1
|
Patra P, Das M, Ravindran S, Ghosh A. Metabolic Engineering of Lachancea kluyveri with Enhanced Glucose and Xylose Co-utilization for Lignocellulosic Biofuels. ACS Synth Biol 2025. [PMID: 40358974 DOI: 10.1021/acssynbio.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Lignocellulose biorefinery provides a sustainable supply of fuels and value-added compounds. However, the major limitation of its application is the inefficient co-utilization of glucose and xylose by the model yeast. Here, we report for the first time on the metabolic engineering of non-model industrial yeast Lachancea kluyveri for co-utilization of glucose and xylose sustainably using lignocellulosic feedstock. Co-utilization in L. kluyveri was achieved by heterologous expression of XYLl, XYL2, and XYL3 and overexpression of TAL1 and TKL1, which eliminated the imbalanced cofactor specificity, reduced xylitol accumulation, and inadequately formed xylulose-5-phosphate. Further, this is the first report of the development of a robust genome engineering platform for diploid L. kluyveri that facilitated gene modification in both alleles of this yeast. Here, the genes were optimally expressed under PTEF1, the strongest promoter identified among the other three native promoters PTPI1, PPGK1, and PTDH3. Moreover, the engineered strain was used for metabolic flux analysis using our previously developed L. kluyveri genome-scale metabolic model (iPN730), which suggested the diversion of carbon flux toward competing pathways that can be targeted to achieve further strain improvement. During batch fermentation in a bioreactor, the recombinant host utilized 3.85% glucose and 2% xylose, producing an ethanol titer and yield of 23.65 g/L and 0.42 g/g sugar, respectively, with a maximum sugar consumption rate of 1.57 g/L/h. Further, fermentation using biomass hydrolysate in a bioreactor resulted in the complete consumption of xylose at a rate of 0.33 g/L/h without any xylitol accumulation. Altogether, this work represents the creation of an efficient glucose-xylose-co-utilizing diploid L. kluyveri strain that can be used in lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Manali Das
- Department of Biosciences and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Somdutt Ravindran
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
3
|
Heistinger L, Dohm JC, Paes BG, Koizar D, Troyer C, Ata Ö, Steininger-Mairinger T, Mattanovich D. Genotypic and phenotypic diversity among Komagataella species reveals a hidden pathway for xylose utilization. Microb Cell Fact 2022; 21:70. [PMID: 35468837 PMCID: PMC9036795 DOI: 10.1186/s12934-022-01796-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The yeast genus Komagataella currently consists of seven methylotrophic species isolated from tree environments. Well-characterized strains of K. phaffii and K. pastoris are important hosts for biotechnological applications, but the potential of other species from the genus remains largely unexplored. In this study, we characterized 25 natural isolates from all seven described Komagataella species to identify interesting traits and provide a comprehensive overview of the genotypic and phenotypic diversity available within this genus. RESULTS Growth tests on different carbon sources and in the presence of stressors at two different temperatures allowed us to identify strains with differences in tolerance to high pH, high temperature, and growth on xylose. As Komagataella species are generally not considered xylose-utilizing yeasts, xylose assimilation was characterized in detail. Growth assays, enzyme activity measurements and 13C labeling confirmed the ability of K. phaffii to utilize D-xylose via the oxidoreductase pathway. In addition, we performed long-read whole-genome sequencing to generate genome assemblies of all Komagataella species type strains and additional K. phaffii and K. pastoris isolates for comparative analysis. All sequenced genomes have a similar size and share 83-99% average sequence identity. Genome structure analysis showed that K. pastoris and K. ulmi share the same rearrangements in difference to K. phaffii, while the genome structure of K. kurtzmanii is similar to K. phaffii. The genomes of the other, more distant species showed a larger number of structural differences. Moreover, we used the newly assembled genomes to identify putative orthologs of important xylose-related genes in the different Komagataella species. CONCLUSIONS By characterizing the phenotypes of 25 natural Komagataella isolates, we could identify strains with improved growth on different relevant carbon sources and stress conditions. Our data on the phenotypic and genotypic diversity will provide the basis for the use of so-far neglected Komagataella strains with interesting characteristics and the elucidation of the genetic determinants of improved growth and stress tolerance for targeted strain improvement.
Collapse
Affiliation(s)
- Lina Heistinger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria.
- Institute of Biochemistry, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland.
