccharomyces cerevisiae. In this study, we investigated the biological functions of BcSHO1 and BcSLN1 in the gray mold fungus Botrytis cinerea. Target gene deletion demonstrated that both BcSHO1 and BcSLN1 are important for mycelial growth, conidiation and sclerotial formation. The BcSHO1 and BcSLN1 double deletion mutant ΔBcSln1-Sho1 produced much more, but smaller sclerotia than ΔBcSho1 and the wild-type (WT) strain, while ΔBcSln1 failed to develop sclerotia on all tested media, instead, formed a large number of conidia. Infection tests revealed that the virulence of ΔBcSln1-Sho1 decreased significantly, however, ΔBcSho1 or ΔBcSln1 showed no difference with the WT strain. In addition, ΔBcSln1-Sho1 exhibited resistance to osmotic stress by negatively regulating the phosphorylation of BcSak1 (yeast Hog1). All the phenotypic defects of mutants were recovered by target gene complementation. These results suggest that BcSHO1 and BcSLN1 share some functional redundancy in the regulation of fungal development, pathogenesis and osmotic stress response in B. cinerea.
Collapse
Affiliation(s)
- Weichao Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yalan Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qianqian Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qingli Gao
- Plant Protection Station of Pizhou City, Xuzhou, China
| |
Collapse
|
12
|
Wang Z, An N, Xu W, Zhang W, Meng X, Chen G, Liu W. Functional characterization of the upstream components of the Hog1-like kinase cascade in hyperosmotic and carbon sensing in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:97. [PMID: 29636818 PMCID: PMC5883349 DOI: 10.1186/s13068-018-1098-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Trichoderma reesei holds a high capacity for protein secretion and represents the most important cellulase producer in industry. However, the external signal sensing and intracellular signal transduction during cellulose induction remain unclear. As one of the most pervasive signal transduction pathways in all eukaryotic species, the mitogen-activated protein kinase (MAPK) pathway and its upstream sensing and signaling components are involved in various physiological processes including stress and nutrient sensing. Particularly, the Hog1-type MAPK Tmk3 has been reported to be involved in the cellulase production in T. reesei. RESULTS Here we established the physiological role of two upstream regulatory branches, the Sho1 branch and the Sln1 branch, of the Hog1-type Tmk3 pathway in T. reesei. Deletion of Trste20 of the Sho1 branch or repression of Trypd1 of the Sln1 branch reduced the resistance to high salt stress, whereas TrSho1 showed an opposing effect to that of TrSte20 and the identified TrSln1 seemed to be dispensable in the osmotic regulation. The Sho1 and Sln1 branches also participated in the cell wall integrity maintenance and other stress responses (i.e. oxidative and thermo stresses). Notably, TrSho1 and TrSte20 of the Sho1 branch and TrYpd1 of the Sln1 branch were shown to be differentially involved in the cellulase production of T. reesei. Repression of Trypd1 hardly affected cellulase induction, whereas overexpression of Trypd1 resulted in the reduced production of cellulases. Contrary to the case of Trypd1, repression of Trsho1 or deletion of Trste20 significantly reduced the transcription of cellulase genes. CONCLUSIONS TrSho1 and TrSte20 of the Sho1 branch and TrYpd1 of the Sln1 branch are all involved in general stress responses including hyperosmotic regulation and cell wall integrity maintenance. Moreover, our study revealed that the Sho1 and Sln1 osmosensing pathways are differentially involved in the regulation of cellulase production in T. reesei. The Sho1 branch positively regulated the production of cellulases and the transcription of cellulase genes while TrYpd1 of the Sln1 branch negatively controlled the cellulase production, supporting the crosstalks of osmosensing and nutrient sensing.
Collapse
Affiliation(s)
- Zhixing Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Ning An
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Wenqiang Xu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| |
Collapse
|
13
|
Liu J, Tong SM, Qiu L, Ying SH, Feng MG. Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 in a fungal insect pathogen. Environ Microbiol 2017; 19:4091-4102. [DOI: 10.1111/1462-2920.13851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/20/2017] [Accepted: 06/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| | - Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| | - Lei Qiu
- School of Bioengineering; Qilu University of Technology; Jinan, Shandong 250353 China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| |
Collapse
|
14
|
Mohanan VC, Chandarana PM, Chattoo BB, Patkar RN, Manjrekar J. Fungal Histidine Phosphotransferase Plays a Crucial Role in Photomorphogenesis and Pathogenesis in Magnaporthe oryzae. Front Chem 2017; 5:31. [PMID: 28580356 PMCID: PMC5437211 DOI: 10.3389/fchem.2017.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation, and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well-studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.
Collapse
Affiliation(s)
- Varsha C Mohanan
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Pinal M Chandarana
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Bharat B Chattoo
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Rajesh N Patkar
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| | - Johannes Manjrekar
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India.,Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of BarodaVadodara, India
| |
Collapse
|
15
|
Hagiwara D, Sakamoto K, Abe K, Gomi K. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era. Biosci Biotechnol Biochem 2016; 80:1667-80. [PMID: 27007956 DOI: 10.1080/09168451.2016.1162085] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era."
Collapse
Affiliation(s)
- Daisuke Hagiwara
- a Medical Mycology Research Center , Chiba University , Chiba , Japan
| | | | - Keietsu Abe
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
16
|
Osmosensing and osmoregulation in unicellular eukaryotes. World J Microbiol Biotechnol 2015; 31:435-43. [DOI: 10.1007/s11274-015-1811-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
|
17
|
Zhang F, Zhong H, Han X, Guo Z, Yang W, Liu Y, Yang K, Zhuang Z, Wang S. Proteomic profile of Aspergillus flavus in response to water activity. Fungal Biol 2014; 119:114-24. [PMID: 25749363 DOI: 10.1016/j.funbio.2014.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Aspergillus flavus, a common contaminant of crops and stored grains, can produce aflatoxins that are harmful to humans and other animals. Water activity (aw) is one of the key factors influencing both fungal growth and mycotoxin production. In this study, we used the isobaric tagging for relative and absolute quantitation (iTRAQ) technique to investigate the effect of aw on the proteomic profile of A. flavus. A total of 3566 proteins were identified, of which 837 were differentially expressed in response to variations in aw. Among these 837 proteins, 403 were over-expressed at 0.99 aw, whereas 434 proteins were over-expressed at 0.93 aw. According to Gene Ontology (GO) analysis, the secretion of extracellular hydrolases increased as aw was raised, suggesting that extracellular hydrolases may play a critical role in induction of aflatoxin biosynthesis. On the basis of Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) categorizations, we identified an exportin protein, KapK, that may down-regulate aflatoxin biosynthesis by changing the location of NirA. Finally, we considered the role of two osmotic stress-related proteins (Sln1 and Glo1) in the Hog1 pathway and investigated the expression patterns of proteins related to aflatoxin biosynthesis. The data uncovered in this study are critical for understanding the effect of water stress on toxin production and for the development of strategies to control toxin contamination of agricultural products.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Zhong
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyun Han
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenni Guo
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiqiang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongfeng Liu
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen 518083, China
| | - Kunlong Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Leong SLL, Lantz H, Pettersson OV, Frisvad JC, Thrane U, Heipieper HJ, Dijksterhuis J, Grabherr M, Pettersson M, Tellgren-Roth C, Schnürer J. Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date. Environ Microbiol 2014; 17:496-513. [PMID: 25142400 DOI: 10.1111/1462-2920.12596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/14/2014] [Indexed: 02/02/2023]
Abstract
Xeromyces bisporus can grow on sugary substrates down to 0.61, an extremely low water activity. Its genome size is approximately 22 Mb. Gene clusters encoding for secondary metabolites were conspicuously absent; secondary metabolites were not detected experimentally. Thus, in its 'dry' but nutrient-rich environment, X. bisporus appears to have relinquished abilities for combative interactions. Elements to sense/signal osmotic stress, e.g. HogA pathway, were present in X. bisporus. However, transcriptomes at optimal (∼ 0.89) versus low aw (0.68) revealed differential expression of only a few stress-related genes; among these, certain (not all) steps for glycerol synthesis were upregulated. Xeromyces bisporus increased glycerol production during hypo- and hyper-osmotic stress, and much of its wet weight comprised water and rinsable solutes; leaked solutes may form a protective slime. Xeromyces bisporus and other food-borne moulds increased membrane fatty acid saturation as water activity decreased. Such modifications did not appear to be transcriptionally regulated in X. bisporus; however, genes modulating sterols, phospholipids and the cell wall were differentially expressed. Xeromyces bisporus was previously proposed to be a 'chaophile', preferring solutes that disorder biomolecular structures. Both X. bisporus and the closely related xerophile, Xerochrysium xerophilum, with low membrane unsaturation indices, could represent a phylogenetic cluster of 'chaophiles'.