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
| | - Barbara G Paes
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Brazil
| | - Daniel Koizar
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
| | - Christina Troyer
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
| | - Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (Acib GmbH), 1190, Vienna, Austria
| | - Teresa Steininger-Mairinger
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (Acib GmbH), 1190, Vienna, Austria
| |
Collapse
|
4
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
5
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
6
|
Hardt N, Kind S, Schoenenberger B, Eggert T, Obkircher M, Wohlgemuth R. Facile synthesis of D-xylulose-5-phosphate and L-xylulose-5-phosphate by xylulokinase-catalyzed phosphorylation. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1630385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | | | | | - Roland Wohlgemuth
- Sigma-Aldrich/Merck KGaA, Buchs, Switzerland
- Institute of Technical Biochemistry, Technical University Lodz, Lodz, Poland
| |
Collapse
|
7
|
Wagner ER, Myers KS, Riley NM, Coon JJ, Gasch AP. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production. PLoS One 2019; 14:e0212389. [PMID: 31112537 PMCID: PMC6528989 DOI: 10.1371/journal.pone.0212389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Lignocellulosic biomass offers a sustainable source for biofuel production that does not compete with food-based cropping systems. Importantly, two critical bottlenecks prevent economic adoption: many industrially relevant microorganisms cannot ferment pentose sugars prevalent in lignocellulosic medium, leaving a significant amount of carbon unutilized. Furthermore, chemical biomass pretreatment required to release fermentable sugars generates a variety of toxins, which inhibit microbial growth and metabolism, specifically limiting pentose utilization in engineered strains. Here we dissected genetic determinants of anaerobic xylose fermentation and stress tolerance in chemically pretreated corn stover biomass, called hydrolysate. We previously revealed that loss-of-function mutations in the stress-responsive MAP kinase HOG1 and negative regulator of the RAS/Protein Kinase A (PKA) pathway, IRA2, enhances anaerobic xylose fermentation. However, these mutations likely reduce cells' ability to tolerate the toxins present in lignocellulosic hydrolysate, making the strain especially vulnerable to it. We tested the contributions of Hog1 and PKA signaling via IRA2 or PKA negative regulatory subunit BCY1 to metabolism, growth, and stress tolerance in corn stover hydrolysate and laboratory medium with mixed sugars. We found mutations causing upregulated PKA activity increase growth rate and glucose consumption in various media but do not have a specific impact on xylose fermentation. In contrast, mutation of HOG1 specifically increased xylose usage. We hypothesized improving stress tolerance would enhance the rate of xylose consumption in hydrolysate. Surprisingly, increasing stress tolerance did not augment xylose fermentation in lignocellulosic medium in this strain background, suggesting other mechanisms besides cellular stress limit this strain's ability for anaerobic xylose fermentation in hydrolysate.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Nicholas M. Riley
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison WI United States of America
- Morgridge Institute for Research, Madison, WI United States of America
| | - Audrey P. Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI United States of America
| |
Collapse
|
8
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
9
|
Su YK, Willis LB, Rehmann L, Smith DR, Jeffries TW. Spathaspora passalidarum selected for resistance to AFEX hydrolysate shows decreased cell yield. FEMS Yeast Res 2018; 18:5042277. [DOI: 10.1093/femsyr/foy011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yi-Kai Su
- Department of Biological Systems Engineering, University of Wisconsin, Madison, WI 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53705, USA
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 3K, Canada
| | - Laura B Willis
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53705, USA
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
- Department of Bacteriology, University of Madison, WI, 53705, USA
| | - Lars Rehmann
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 3K, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Thomas W Jeffries
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53705, USA
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
- Department of Bacteriology, University of Madison, WI, 53705, USA
| |
Collapse
|
10
|
Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Kwak S, Jin YS. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 2017; 16:82. [PMID: 28494761 PMCID: PMC5425999 DOI: 10.1186/s12934-017-0694-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Efficient xylose utilization is one of the most important pre-requisites for developing an economic microbial conversion process of terrestrial lignocellulosic biomass into biofuels and biochemicals. A robust ethanol producing yeast Saccharomyces cerevisiae has been engineered with heterologous xylose assimilation pathways. A two-step oxidoreductase pathway consisting of NAD(P)H-linked xylose reductase and NAD+-linked xylitol dehydrogenase, and one-step isomerase pathway using xylose isomerase have been employed to enable xylose assimilation in engineered S. cerevisiae. However, the resulting engineered yeast exhibited inefficient and slow xylose fermentation. In order to improve the yield and productivity of xylose fermentation, expression levels of xylose assimilation pathway enzymes and their kinetic properties have been optimized, and additional optimizations of endogenous or heterologous metabolisms have been achieved. These efforts have led to the development of engineered yeast strains ready for the commercialization of cellulosic bioethanol. Interestingly, xylose metabolism by engineered yeast was preferably respiratory rather than fermentative as in glucose metabolism, suggesting that xylose can serve as a desirable carbon source capable of bypassing metabolic barriers exerted by glucose repression. Accordingly, engineered yeasts showed superior production of valuable metabolites derived from cytosolic acetyl-CoA and pyruvate, such as 1-hexadecanol and lactic acid, when the xylose assimilation pathway and target synthetic pathways were optimized in an adequate manner. While xylose has been regarded as a sugar to be utilized because it is present in cellulosic hydrolysates, potential benefits of using xylose instead of glucose for yeast-based biotechnological processes need to be realized.
Collapse
Affiliation(s)
- Suryang Kwak
- Department of Food Science and Human Nutrition and Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition and Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Bolotin-Fukuhara M. Thirty years of the HAP2/3/4/5 complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:543-559. [DOI: 10.1016/j.bbagrm.2016.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
|
13
|
Zheng Z, Lin X, Jiang T, Ye W, Ouyang J. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01. Biotechnol Lett 2016; 38:1331-9. [PMID: 27206341 DOI: 10.1007/s10529-016-2109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid. RESULTS The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7-8 but with a high temperature maximum of 80-85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni(2+) and Co(2+), respectively. CONCLUSIONS Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Xi Lin
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ting Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Weihua Ye
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Key Laboratory of Forest Genetics and Biotechnology of the Ministry of Education, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
14
|
Ryu S, Hipp J, Trinh CT. Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica. Appl Environ Microbiol 2016; 82:1334-1345. [PMID: 26682853 PMCID: PMC4751822 DOI: 10.1128/aem.03582-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022] Open
Abstract
The oleaginous yeast Yarrowia lipolytica is an industrially important host for production of organic acids, oleochemicals, lipids, and proteins with broad biotechnological applications. Albeit known for decades, the unique native metabolism of Y. lipolytica for using complex fermentable sugars, which are abundant in lignocellulosic biomass, is poorly understood. In this study, we activated and elucidated the native sugar metabolism in Y. lipolytica for cell growth on xylose and cellobiose as well as their mixtures with glucose through comprehensive metabolic and transcriptomic analyses. We identified 7 putative glucose-specific transporters, 16 putative xylose-specific transporters, and 4 putative cellobiose-specific transporters that are transcriptionally upregulated for growth on respective single sugars. Y. lipolytica is capable of using xylose as a carbon source, but xylose dehydrogenase is the key bottleneck of xylose assimilation and is transcriptionally repressed by glucose. Y. lipolytica has a set of 5 extracellular and 6 intracellular β-glucosidases and is capable of assimilating cellobiose via extra- and intracellular mechanisms, the latter being dominant for growth on cellobiose as a sole carbon source. Strikingly, Y. lipolytica exhibited enhanced sugar utilization for growth in mixed sugars, with strong carbon catabolite activation for growth on the mixture of xylose and cellobiose and with mild carbon catabolite repression of glucose on xylose and cellobiose. The results of this study shed light on fundamental understanding of the complex native sugar metabolism of Y. lipolytica and will help guide inverse metabolic engineering of Y. lipolytica for enhanced conversion of biomass-derived fermentable sugars to chemicals and fuels.
Collapse
Affiliation(s)
- Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Julie Hipp
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA
- University of Tennessee, Knoxville, Tennessee, USA; Bioenergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
15
|
Mert MJ, la Grange DC, Rose SH, van Zyl WH. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase. J Ind Microbiol Biotechnol 2016; 43:431-40. [PMID: 26749525 DOI: 10.1007/s10295-015-1727-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/24/2015] [Indexed: 10/22/2022]
Abstract
Xylan represents a major component of lignocellulosic biomass, and its utilization by Saccharomyces cerevisiae is crucial for the cost effective production of ethanol from plant biomass. A recombinant xylan-degrading and xylose-assimilating Saccharomyces cerevisiae strain was engineered by co-expression of the xylanase (xyn2) of Trichoderma reesei, the xylosidase (xlnD) of Aspergillus niger, the Scheffersomyces stipitis xylulose kinase (xyl3) together with the codon-optimized xylose isomerase (xylA) from Bacteroides thetaiotaomicron. Under aerobic conditions, the recombinant strain displayed a complete respiratory mode, resulting in higher yeast biomass production and consequently higher enzyme production during growth on xylose as carbohydrate source. Under oxygen limitation, the strain produced ethanol from xylose at a maximum theoretical yield of ~90 %. This study is one of only a few that demonstrates the construction of a S. cerevisiae strain capable of growth on xylan as sole carbohydrate source by means of recombinant enzymes.