Collapse
Affiliation(s)
- Su-Lin L Leong
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-75007, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Roles of the His-Asp Phosphorelay Signal Transduction System in Controlling Cell Growth and Development inAspergillus nidulans. Biosci Biotechnol Biochem 2014; 75:1-6. [DOI: 10.1271/bbb.100551] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Qiu L, Wang JJ, Chu ZJ, Ying SH, Feng MG. Phytochrome controls conidiation in response to red/far-red light and daylight length and regulates multistress tolerance inBeauveria bassiana. Environ Microbiol 2014; 16:2316-28. [DOI: 10.1111/1462-2920.12486] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/03/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Qiu
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Juan-Juan Wang
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Zhen-Jian Chu
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Sheng-Hua Ying
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Ming-Guang Feng
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
21
|
Control of reactive oxygen species (ROS) production through histidine kinases in Aspergillus nidulans under different growth conditions. FEBS Open Bio 2014; 4:90-5. [PMID: 24490133 PMCID: PMC3907689 DOI: 10.1016/j.fob.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/13/2022] Open
Abstract
Sensor histidine kinases (HKs) are important factors that control cellular growth in response to environmental conditions. The expression of 15 HKs from Aspergillus nidulans was analyzed by quantitative real-time PCR under vegetative, asexual, and sexual growth conditions. Most HKs were highly expressed during asexual growth. All HK gene-disrupted strains produced reactive oxygen species (ROS). Three HKs are involved in the control of ROS: HysA was the most abundant under the restricted oxygen condition, NikA is involved in fungicide sensing, and FphA inhibits sexual development in response to red light. Phosphotransfer signal transduction via HysA is essential for ROS production control. Most histidine kinases in Aspergillus nidulans are expressed during asexual development. ROS were generated in some histidine kinase (HK)-gene disrupted strains. The phosphorylation activities of HKs are essential to control ROS generation.
Collapse
|
22
|
Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS One 2013; 8:e80881. [PMID: 24312504 PMCID: PMC3846623 DOI: 10.1371/journal.pone.0080881] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022] Open
Abstract
The fungal high osmolarity glycerol (HOG) pathway is composed of a two-component system (TCS) and Hog1-type mitogen-activated protein kinase (MAPK) cascade. A group III (Nik1-type) histidine kinase plays a major role in the HOG pathway of several filamentous fungi. In this study, we characterized a group III histidine kinase, NikA/TcsC, in the life-threatening pathogenic fungus, Aspergillus fumigatus. A deletion mutant of nikA showed low conidia production, abnormal hyphae, marked sensitivity to high osmolarity stresses, and resistance to cell wall perturbing reagents such as congo red and calcofluor white, as well as to fungicides such as fludioxonil, iprodione, and pyrrolnitrin. None of these phenotypes were observed in mutants of the SskA response regulator and SakA MAPK, which were thought to be downstream components of NikA. In contrast, in response to fludioxonil treatment, NikA was implicated in the phosphorylation of SakA MAPK and the transcriptional upregulation of catA, dprA, and dprB, which are regulated under the control of SakA. We then tested the idea that not only NikA, but also the other 13 histidine kinases play certain roles in the regulation of the HOG pathway. Interestingly, the expression of fos1, phkA, phkB, fhk5, and fhk6 increased by osmotic shock or fludioxonil treatment in a SakA-dependent manner. However, deletion mutants of the histidine kinases showed no significant defects in growth under the tested conditions. Collectively, although the signal transduction network related to NikA seems complicated, NikA plays a crucial role in several aspects of A. fumigatus physiology and, to a certain extent, modulates the HOG pathway.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kovács Z, Szarka M, Kovács S, Boczonádi I, Emri T, Abe K, Pócsi I, Pusztahelyi T. Effect of cell wall integrity stress and RlmA transcription factor on asexual development and autolysis in Aspergillus nidulans. Fungal Genet Biol 2013; 54:1-14. [PMID: 23485399 DOI: 10.1016/j.fgb.2013.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/24/2022]
Abstract
The cell wall integrity (CWI) signaling pathway is responsible for cell wall remodeling and reinforcement upon cell wall stress, which is proposed to be universal in fungal cultures. In Aspergillus nidulans, both the deletion of rlmA encoding the RlmA transcription factor in CWI signaling and low concentrations of the cell wall polymer intercalating agent Congo Red caused significant physiological changes. The gene deletion mutant ΔrlmA strain showed decreased CWI and oxidative stress resistances, which indicated the connection between the CWI pathway and the oxidative stress response system. The Congo Red stress resulted in alterations in the cell wall polymer composition in submerged cultures due to the induction of the biosynthesis of the alkali soluble fraction as well as the hydrolysis of cell wall biopolymers. Both RlmA and RlmA-independent factors induced by Congo Red stress regulated the expression of glucanase (ANID_00245, engA) and chitinase (chiB, chiA) genes, which promoted the autolysis of the cultures and also modulated the pellet sizes. CWI stress and rlmA deletion affected the expression of brlA encoding the early conidiophore development regulator transcription factor BrlA and, as a consequence, the formation of conidiophores was significantly changed in submerged cultures. Interestingly, the number of conidiospores increased in surface cultures of the ΔrlmA strain. The in silico analysis of genes putatively regulated by RlmA and the CWI transcription factors AnSwi4/AnSwi6 in the SBF complex revealed only a few jointly regulated genes, including ugmA and srrA coding for UgmA UDP-galactopyranose mutase and SrrA stress response regulator, respectively.