Collapse
Affiliation(s)
- Marlin John Mert
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Daniël Coenrad la Grange
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Shaunita Hellouise Rose
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Willem Heber van Zyl
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
16
|
Lee SM, Jellison T, Alper HS. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2015; 100:2487-98. [DOI: 10.1007/s00253-015-7211-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
17
|
Komeda H, Yamasaki-Yashiki S, Hoshino K, Asano Y. Identification and characterization of D-xylulokinase from the D-xylose-fermenting fungus, Mucor circinelloides. FEMS Microbiol Lett 2014; 360:51-61. [PMID: 25163569 DOI: 10.1111/1574-6968.12589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022] Open
Abstract
D-Xylulokinase catalyzes the phosphorylation of D-xylulose in the final step of the pentose catabolic pathway to form d-xylulose-5-phosphate. The D-xylulokinase activity was found to be induced by both D-xylose and L-arabinose, as well as some of the other enzymes involved in the pentose catabolism, in the D-xylose-fermenting zygomycetous fungus, Mucor circinelloides NBRC 4572. The putative gene, xyl3, which may encode D-xylulokinase, was detected in the genome sequence of this strain. The amino acid sequence deduced from the gene was more similar to D-xylulokinases from an animal origin than from other fungi. The recombinant enzyme was purified from the E. coli transformant expressing xyl3 and then characterized. The ATP-dependent phosphorylative activity of the enzyme was the highest toward D-xylulose. Its kinetic parameters were determined as Km (D-xylulose) = 0.29 mM and Km (ATP) = 0.51 mM, indicating that the xyl3 gene encoded D-xylulokinase (McXK). Western blot analysis revealed that McXK was induced by L-arabinose as well as D-xylose and the induction was repressed in the presence of D-glucose, suggesting that the enzyme may be involved in the catabolism of D-xylose and L-arabinose and is subject to carbon catabolite repression in this fungus. This is the first study on D-xylulokinase from zygomycetous fungi.
Collapse
Affiliation(s)
- Hidenobu Komeda
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | | | | | | |
Collapse
|
18
|
Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme Microb Technol 2014; 63:13-20. [DOI: 10.1016/j.enzmictec.2014.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023]
|
19
|
Ethanol Production from Xylo-oligosaccharides by Xylose-FermentingSaccharomyces cerevisiaeExpressing β-Xylosidase. Biosci Biotechnol Biochem 2014; 75:1140-6. [DOI: 10.1271/bbb.110043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Fujii T, Murakami K, Endo T, Fujimoto S, Minowa T, Matsushika A, Yano S, Sawayama S. Bench-scale bioethanol production from eucalyptus by high solid saccharification and glucose/xylose fermentation method. Bioprocess Biosyst Eng 2013; 37:749-54. [PMID: 23917411 PMCID: PMC3968441 DOI: 10.1007/s00449-013-1032-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/29/2013] [Indexed: 11/23/2022]
Abstract
In the bioethanol production process, high solid saccharification and glucose/xylose co-fermentation are important technologies for obtaining increased ethanol concentrations; however, bench-scale studies using combinations of these methods are limited. In this study, we hydrolyzed high solid concentration of milled eucalyptus using commercial enzymes and obtained 138.4 g/L total monomeric sugar concentration. These sugars were fermented to 53.5 g/L of ethanol by a xylose-utilizing recombinant Saccharomyces cerevisiae strain, MA-R4. These experiments were performed in bench scale (using 50 L scale solid mixer and 70 L scale fermenter). The results obtained in this study were comparable to our previous results in laboratory scale, indicating that we successfully achieved an efficient high solid saccharification and glucose/xylose co-fermentation system in bench scale.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Comparison of the performance of eight recombinant strains of xylose-fermenting Saccharomyces cerevisiae as to bioethanol production from rice straw enzymatic hydrolyzate. Biosci Biotechnol Biochem 2013; 77:1579-82. [PMID: 23832338 DOI: 10.1271/bbb.130116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We prepared eight recombinant Saccharomyces cerevisae strains, including three strains generated in this study that were produced by chromosomal integration of xylose utilization pathway enzymes genes. Among these strains, MA-R4 was the most efficient at producing ethanol from rice straw enzymatic hydrolysate, indicating that it is a superior strain for bioethanol production.
Collapse
|
22
|
Liu T, Zou W, Liu L, Chen J. A constraint-based model of Scheffersomyces stipitis for improved ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:72. [PMID: 22998943 PMCID: PMC3503688 DOI: 10.1186/1754-6834-5-72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/13/2012] [Indexed: 05/28/2023]
Abstract
UNLABELLED BACKGROUND As one of the best xylose utilization microorganisms, Scheffersomyces stipitis exhibits great potential for the efficient lignocellulosic biomass fermentation. Therefore, a comprehensive understanding of its unique physiological and metabolic characteristics is required to further improve its performance on cellulosic ethanol production. RESULTS A constraint-based genome-scale metabolic model for S. stipitis CBS 6054 was developed on the basis of its genomic, transcriptomic and literature information. The model iTL885 consists of 885 genes, 870 metabolites, and 1240 reactions. During the reconstruction process, 36 putative sugar transporters were reannotated and the metabolisms of 7 sugars were illuminated. Essentiality study was conducted to predict essential genes on different growth media. Key factors affecting cell growth and ethanol formation were investigated by the use of constraint-based analysis. Furthermore, the uptake systems and metabolic routes of xylose were elucidated, and the optimization strategies for the overproduction of ethanol were proposed from both genetic and environmental perspectives. CONCLUSIONS Systems biology modelling has proven to be a powerful tool for targeting metabolic changes. Thus, this systematic investigation of the metabolism of S. stipitis could be used as a starting point for future experiment designs aimed at identifying the metabolic bottlenecks of this important yeast.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Wei Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
23
|
Unrean P, Nguyen NHA. Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions. Appl Microbiol Biotechnol 2012; 94:1387-98. [PMID: 22526806 DOI: 10.1007/s00253-012-4059-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 11/26/2022]
Abstract
Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis.