Collapse
Affiliation(s)
- Zsuzsanna Kovács
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, H-4010 Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Grice CM, Bertuzzi M, Bignell EM. Receptor-mediated signaling in Aspergillus fumigatus. Front Microbiol 2013; 4:26. [PMID: 23430083 PMCID: PMC3576715 DOI: 10.3389/fmicb.2013.00026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/01/2013] [Indexed: 11/15/2022] Open
Abstract
Aspergillus fumigatus is the most pathogenic species among the Aspergilli, and the major fungal agent of human pulmonary infection. To prosper in diverse ecological niches, Aspergilli have evolved numerous mechanisms for adaptive gene regulation, some of which are also crucial for mammalian infection. Among the molecules which govern such responses, integral membrane receptors are thought to be the most amenable to therapeutic modulation. This is due to the localization of these molecular sensors at the periphery of the fungal cell, and to the prevalence of small molecules and licensed drugs which target receptor-mediated signaling in higher eukaryotic cells. In this review we highlight the progress made in characterizing receptor-mediated environmental adaptation in A. fumigatus and its relevance for pathogenicity in mammals. By presenting a first genomic survey of integral membrane proteins in this organism, we highlight an abundance of putative seven transmembrane domain (7TMD) receptors, the majority of which remain uncharacterized. Given the dependency of A. fumigatus upon stress adaptation for colonization and infection of mammalian hosts, and the merits of targeting receptor-mediated signaling as an antifungal strategy, a closer scrutiny of sensory perception and signal transduction in this organism is warranted.
Collapse
Affiliation(s)
- C M Grice
- South Kensington Campus, Imperial College London London, UK
| | | | | |
Collapse
|
25
|
Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia 2012; 175:13-23. [PMID: 23161019 DOI: 10.1007/s11046-012-9600-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022]
Abstract
Aspergillus fumigatus is an important opportunistic fungal pathogen that causes lethal systemic invasive aspergillosis. It must be able to adapt to stress in the microenvironment during host invasion and systemic spread. The high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) signaling pathway is a key element that controls adaptation to environmental stress. It plays a critical role in the virulence of several fungal pathogens. In this review, we summarize the current knowledge about the functions of different components of the HOG-MAPK pathway in A. fumigatus through mutant analysis or inferences from the genome annotation, focusing on their roles in adaptation to stress, regulation of infection-related morphogenesis, and effect on virulence. We also briefly compare the functions of the HOG pathway in A. fumigatus with those in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans as well as several other human and plant pathogens including Candida albicans, Cryptococcus neoformans, and Magnaporthe oryzae. The genes described in this review mainly include tcsB, fos1, skn7, sho1, pbs2, and sakA whose deletion mutants have already been established in A. fumigatus. Among them, fos1 has been considered a virulence factor in A. fumigatus, indicating that components of the HOG pathway may be suitable as targets for developing new fungicides. However, quite a few of the genes of this pathway, such as sskA (ssk1), sskB, steC, and downstream regulator genes, are not well characterized. System biology approaches may contribute to a more comprehensive understanding of HOG pathway functions with dynamic details.
Collapse
|
26
|
Leiter É, González A, Erdei É, Casado C, Kovács L, Ádám C, Oláh J, Miskei M, Molnar M, Farkas I, Hamari Z, Ariño J, Pócsi I, Dombrádi V. Protein phosphatase Z modulates oxidative stress response in fungi. Fungal Genet Biol 2012; 49:708-16. [PMID: 22750657 DOI: 10.1016/j.fgb.2012.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 01/11/2023]
Abstract
The genome of the filamentous fungus Aspergillus nidulans harbors the gene ppzA that codes for the catalytic subunit of protein phosphatase Z (PPZ), and the closely related opportunistic pathogen Aspergillus fumigatus encompasses a highly similar PPZ gene (phzA). When PpzA and PhzA were expressed in Saccharomyces cerevisiae or Schizosaccharomyces pombe they partially complemented the deleted phosphatases in the ppz1 or the pzh1 mutants, and they also mimicked the effect of Ppz1 overexpression in slt2 MAP kinase deficient S. cerevisiae cells. Although ppzA acted as the functional equivalent of the known PPZ enzymes its disruption in A. nidulans did not result in the expected phenotypes since it failed to affect salt tolerance or cell wall integrity. However, the inactivation of ppzA resulted in increased sensitivity to oxidizing agents like tert-butylhydroperoxide, menadione, and diamide. To demonstrate the general validity of our observations we showed that the deletion of the orthologous PPZ genes in other model organisms, such as S. cerevisiae (PPZ1) or Candida albicans (CaPPZ1) also caused oxidative stress sensitivity. Thus, our work reveals a novel function of the PPZ enzyme in A. nidulans that is conserved in very distantly related fungi.
Collapse
Affiliation(s)
- Éva Leiter
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS Lett 2012; 586:2417-22. [DOI: 10.1016/j.febslet.2012.05.057] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022]
|
28
|
Ji Y, Yang F, Ma D, Zhang J, Wan Z, Liu W, Li R. HOG-MAPK signaling regulates the adaptive responses of Aspergillus fumigatus to thermal stress and other related stress. Mycopathologia 2012; 174:273-82. [PMID: 22678624 DOI: 10.1007/s11046-012-9557-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/03/2012] [Indexed: 01/20/2023]
Abstract
Aspergillus fumigatus is naturally exposed to a highly variable environment and subjected to various kinds of stresses. High-osmolarity glycerol mitogen-activated protein kinase (HOG-MAPK) pathway plays a crucial role in regulating cellular homeostasis in response to environmental changes. Here, we explored the contribution of HOG-MAPK pathway to the adaptive responses to thermal stress and other related stresses in A. fumigatus. We observed the phenotype features of wild-type strains and their derived mutants at 37 and 48 °C, and the results suggested that tcsB participates in response to high temperature. Furthermore, susceptibility test for antifungal drugs showed that SHO1 branch is probably involved in the susceptibility of A. fumigatus to itraconazole at high temperature. Although sakA expression at mRNA level appeared unchanged in wild-type AF293 subjected to thermal stress, phosphorylated SakAp level increased significantly in the strains exposed to cold stress, 250 mmol/L nystatin or 10 % dimethyl sulfoxide in a manner dependent on the SLN1 branch and independent on the SHO1 branch. Taken together, these results indicate that HOG-MAPK pathway, especially the SLN1 branch, plays an important role in the adaptations of A. fumigatus to thermal stress and other related stresses.