Collapse
Affiliation(s)
- Pornkamol Unrean
- Biochemical Engineering and Pilot Plant Research and Development Unit, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand.
| | | |
Collapse
|
24
|
Cai Z, Zhang B, Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnol J 2011; 7:34-46. [DOI: 10.1002/biot.201100053] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 12/22/2022]
|
25
|
Chemical and Synthetic Genetic Array Analysis Identifies Genes that Suppress Xylose Utilization and Fermentation in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2011; 1:247-58. [PMID: 22384336 PMCID: PMC3276145 DOI: 10.1534/g3.111.000695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/10/2011] [Indexed: 12/24/2022]
Abstract
Though highly efficient at fermenting hexose sugars, Saccharomyces cerevisiae has limited ability to ferment five-carbon sugars. As a significant portion of sugars found in cellulosic biomass is the five-carbon sugar xylose, S. cerevisiae must be engineered to metabolize pentose sugars, commonly by the addition of exogenous genes from xylose fermenting fungi. However, these recombinant strains grow poorly on xylose and require further improvement through rational engineering or evolutionary adaptation. To identify unknown genes that contribute to improved xylose fermentation in these recombinant S. cerevisiae, we performed genome-wide synthetic interaction screens to identify deletion mutants that impact xylose utilization of strains expressing the xylose isomerase gene XYLA from Piromyces sp. E2 alone or with an additional copy of the endogenous xylulokinase gene XKS1. We also screened the deletion mutant array to identify mutants whose growth is affected by xylose. Our genetic network reveals that more than 80 nonessential genes from a diverse range of cellular processes impact xylose utilization. Surprisingly, we identified four genes, ALP1, ISC1, RPL20B, and BUD21, that when individually deleted improved xylose utilization of both S. cerevisiae S288C and CEN.PK strains. We further characterized BUD21 deletion mutant cells in batch fermentations and found that they produce ethanol even the absence of exogenous XYLA. We have demonstrated that the ability of laboratory strains of S. cerevisiae to utilize xylose as a sole carbon source is suppressed, which implies that S. cerevisiae may not require the addition of exogenous genes for efficient xylose fermentation.
Collapse
|
26
|
Identification of a xylulokinase catalyzing xylulose phosphorylation in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. J Ind Microbiol Biotechnol 2011; 38:1739-46. [PMID: 21451977 DOI: 10.1007/s10295-011-0963-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/12/2011] [Indexed: 10/24/2022]
Abstract
Xylulokinase is one of the key enzymes in xylose metabolism and fermentation, and fine-tuned expression of xylulokinase can improve xylose fermentation in yeast. To improve the efficiency of xylose fermentation in Kluyveromyces marxianus, the gene KmXYL3, which encodes a D: -xylulokinase (E.C. 2.7.1.17), was isolated from K. marxianus NBRC1777. KmXYL3 was expressed in Escherichia coli BL21 (DE3) cells, and the specific activity of the resulting recombinant purified xylulokinase was 23.5 mU/mg. Disruption of KmXYL3 resulted in both loss of xylitol utilization and marked decrease in xylose utilization, proving that KmXYL3 encodes a xylulokinase that catalyzes the reaction from xylulose to xylulose 5-phosphate in the xylose metabolic pathway. The slow assimilation of xylose observed in the KmXYL3-disrupted strain indicates that KmXYL3 is critical for xylose and xylitol utilization; however, K. marxianus utilizes a bypass pathway for xylose assimilation, and this pathway does not involve xylitol or xylulose.
Collapse
|
27
|
Rodrigues RCLB, Kenealy WR, Jeffries TW. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 2011; 38:1649-55. [PMID: 21424687 DOI: 10.1007/s10295-011-0953-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono- and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3-∆1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic acids used for neutralization and urea or ammonium sulfate used as nitrogen sources. Phosphoric acid improved color and removal of phenolic compounds. D-Gluconic acid enhanced cell growth. Ammonium sulfate increased cell yield and maximum specific cell growth rate independently of the acid used for neutralization. The highest xylitol yield (0.61 g(xylitol)/g(xylose)) and volumetric productivity (0.18 g(xylitol)/g(xylose )l) were obtained in hydrolysate neutralized with phosphoric acid. However, when urea was the nitrogen source the cell yield was less than half of that obtained with ammonium sulfate.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departamento de Biotecnologia, DEBIQ, Escola de Engenharia de Lorena, EEL, USP, Universidade de São Paulo, P.O Box 116, Lorena, SP 12600-970, Brazil.
| | | | | |
Collapse
|
28
|
Wenger JW, Schwartz K, Sherlock G. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 2010; 6:e1000942. [PMID: 20485559 PMCID: PMC2869308 DOI: 10.1371/journal.pgen.1000942] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/08/2010] [Indexed: 12/30/2022] Open
Abstract
Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA) using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.
Collapse
Affiliation(s)
- Jared W. Wenger
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
29
|
Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 2009; 7:715-23. [DOI: 10.1038/nrmicro2186] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009; 84:37-53. [DOI: 10.1007/s00253-009-2101-x] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/18/2009] [Accepted: 06/18/2009] [Indexed: 12/20/2022]
|
31
|
Abstract
Genome sequencing and subsequent global gene expression studies have advanced our understanding of the lignocellulose-fermenting yeast Pichia stipitis. These studies have provided an insight into its central carbon metabolism, and analysis of its genome has revealed numerous functional gene clusters and tandem repeats. Specialized physiological traits are often the result of several gene products acting together. When coinheritance is necessary for the overall physiological function, recombination and selection favor colocation of these genes in a cluster. These are particularly evident in strongly conserved and idiomatic traits. In some cases, the functional clusters consist of multiple gene families. Phylogenetic analyses of the members in each family show that once formed, functional clusters undergo duplication and differentiation. Genome-wide expression analysis reveals that regulatory patterns of clusters are similar after they have duplicated and that the expression profiles evolve along with functional differentiation of the clusters. Orthologous gene families appear to arise through tandem gene duplication, followed by differentiation in the regulatory and coding regions of the gene. Genome-wide expression analysis combined with cross-species comparisons of functional gene clusters should reveal many more aspects of eukaryotic physiology.
Collapse
|
32
|
Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng 2009; 11:48-55. [DOI: 10.1016/j.ymben.2008.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/02/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022]
|
33
|
Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 2008; 37:e16. [PMID: 19074487 PMCID: PMC2632897 DOI: 10.1093/nar/gkn991] [Citation(s) in RCA: 524] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70–100%) either on a plasmid or on a yeast chromosome. As this new method only requires simple DNA preparation and one-step yeast transformation, it represents a powerful tool in the construction of biochemical pathways for synthetic biology, metabolic engineering and functional genomics studies.
Collapse
Affiliation(s)
- Zengyi Shao
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Zhao
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- *To whom correspondence should be addressed. Tel: +1 217 333 2631; Fax: +1 217 333 5052;
| |
Collapse
|
34
|
Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab Eng 2008; 10:360-9. [DOI: 10.1016/j.ymben.2007.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/27/2007] [Accepted: 12/07/2007] [Indexed: 11/20/2022]
|
35
|
Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2008; 81:243-55. [PMID: 18751695 DOI: 10.1007/s00253-008-1649-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/31/2008] [Accepted: 08/03/2008] [Indexed: 11/27/2022]
Abstract
A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD(+)-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP(+). In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP(+)-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP(+)-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain.
Collapse
|
36
|
Metabolic engineering of the initial stages of xylose catabolism in yeast for the purpose of constructing efficient producers of ethanol from lignocellulosics. CYTOL GENET+ 2008. [DOI: 10.1007/s11956-008-2011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Use of in vivo 13C nuclear magnetic resonance spectroscopy to elucidate L-arabinose metabolism in yeasts. Appl Environ Microbiol 2008; 74:1845-55. [PMID: 18245253 DOI: 10.1128/aem.02453-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida arabinofermentans PYCC 5603(T) and Pichia guilliermondii PYCC 3012 were shown to grow well on L-arabinose, albeit exhibiting distinct features that justify an in-depth comparative study of their respective pentose catabolism. Carbon-13 labeling experiments coupled with in vivo nuclear magnetic resonance (NMR) spectroscopy were used to investigate L-arabinose metabolism in these yeasts, thereby complementing recently reported physiological and enzymatic data. The label supplied in L-[2-(13)C]arabinose to nongrowing cells, under aerobic conditions, was found on C-1 and C-2 of arabitol and ribitol, on C-2 of xylitol, and on C-1, C-2, and C-3 of trehalose. The detection of labeled arabitol and xylitol constitutes additional evidence for the operation in yeast of the redox catabolic pathway, which is widespread among filamentous fungi. Furthermore, labeling at position C-1 of trehalose and arabitol demonstrates that glucose-6-phosphate is recycled through the oxidative pentose phosphate pathway (PPP). This result was interpreted as a metabolic strategy to regenerate NADPH, the cofactor essential for sustaining l-arabinose catabolism at the level of L-arabinose reductase and L-xylulose reductase. Moreover, the observed synthesis of D-arabitol and ribitol provides a route with which to supply NAD(+) under oxygen-limiting conditions. In P. guilliermondii PYCC 3012, the strong accumulation of L-arabitol (intracellular concentration of up to 0.4 M) during aerobic L-arabinose metabolism indicates the existence of a bottleneck at the level of L-arabitol 4-dehydrogenase. This report provides the first experimental evidence for a link between L-arabinose metabolism in fungi and the oxidative branch of the PPP and suggests rational guidelines for the design of strategies for the production of new and efficient L-arabinose-fermenting yeasts.