Collapse
Affiliation(s)
- Yajuan Ji
- Department of Dermatology and Venereology, Peking University First Hospital, No. 8, Xi-Shi-Ku St., Xicheng District, Beijing 100034, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhou G, Wang J, Qiu L, Feng MG. A Group III histidine kinase (mhk1) upstream of high-osmolarity glycerol pathway regulates sporulation, multi-stress tolerance and virulence of Metarhizium robertsii, a fungal entomopathogen. Environ Microbiol 2011; 14:817-29. [PMID: 22118192 DOI: 10.1111/j.1462-2920.2011.02643.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of Metarhizium robertsii Group III histidine kinase (mhk1) in regulating various phenotypes of the fungal entomopathogen and the transcripts of 25 downstream genes likely associated with the phenotypes were probed by constructing Δmhk1 and Δmhk1/mhk1 mutants. All examined Δmhk1 phenotypes except unchanged sensitivity to fungicide (dimethachlon) differed significantly from those of wild type and Δmhk1/mhk1, which were similar to each other. Significant phenotypic changes in Δmhk1 included increased conidial yields on two media, increased tolerance to H(2)O(2) , decreased tolerance to menadione, increased tolerance to hyperosmolarity, increased conidial thermotolerance, decreased conidial UV-B resistance and reduced virulence to Tenebrio molitor larvae. The mhk1 disruption elevated the transcripts of nine genes, including two associated with conidiation (flbC and hymA) and three encoding catalases but decreased seven other gene transcripts, including three for superoxide dismultases, under normal conditions. The high-osmolarity glycerol pathway MAPK phosphorylation level in Δmhk1 culture was increased 1.0- to 1.8-fold by KCl, sucrose and menadione stresses but reduced drastically by H(2)O(2) or heat (40°C) stress, accompanied with different transcript patterns of all examined genes under the stresses. Our results confirmed the crucial role of mhk1 in regulating the expression of the downstream genes and associated phenotypes important for the fungal biocontrol potential.
Collapse
Affiliation(s)
- Gang Zhou
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | |
Collapse
|
30
|
Boyce KJ, Schreider L, Kirszenblat L, Andrianopoulos A. The two-component histidine kinases DrkA and SlnA are required for in vivo growth in the human pathogen Penicillium marneffei. Mol Microbiol 2011; 82:1164-84. [PMID: 22059885 DOI: 10.1111/j.1365-2958.2011.07878.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In order to cause disease fungal pathogens must be capable of evading or tolerating the host immune defence system. One commonly utilized evasion mechanism is the ability to continually reside within macrophages of the innate immune system and survive subsequent phagocytic destruction. For intracellular growth to occur, fungal pathogens which typically grow in a filamentous hyphal form in the environment must be able to switch growth to a unicellular yeast growth form in a process known as dimorphic switching. The cue to undergo dimorphic switching relies on the recognition of, and response to, the intracellular host environment. Two-component signalling systems are utilized by eukaryotes to sense and respond to changes in the external environment. This study has investigated the role of the hybrid histidine kinase components encoded by drkA and slnA, in the dimorphic pathogen Penicillium marneffei. Both SlnA and DrkA are required for stress adaptation but are uniquely required for different aspects of asexual development, hyphal morphogenesis and cell wall integrity. Importantly, slnA and drkA are both essential for the generation of yeast cells in vivo, with slnA required for the germination of conidia and drkA required for dimorphic switching during macrophage infection.
Collapse
Affiliation(s)
- Kylie J Boyce
- Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
31
|
Hagiwara D, Mizuno T, Abe K. Characterization of the conserved phosphorylation site in the Aspergillus nidulans response regulator SrrA. Curr Genet 2011; 57:103-14. [PMID: 21229249 DOI: 10.1007/s00294-010-0330-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/19/2010] [Accepted: 12/20/2010] [Indexed: 01/11/2023]
Abstract
Ssk1- and Skn7-type response regulators are widely conserved in fungal His-Asp phosphorelay (two-component) signaling systems. SrrA, a Skn7-type RR of Aspergillus nidulans, is implicated not only in oxidative stress responses but also in osmotic adaptation, conidia production (asexual development), inhibition by fungicides, and cell wall stress resistance. Here, we characterized SrrA, focusing on the role of the conserved aspartate residue in the receiver domain, which is essential for phosphorelay function. We constructed strains carrying an SrrA protein in which aspartate residue D385 was replaced with either asparagine (N) or alanine (A). These mutants exhibited normal conidiation and partial oxidative stress resistance. In osmotic adaptation, mutants with substitution at SrrA D385 showed as much sensitivity as ΔsrrA strains, suggesting that SrrA plays a role in osmotic stress adaptation in a phosphorelay-dependent manner. The SrrA D385 substitution mutants showed significant resistance to fungicides and cell wall stresses. These results together led us to conclude that the conserved aspartate residue has a substantial impact on SrrA function, and that SrrA plays a role in several aspects of cellular function via His-Asp phosphorelay circuitry in Aspergillus nidulans.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Department of Biological Sciences, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan.
| | | | | |
Collapse
|
32
|
A two-component histidine kinase, MoSLN1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Curr Genet 2010; 56:517-28. [DOI: 10.1007/s00294-010-0319-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/22/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
|
33
|
Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi. Toxins (Basel) 2010; 2:367-81. [PMID: 22069590 PMCID: PMC3153207 DOI: 10.3390/toxins2040367] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 01/06/2023] Open
Abstract
Environmental stimuli trigger an adaptative cellular response to optimize the probability of survival and proliferation. In eukaryotic organisms from mammals to fungi osmotic stress, mainly through the action of the high osmolarity glycerol (HOG) pathway, leads to a response necessary for adapting and surviving hyperosmotic environments. In this review we show that the osmoadaptative response is conserved but not identical in different fungi. The osmoadaptative response system is also intimately linked to morphogenesis in filamentous fungi, including mycotoxin producers. Previous studies indicate that the response to osmotic stress is also coupled to the biosynthesis of natural products, including mycotoxins.
Collapse
|
34
|
AtfA bZIP-type transcription factor regulates oxidative and osmotic stress responses in Aspergillus nidulans. Mol Genet Genomics 2010; 283:289-303. [PMID: 20131067 DOI: 10.1007/s00438-010-0513-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 01/18/2010] [Indexed: 12/18/2022]
Abstract
The aim of the study was to demonstrate that the bZIP-type transcription factor AtfA regulates different types of stress responses in Aspergillus nidulans similarly to Atf1, the orthologous 'all-purpose' transcription factor of Schizosaccharomyces pombe. Heterologous expression of atfA in a S. pombe Deltaatf1 mutant restored the osmotic stress tolerance of fission yeast in surface cultures to the same level as recorded in complementation studies with the atf1 gene, and a partial complementation of the osmotic and oxidative-stress-sensitive phenotypes was also achieved in submerged cultures. AtfA is therefore a true functional ortholog of fission yeast's Atf1. As demonstrated by RT-PCR experiments, elements of both oxidative (e.g. catalase B) and osmotic (e.g. glycerol-3-phosphate dehydrogenase B) stress defense systems were transcriptionally regulated by AtfA in a stress-type-specific manner. Deletion of atfA resulted in oxidative-stress-sensitive phenotypes while the high-osmolarity stress sensitivity of the fungus was not affected significantly. In A. nidulans, the glutathione/glutathione disulfide redox status of the cells as well as apoptotic cell death and autolysis seemed to be controlled by regulatory elements other than AtfA. In conclusion, the orchestrations of stress responses in the aspergilli and in fission yeast share several common features, but further studies are needed to answer the important question of whether a fission yeast-like core environmental stress response also operates in the euascomycete genus Aspergillus.
Collapse
|
35
|
Hagiwara D, Asano Y, Marui J, Yoshimi A, Mizuno T, Abe K. Transcriptional profiling for Aspergillusnidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Fungal Genet Biol 2009; 46:868-78. [PMID: 19596074 DOI: 10.1016/j.fgb.2009.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/18/2009] [Accepted: 07/04/2009] [Indexed: 12/17/2022]
Abstract
In filamentous fungi, the His-Asp phosphorelay signaling system and HOG pathway are involved in the action of the fungicides, fludioxonil, and iprodione, as well as osmotic and oxidative stress responses. Aspergillusnidulans response regulators (RRs), SskA and SrrA, and histidine kinase (HK), NikA, are involved in the growth inhibitory effects of these fungicides. To gain further insights into the molecular basis for these signaling systems, we performed DNA microarray analyses of fludioxonil and osmotic stress responses in A.nidulans. A global expression analysis revealed that a large number of genes were modulated by fludioxonil treatment in an SskA-dependent manner, whereas SrrA hardly contributed to this modulation. The fludioxonil up-regulated or down-regulated genes (FUGs or FDGs, respectively) are also dependent on the HogA MAPK cascade. We found that the SskA-HogA pathway regulates expression of atfA gene encoding a transcription factor involved in conidia stress tolerance. From the results of microarray analyses, AtfA-dependent FUGs largely overlapped with HogA-dependent FUGs, suggesting that AtfA functions downstream of the HogA MAPK. A series of microarray analyses showed that the inferred SskA-HogA-AtfA pathway is implicated in the transcriptional response to osmotic stress as well as fludioxonil. The srrAatfA null double mutant turns off the SrrA and SskA-HogA-AtfA pathways and showed sensitivity to osmotic stress but no resistance to fludioxonil. Our data revealed that the growth inhibitory effect of fludioxonil depends on factors other than AtfA in spite of the fact that AtfA functions downstream of the HogA MAPK cascade. The complexity of the stress response in the His-Asp phosphorelay system followed by the HogA MAPK cascade is discussed.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. EUKARYOTIC CELL 2008; 7:2017-36. [PMID: 18952900 DOI: 10.1128/ec.00323-08] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Motoyama T, Ochiai N, Morita M, Iida Y, Usami R, Kudo T. Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Curr Genet 2008; 54:185-95. [PMID: 18726099 DOI: 10.1007/s00294-008-0211-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Rice blast fungus (Magnaporthe oryzae) has ten histidine kinases (HKs), one histidine-containing phosphotransfer protein (HPt), and three response regulators (RRs) as putative components of the two-component signal transduction system (TCS). Here, we constructed knockout mutants of two putative RR genes (MoSSK1, MoSKN7) and a RR homolog gene (MoRIM15) to analyze the roles of TCS in environmental adaptation and pathogenicity. The DeltaMossk1 strain had increased sensitivity to high osmolarity and decreased sensitivity to fludioxonil. The DeltaMoskn7 strain had slightly decreased sensitivity to fludioxonil. The involvement of MoSkn7 in the osmoresponse was obvious only on the DeltaMossk1 background. These results show that MoSsk1 and MoSkn7 are major and minor contributors, respectively, in the high osmolarity response and fludioxonil action. The DeltaMossk1 strain was more osmosensitive than the predicted upstream HK gene disruptant Deltahik1, which shows sugar-specific high osmolarity sensitivity. The DeltaMossk1 and DeltaMoskn7 strains showed enhanced hyphal melanization, suggesting that RRs regulate hyphal melanization. MoSsk1 and MoRim15 are required for full virulence, because the DeltaMossk1 and DeltaMorim15 strains exhibited reduced virulence. These results suggest that the putative RRs of the rice blast fungus are involved in the osmotic stress response, fludioxonil action, and pathogenicity.
Collapse
|
38
|
Kanetis L, Förster H, Jones CA, Borkovich KA, Adaskaveg JE. Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. PHYTOPATHOLOGY 2008; 98:205-214. [PMID: 18943197 DOI: 10.1094/phyto-98-2-0205] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in isolates of Penicillium digitatum were evaluated and compared to those characterized in other fungi. Resistant isolates were naturally occurring in packinghouses and were not associated with crop losses. For the phenylpyrrole fludioxonil, EC50 values were 0.02 to 0.04 microg/ml for sensitive, 0.08 to 0.65 microg/ml for moderately resistant (MR), and > 40 microg/ml for highly resistant (HR) isolates. Two fludioxonil-sensitive isolates evaluated were also significantly more sensitive to the unrelated dicarboximide fungicide iprodione, that also disrupts osmotic regulation, than the MR and HR isolates. There was no consistent relationship, however, between the HR and MR isolates and their sensitivity to iprodione or osmotic stress. Although, two nucleotide substitutions were found in a sequence analysis of the N-terminal amino acid repeat region of the os-1-related histidine kinase gene among isolates of P. digitatum, these were not correlated with fludioxonil resistance. In mycelia not exposed to fludioxonil, the amount of phosphorylated OS-2-related protein (PdOS-2) was higher in fludioxonil-sensitive isolates and lowest in the HR isolate. An increase in PdOS-2 was observed for sensitive and resistant isolates after exposure to fludioxonil. In addition, glycerol content in untreated mycelia of the fludioxonil-sensitive isolate was significantly higher than in resistant isolates. After exposure to fludioxonil, glycerol concentrations significantly increased in the sensitive and MR isolates, but not in the HR isolate. Thus, our studies indicate that the mode of action of fludioxonil in P. digitatum is probably the mitogen-activated protein kinase pathway that stimulates glycerol synthesis in sensitive and MR isolates. The general suppression of this pathway in resistant isolates was supported by the fact that growth and sporulation of MR and HR isolates were significantly reduced from that of sensitive isolates. In studies on the mode of action of anilinopyrimidines (AP), EC50 values for mycelial growth of P. digitatum and the previously characterized Botrytis cinerea were determined for cyprodinil and pyrimethanil using a defined culture medium without and with the addition of selected amino acids and homocysteine. The addition of amino acids resulted in a reduced toxicity of the two AP fungicides in both fungi, but the effect of each additive was significantly lower for P. digitatum than for B. cinerea. This suggests that methionine biosynthesis is not the primary target site of APs in P. digitatum.