Collapse
|
38
|
Rodrigues RCLB, Lu C, Lin B, Jeffries TW. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor. Appl Biochem Biotechnol 2007; 148:199-209. [PMID: 18418752 DOI: 10.1007/s12010-007-8080-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Delta) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h(-1)). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 g(xylose)/g(cel) h) and xylitol production (0.059 g(xylitol)/g(cel) h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departamento de Biotecnologia, DEBIQ, Escola de Engenharia de Lorena, EEL, USP, Universidade de São Paulo, P.O Box 116, 12600-970, Lorena, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
39
|
A constitutive catabolite repression mutant of a recombinantSaccharomyces cerevisiae strain improves xylose consumption during fermentation. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Ni H, Laplaza JM, Jeffries TW. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 2007; 73:2061-6. [PMID: 17277207 PMCID: PMC1855673 DOI: 10.1128/aem.02564-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae L2612 transformed with genes for xylose reductase and xylitol dehydrogenase (XYL1 and XYL2) grows well on glucose but very poorly on d-xylose. When a gene for d-xylulokinase (XYL3 or XKS1) is overexpressed, growth on glucose is unaffected, but growth on xylose is blocked. Spontaneous or chemically induced mutants of this engineered yeast that would grow on xylose could, however, be obtained. We therefore used insertional transposon mutagenesis to identify two loci that can relieve this xylose-specific growth inhibition. One is within the open reading frame (ORF) of PHO13, and the other is approximately 500 bp upstream from the TAL1 ORF. Deletion of PHO13 or overexpression of TAL1 resulted in a phenotype similar to the insertional mutation events. Quantitative PCR showed that deletion of PHO13 increased transcripts for TAL1, indicating that the growth inhibition imposed by the overexpression of XYL3 on xylose can be relieved by an overexpression of transcripts for downstream enzymes. These results may be useful in constructing better xylose-fermenting S. cerevisiae strains.
Collapse
Affiliation(s)
- Haiying Ni
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | |
Collapse
|
41
|
Ilmén M, Koivuranta K, Ruohonen L, Suominen P, Penttilä M. Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 2006; 73:117-23. [PMID: 17071782 PMCID: PMC1797125 DOI: 10.1128/aem.01311-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial conversion of renewable raw materials to useful products is an important objective in industrial biotechnology. Pichia stipitis, a yeast that naturally ferments xylose, was genetically engineered for l-(+)-lactate production. We constructed a P. stipitis strain that expressed the l-lactate dehydrogenase (LDH) from Lactobacillus helveticus under the control of the P. stipitis fermentative ADH1 promoter. Xylose, glucose, or a mixture of the two sugars was used as the carbon source for lactate production. The constructed P. stipitis strain produced a higher level of lactate and a higher yield on xylose than on glucose. Lactate accumulated as the main product in xylose-containing medium, with 58 g/liter lactate produced from 100 g/liter xylose. Relatively efficient lactate production also occurred on glucose medium, with 41 g/liter lactate produced from 94 g/liter glucose. In the presence of both sugars, xylose and glucose were consumed simultaneously and converted predominantly to lactate. Lactate was produced at the expense of ethanol, whose production decreased to approximately 15 to 30% of the wild-type level on xylose-containing medium and to 70 to 80% of the wild-type level on glucose-containing medium. Thus, LDH competed efficiently with the ethanol pathway for pyruvate, even though the pathway from pyruvate to ethanol was intact. Our results show, for the first time, that lactate production from xylose by a yeast species is feasible and efficient. This is encouraging for further development of yeast-based bioprocesses to produce lactate from lignocellulosic raw material.
Collapse
Affiliation(s)
- Marja Ilmén
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | | | | | | | | |
Collapse
|
42
|
DI LUCCIO E, PETSCHACHER B, VOEGTLI J, CHOU HT, STAHLBERG H, NIDETZKY B, WILSON DK. Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli. J Mol Biol 2006; 365:783-98. [PMID: 17123542 PMCID: PMC1995121 DOI: 10.1016/j.jmb.2006.10.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/18/2006] [Accepted: 10/19/2006] [Indexed: 11/16/2022]
Abstract
The primary metabolic route for D-xylose, the second most abundant sugar in nature, is via the pentose phosphate pathway after a two-step or three-step conversion to xylulose-5-phosphate. Xylulose kinase (XK; EC 2.7.1.17) phosphorylates D-xylulose, the last step in this conversion. The apo and D-xylulose-bound crystal structures of Escherichia coli XK have been determined and show a dimer composed of two domains separated by an open cleft. XK dimerization was observed directly by a cryo-EM reconstruction at 36 A resolution. Kinetic studies reveal that XK has a weak substrate-independent MgATP-hydrolyzing activity, and phosphorylates several sugars and polyols with low catalytic efficiency. Binding of pentulose and MgATP to form the reactive ternary complex is strongly synergistic. Although the steady-state kinetic mechanism of XK is formally random, a path is preferred in which D-xylulose binds before MgATP. Modelling of MgATP binding to XK and the accompanying conformational change suggests that sugar binding is accompanied by a dramatic hinge-bending movement that enhances interactions with MgATP, explaining the observed synergism. A catalytic mechanism is proposed and supported by relevant site-directed mutants.