Collapse
Affiliation(s)
- L Kanetis
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
39
|
Szeto CYY, Wong QWL, Leung GS, Kwan HS. Isolation and transcript analysis of two-component histidine kinase gene Le.nik1 in Shiitake mushroom, Lentinula edodes. ACTA ACUST UNITED AC 2007; 112:108-16. [PMID: 18234485 DOI: 10.1016/j.mycres.2007.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/24/2007] [Accepted: 08/31/2007] [Indexed: 11/27/2022]
Abstract
Le.nik1, a two-component histidine kinase gene of Lentinula edodes, the Shiitake mushroom, was identified. The relationship between this two-component signal transduction system and mushroom development was studied. We used a modified RNA arbitrarily-primed PCR (RAP-PCR) method to isolate Le.nik1 as a differentially expressed gene during L. edodes development. We determined the 6.29kb full-length cDNA sequence of Le.nik1. It had high sequence homology to Neurospora crassa nik1, which encoded a histidine kinase essential for development and osmotic response. In L. edodes, the expression level of Le.nik1 was highest during primordium formation and fruiting body maturation. The transcripts were localized predominantly in the developing hymenophores, or mushroom gills, which may indicate the role of a two-component signal transduction system in cell differentiation during mushroom development. Mannitol stress influenced transcript expression of Le.nik1, suggesting that it may be involved in osmo-sensing and regulation. To our knowledge, this is the first report on the two-component system in mushrooms and the first analysis on the distribution of Le.nik1 transcript in the course of fruiting body formation and in parts of fruiting bodies.
Collapse
Affiliation(s)
- Carol Y Y Szeto
- Molecular Biotechnology Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | |
Collapse
|
40
|
Banno S, Noguchi R, Yamashita K, Fukumori F, Kimura M, Yamaguchi I, Fujimura M. Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr Genet 2007; 51:197-208. [PMID: 17211673 DOI: 10.1007/s00294-006-0116-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/15/2006] [Accepted: 12/17/2006] [Indexed: 10/23/2022]
Abstract
Neurospora crassa has a putative histidine phosphotransfer protein (HPT-1) that transfers signals from 11 histidine kinases to two putative response regulators (RRG-1 and RRG-2) in its histidine-to-aspartate phosphorelay system. The hpt-1 gene was successfully disrupted in the os-2 (MAP kinase gene) mutant, but not in the wild-type strain in this study. Crossing the resultant hpt-1; os-2 mutants with the wild-type or os-1 (histidine kinase gene) mutant strains produced no progeny with hpt-1 or os-1; hpt-1 mutation, strongly suggesting that hpt-1 is essential for growth unless downstream OS-2 is inactivated. hpt-1 mutation partially recovered the osmotic sensitivity of os-2 mutants, implying the involvement of yeast Skn7-like RRG-2 in osmoregulation. However, the rrg-2 disruption did not change the osmotic sensitivity of the wild-type strain and the os-2 mutant, suggesting that rrg-2 did not participate in the osmoregulation. Both rrg-2 and os-2 single mutation slightly increased sensitivity to t-butyl hydroperoxide, and rrg-2 and hpt-1 mutations increased the os-2 mutant's sensitivity. Although OS-1 is considered as a positive regulator of OS-2 MAP kinase, our results suggested that HPT-1 negatively regulated downstream MAP kinase cascade, and that OS-2 and RRG-2 probably participate independently in the oxidative stress response in N. crassa.
Collapse
Affiliation(s)
- Shinpei Banno
- Faculty of Life Sciences, Toyo University, Itakura, Oura-gun, Gunma 374-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Vargas-Pérez I, Sánchez O, Kawasaki L, Georgellis D, Aguirre J. Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans. EUKARYOTIC CELL 2007; 6:1570-83. [PMID: 17630329 PMCID: PMC2043363 DOI: 10.1128/ec.00085-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among eukaryotes, only slime molds, fungi, and plants contain signal transduction phosphorelay systems. In filamentous fungi, multiple sensor kinases appear to use a single histidine-containing phosphotransfer (HPt) protein to relay signals to two response regulators (RR). In Aspergillus nidulans, the RR SskA mediates activation of the mitogen-activated protein kinase SakA in response to osmotic and oxidative stress, whereas the functions of the RR SrrA were unknown. We used a genetic approach to characterize the srrA gene as a new member of the skn7/prr1 family and to analyze the roles of SrrA in the phosphorelay system composed of the RR SskA, the HPt protein YpdA, and the sensor kinase NikA. While mutants lacking the HPt protein YpdA are unviable, mutants lacking SskA (DeltasskA), SrrA (DeltasrrA), or both RR (DeltasrrA DeltasskA) are viable and differentially affected in osmotic and oxidative stress responses. Both RR are involved in osmostress resistance, but DeltasskA mutants are more sensitive to this stress, and only SrrA is required for H(2)O(2) resistance and H(2)O(2)-mediated induction of catalase CatB. In contrast, both RR are individually required for fungicide sensitivity and calcofluor resistance and for normal sporulation and conidiospore viability. The DeltasrrA and DeltasskA sporulation defects appear to be related to decreased mRNA levels of the key sporulation gene brlA. In contrast, conidiospore viability defects do not correlate with the activity of the spore-specific catalase CatA. Our results support a model in which NikA acts upstream of SrrA and SskA to transmit fungicide signals and to regulate asexual sporulation and conidiospore viability. In contrast, NikA appears dispensable for osmotic and oxidative stress signaling. These results highlight important differences in stress signal transmission among fungi and define a phosphorelay system involved in oxidative and osmotic stress, cell wall maintenance, fungicide sensitivity, asexual reproduction, and spore viability.
Collapse
Affiliation(s)
- Itzel Vargas-Pérez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510, México, DF, México
| | | | | | | | | |
Collapse
|
42
|
Furukawa K, Yoshimi A, Furukawa T, Hoshi Y, Hagiwara D, Sato N, Fujioka T, Mizutani O, Mizuno T, Kobayashi T, Abe K. Novel reporter gene expression systems for monitoring activation of the Aspergillus nidulans HOG pathway. Biosci Biotechnol Biochem 2007; 71:1724-30. [PMID: 17617716 DOI: 10.1271/bbb.70131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Aspergillus nidulans high-osmolarity glycerol response (AnHOG) pathway is involved in osmoadaptation. We found that fludioxonil, a fungicide, causes improper activation of HogA mitogen-activated protein kinase (MAPK) in A. nidulans. Here we present novel reporter systems for monitoring activation of the AnHOG pathway. The promoter region of gfdB (glycerol-3-phosphate dehydrogenase), whose expression depends on the presence of HogA, was fused to a beta-glucuronidase uidA gene (GUS) to construct the reporter, which was introduced into A. nidulans wild type and hogADelta. Increased GUS activity was detected in the wild type only when it was treated with high osmolarity or fludioxonil, while reporter activity was scarcely stimulated in the hogADelta mutant. These results indicate that the reporter activity is controlled via HogA activation. Furthermore, we present possible applications of the reporter systems in screening new antifungal compounds.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fujioka T, Mizutani O, Furukawa K, Sato N, Yoshimi A, Yamagata Y, Nakajima T, Abe K. MpkA-Dependent and -independent cell wall integrity signaling in Aspergillus nidulans. EUKARYOTIC CELL 2007; 6:1497-510. [PMID: 17601879 PMCID: PMC1951132 DOI: 10.1128/ec.00281-06] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell wall integrity signaling (CWIS) maintains cell wall biogenesis in fungi, but only a few transcription factors (TFs) and target genes downstream of the CWIS cascade in filamentous fungi are known. Because a mitogen-activated protein kinase (MpkA) is a key CWIS enzyme, the transcriptional regulation of mpkA and of cell wall-related genes (CWGs) is important in cell wall biogenesis. We cloned Aspergillus nidulans mpkA; rlmA, a TF gene orthologous to Saccharomyces cerevisiae RLM1 that encodes Rlm1p, a major Mpk1p-dependent TF that regulates the transcription of MPK1 besides that of CWGs; and Answi4 and Answi6, homologous to S. cerevisiae SWI4 and SWI6, encoding the Mpk1p-activating TF complex Swi4p-Swi6p, which regulates CWG transcription in a cell cycle-dependent manner. A. nidulans rlmA and mpkA cDNA functionally complemented S. cerevisiae rlm1Delta and mpk1Delta mutants, respectively, but Answi4 and Answi6 cDNA did not complement swi4Delta and swi6Delta mutants. We constructed A. nidulans rlmA, Answi4 and Answi6, and mpkA disruptants (rlmADelta, Answi4Delta Answi6Delta, and mpkADelta strains) and analyzed mpkA and CWG transcripts after treatment with a beta-1,3-glucan synthase inhibitor (micafungin) that could activate MpkA via CWIS. Levels of mpkA transcripts in the mutants as well as those in the wild type were changed after micafungin treatment. The beta-glucuronidase reporter gene controlled by the mpkA promoter was expressed in the wild type but not in the mpkADelta strain. Thus, mpkA transcription seems to be autoregulated by CWIS via MpkA but not by RlmA or AnSwi4-AnSwi6. The transcription of most CWGs except alpha-1,3-glucan synthase genes (agsA and agsB) was independent of RlmA and AnSwi4-AnSwi6 and seemed to be regulated by non-MpkA signaling. The transcriptional regulation of mpkA and of CWGs via CWIS in A. nidulans differs significantly from that in S. cerevisiae.
Collapse
Affiliation(s)
- Tomonori Fujioka
- Laboratory of Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya, Tsutsumi-dori, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lenassi M, Plemenitas A. Novel group VII histidine kinase HwHhk7B from the halophilic fungi Hortaea werneckii has a putative role in osmosensing. Curr Genet 2007; 51:393-405. [PMID: 17435999 DOI: 10.1007/s00294-007-0131-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 03/26/2007] [Accepted: 03/26/2007] [Indexed: 01/28/2023]
Abstract
Histidine kinases (HKs) are abundant among prokaryotes and have been characterized in fungi and plants, although not yet in animals. These enzymes regulate diverse processes, including adaptation to osmotic stress and virulence of plant and animal pathogens. Here, we report the cloning, characterization and phylogenetic analysis of HwHHK7A and HwHHK7B, HK genes from the fungi Hortaea werneckii, a proposed model system for studying salt tolerance in eukaryotes. The two HwHhk7 isoforms are 96.7% identical in amino-acid sequence and have a typical eukaryotic hybrid HK domain composition. On the bases of the conserved sequence of the H box, they are classified into the group VII ascomycete HKs. For the HwHhk7B protein, the autokinase activity was demonstrated in vitro. The salt-responsive expression of the HwHHK7 genes and the increased osmotolerance of a wild-type Saccharomyces cerevisiae strain expressing the HwHHK7B gene lead us to speculate that these newly identified HKs have roles in osmosensing.
Collapse
Affiliation(s)
- Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
45
|
Noguchi R, Banno S, Ichikawa R, Fukumori F, Ichiishi A, Kimura M, Yamaguchi I, Fujimura M. Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Fungal Genet Biol 2006; 44:208-18. [PMID: 16990038 DOI: 10.1016/j.fgb.2006.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/04/2006] [Accepted: 08/10/2006] [Indexed: 12/01/2022]
Abstract
Two-component signal transduction comprising of OS-1 (histidine kinase), OS-4 (MAPKK kinase), OS-5 (MAPK kinase), and OS-2 (MAP kinase) plays an important role in osmotic regulation in Neurospora crassa. To identify the genes regulated downstream of OS-2 MAP kinase, quantitative real-time RT-PCR analysis was conducted in selected genes based on Hog1 MAP kinase regulated genes in yeast. In response to osmotic stress and fludioxonil, expression of six genes that for glycerol synthesis (gcy-1, gcy-3, and dak-1), gluconeogenesis (fbp-1 and pck-1), and catalase (ctt-1) was activated in the wild-type strain, but not in the os-2 mutant. A heat shock treatment also induced their expression in the same way. Consisting with the gene expression, the enzyme activity of glycerol dehydrogenase, but not glycerol-3-phosphate dehydrogenase, was increased in response to osmotic stress and fludioxonil in the wild-type strain. OS-2 was phosphorylated by the OS-1 cascade in response to relatively low osmotic stress and fludioxonil. However, OS-2 phosphorylation by heat shock and a higher osmotic stress was found in the os-1 mutant normally but not in the os-4 and os-5 mutants. These results suggested that non-OS-1 signaling activates OS-2 in an OS-4-dependent manner in such conditions.
Collapse
Affiliation(s)
- Rieko Noguchi
- Faculty of Life Sciences, Toyo University, Itakura, Oura-Gun, Gunma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Du C, Sarfati J, Latge JP, Calderone R. The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus. Med Mycol 2006; 44:211-8. [PMID: 16702099 DOI: 10.1080/13693780500338886] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The Hog1 MAP kinase pathway regulates stress adaptation in several fungi. To assess its role in stress adaptation in Aspergillus fumigatus, we constructed mutants in genes encoding the sensor histidine kinase (HK) tcsB as well as sakA, which are homologues of the Saccharomyces cerevisiae sln1 and Hog1, respectively. Compared to the wild type strain (Wt), growth of sakA (sakAtriangle up) mutant was reduced, and growth inhibition was increased when H(2)O(2), menadione, or SDS was added to the media. On the other hand, the tcsB mutant (tcsBtriangle up) was similar to the Wt strain in regard to growth and morphology, although a partial sensitivity to SDS was observed. Western blot analysis of Wt and the tcsBtriangle up strains indicated that when stressed with H(2)O(2), phosphorylation of Hog1p still occurs in the mutant. Since in Candida albicans, Hog1 regulates transcription of at least one histidine kinase, we performed RT-PCR of 6 histidine kinase genes as well as the ssk1 and skn7 response regulator genes of A. fumigatus. No significant differences in transcription were observed with the sakAtriangle up when compared to the Wt, indicating that the sakA does not regulate transcription of these genes. Our studies indicate that the A. fumigatus sakA is required for optimal growth of the organism with or without oxidant stress, while tcsB gene is dispensable.
Collapse
Affiliation(s)
- Chen Du
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
47
|
Yoshimi A, Kojima K, Takano Y, Tanaka C. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. EUKARYOTIC CELL 2006; 4:1820-8. [PMID: 16278449 PMCID: PMC1287849 DOI: 10.1128/ec.4.11.1820-1828.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously reported that the group III histidine kinase Dic1p in the maize pathogen Cochliobolus heterostrophus is involved in resistance to dicarboximide and phenylpyrrole fungicides and in osmotic adaptation. In addition, exposure to the phenylpyrrole fungicide fludioxonil led to improper activation of Hog1-type mitogen-activated protein kinases (MAPKs) in some phytopathogenic fungi, including C. heterostrophus. Here we report, for the first time, the relationship between the group III histidine kinase and Hog1-related MAPK: group III histidine kinase is a positive regulator of Hog1-related MAPK in filamentous fungi. The phosphorylation pattern of C. heterostrophus BmHog1p (Hog1-type MAPK) was analyzed in wild-type and dic1-deficient strains by Western blotting. In the wild-type strain, phosphorylated BmHog1p was detected after exposure to both iprodione and fludioxonil at a concentration of 1 microg/ml. In the dic1-deficient strains, phosphorylated BmHog1p was not detected after exposure to 10 microg/ml of the fungicides. In response to osmotic stress (0.4 M KCl), a trace of phosphorylated BmHog1p was found in the dic1-deficient strains, whereas the band representing active BmHog1p was clearly detected in the wild-type strain. Similar results were obtained for Neurospora crassa Os-2p MAPK phosphorylation in the mutant of the group III histidine kinase gene os-1. These results indicate that group III histidine kinase positively regulates the activation of Hog1-type MAPKs in filamentous fungi. Notably, the Hog1-type MAPKs were activated at high fungicide (100 microg/ml) and osmotic stress (0.8 M KCl) levels in the histidine kinase mutants of both fungi, suggesting that another signaling pathway activates Hog1-type MAPKs in these conditions.
Collapse
Affiliation(s)
- Akira Yoshimi
- Laboratory of Environmental Mycoscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
48
|
Tekaia F, Latgé JP. Aspergillus fumigatus: saprophyte or pathogen? Curr Opin Microbiol 2005; 8:385-92. [PMID: 16019255 DOI: 10.1016/j.mib.2005.06.017] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 06/22/2005] [Indexed: 11/18/2022]
Abstract
Large-scale genome comparisons have shown that no gene sets are shared exclusively by both Aspergillus fumigatus and any other human pathogen sequenced to date, such as Candida or Cryptococcus species. By contrast, and in agreement with the environmental occurrence of this fungus in decaying vegetation, the enzymatic machinery required by a fungus to colonize plant substrates has been found in the A. fumigatus genome. In addition, the proteome of this fungus contains numerous efflux pumps, including >100 major facilitators that help the fungus to resist either natural aggressive molecules present in the environment or antifungal drugs in humans. Environment sensing, counteracting reactive oxidants, and retrieving essential nutriments from the environment are general metabolic traits that are associated with the growth of the saprotrophic mold A. fumigatus in an unfriendly environment such as its human host.
Collapse
Affiliation(s)
- Fredj Tekaia
- Unité de Génétique Moléculaire des Levures, URA 2171 CNRS and UFR 927, Université Pierre et Marie Curie, Institut Pasteur, 25, rue du Dr Roux, 75015 Paris, France
| | | |
Collapse
|
49
|
Furukawa K, Hoshi Y, Maeda T, Nakajima T, Abe K. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol Microbiol 2005; 56:1246-61. [PMID: 15882418 DOI: 10.1111/j.1365-2958.2005.04605.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome sequencing analyses revealed that Aspergillus nidulans has orthologous genes to all those of the high-osmolarity glycerol (HOG) response mitogen-activated protein kinase (MAPK) pathway of Saccharomyces cerevisiae. A. nidulans mutant strains lacking sskA, sskB, pbsB, or hogA, encoding proteins orthologous to the yeast Ssk1p response regulator, Ssk2p/Ssk22p MAPKKKs, Pbs2p MAPKK and Hog1p MAPK, respectively, showed growth inhibition under high osmolarity, and HogA MAPK in these mutants was not phosphorylated under osmotic or oxidative stress. Thus, activation of the A. nidulans HOG (AnHOG) pathway depends solely on the two-component signalling system, and MAPKK activation mechanisms in the AnHOG pathway differ from those in the yeast HOG pathway, where Pbs2p is activated by two branches, Sln1p and Sho1p. Expression of pbsB complemented the high-osmolarity sensitivity of yeast pbs2Delta, and the complementation depended on Ssk2p/Ssk22p, but not on Sho1p. Pbs2p requires its Pro-rich motif for binding to the Src-homology3 (SH3) domain of Sho1p, but PbsB lacks a typical Pro-rich motif. However, a PbsB mutant (PbsB(Pro)) with the yeast Pro-rich motif was activated by the Sho1p branch in yeast. In contrast, HogA in sskADelta expressing PbsB(Pro) was not phosphorylated under osmotic stress, suggesting that A. nidulans ShoA, orthologous to yeast Sho1p, is not involved in osmoresponsive activation of the AnHOG pathway. We also found that besides HogA, PbsB can activate another Hog1p MAPK orthologue, MpkC, in A. nidulans, although mpkC is dispensable in osmoadaptation. In this study, we discuss the differences between the AnHOG and the yeast HOG pathways.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Graduate School of Agricultural Sciences, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
50
|
Mizutani O, Nojima A, Yamamoto M, Furukawa K, Fujioka T, Yamagata Y, Abe K, Nakajima T. Disordered cell integrity signaling caused by disruption of the kexB gene in Aspergillus oryzae. EUKARYOTIC CELL 2005; 3:1036-48. [PMID: 15302836 PMCID: PMC500871 DOI: 10.1128/ec.3.4.1036-1048.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We isolated the kexB gene, which encodes a subtilisin-like processing enzyme, from a filamentous fungus, Aspergillus oryzae. To examine the physiological role of kexB in A. oryzae, we constructed a kexB disruptant (DeltakexB), which formed shrunken colonies with poor generation of conidia on Czapek-Dox (CD) agar plates and hyperbranched mycelia in CD liquid medium. The phenotypes of the DeltakexB strain were restored under high osmolarity in both solid and liquid culture conditions. We found that transcription of the mpkA gene, which encodes a putative mitogen-activated protein kinase involved in cell integrity signaling, was significantly higher in DeltakexB cells than in wild-type cells. The DeltakexB cells also contained higher levels of transcripts for cell wall-related genes encoding beta-1,3-glucanosyltransferase and chitin synthases, which is presumably attributable to cell integrity signaling through the increased gene expression of mpkA. As expected, constitutively increased levels of phosphorylated MpkA were observed in DeltakexB cells on the CD plate culture. High osmotic stress greatly downregulated the increased levels of both transcripts of mpkA and the phosphorylated form of MpkA in DeltakexB cells, concomitantly suppressing the morphological defects. These results suggest that the upregulation of transcription levels of mpkA and cell wall biogenesis genes in the DeltakexB strain is autoregulated by phosphorylated MpkA as the active form through cell integrity signaling. We think that KexB is required for precise proteolytic processing of sensor proteins in the cell integrity pathway or of cell wall-related enzymes under transcriptional control by the pathway and that the KexB defect thus induces disordered cell integrity signaling.
Collapse
Affiliation(s)
- Osamu Mizutani
- Laboratory of Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya, Tsutsumi-dori, Aobaku, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|