Collapse
Affiliation(s)
- Eric DI LUCCIO
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
| | - Barbara PETSCHACHER
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria
| | - Jennifer VOEGTLI
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
| | - Hui-Ting CHOU
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
| | - Henning STAHLBERG
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
| | - Bernd NIDETZKY
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria
| | - David K. WILSON
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
- * Corresponding author, Section of Molecular and Cellular Biology, One Shields Ave., University of California, Davis, CA, 95616, Phone: (530)752-1136; Fax: (530)752-3085,
| |
Collapse
|
43
|
Guo C, He P, Lu D, Shen A, Jiang N. Cloning and molecular characterization of a gene coding D-xylulokinase (CmXYL3) from Candida maltosa. J Appl Microbiol 2006; 101:139-50. [PMID: 16834601 DOI: 10.1111/j.1365-2672.2006.02915.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To clone and identify a gene (CmXYL3) coding D-xylulokinase from Candida maltosa Xu316 and understand its physiological function. METHODS AND RESULTS Based on the conserved regions of the known D-xylulokinase-encoding genes, a pair of degenerate primers was designed to clone the CmXYL3 gene from C. maltosa Xu316. The coding region and sequences flanking the CmXYL3 gene were obtained by PCR-based DNA walking method. Southern blotting analysis suggested that there is a single copy of the CmXYL3 gene in the genome. The open reading frame starting from ATG and ending with TAG stop codon encoded 616 amino acids with a calculated molecular mass of 68889.743 Da. The CmXYL3 gene under the control of the GPD1 promoter was heterologously expressed in Saccharomyces cerevisiae deficient in D-xylulokinase (deltaScXKS1::LEU2) activity, and restored growth on D-xylulose. The specific activity of D-xylulokinase varied during xylose fermentation and was correlated with aeration level. After growth on different pentoses and pentitols as sole carbon sources, the highest specific activity of D-xylulokinase was observed on D-xylose. CONCLUSIONS The CmXYL3 gene isolated from C. maltosa Xu316 encodes a novel D-xylulokinase that plays a pivotal role in xylulose metabolism. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report that describes the isolation and cloning of D-xylulokinase gene (CmXYL3) from C. maltosa Xu316. D-xylulokinase is pivotal for growth and product formation during xylose metabolism. Better understanding of the biochemical properties and the physiological function of D-xylulokinase will contribute to optimizing fermentation conditions and determining the strategies for metabolic engineering of C. maltosa Xu316 for further improvement of xylitol yield and productivity.
Collapse
Affiliation(s)
- C Guo
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | |
Collapse
|
44
|
Laplaza JM, Torres BR, Jin YS, Jeffries TW. Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.07.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Jin YS, Alper H, Yang YT, Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 2005; 71:8249-56. [PMID: 16332810 PMCID: PMC1317456 DOI: 10.1128/aem.71.12.8249-8256.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 08/30/2005] [Indexed: 11/20/2022] Open
Abstract
We used an inverse metabolic engineering approach to identify gene targets for improved xylose assimilation in recombinant Saccharomyces cerevisiae. Specifically, we created a genomic fragment library from Pichia stipitis and introduced it into recombinant S. cerevisiae expressing XYL1 and XYL2. Through serial subculturing enrichment of the transformant library, 16 transformants were identified and confirmed to have a higher growth rate on xylose. Sequencing of the 16 plasmids isolated from these transformants revealed that the majority of the inserts (10 of 16) contained the XYL3 gene, thus confirming the previous finding that XYL3 is the consensus target for increasing xylose assimilation. Following a sequential search for gene targets, we repeated the complementation enrichment process in a XYL1 XYL2 XYL3 background and identified 15 fast-growing transformants, all of which harbored the same plasmid. This plasmid contained an open reading frame (ORF) designated PsTAL1 based on a high level of homology with S. cerevisiae TAL1. To further investigate whether the newly identified PsTAL1 ORF is responsible for the enhanced-growth phenotype, we constructed an expression cassette containing the PsTAL1 ORF under the control of a constitutive promoter and transformed it into an S. cerevisiae recombinant expressing XYL1, XYL2, and XYL3. The resulting recombinant strain exhibited a 100% increase in the growth rate and a 70% increase in ethanol production (0.033 versus 0.019 g ethanol/g cells . h) on xylose compared to the parental strain. Interestingly, overexpression of PsTAL1 did not cause growth inhibition when cells were grown on glucose, unlike overexpression of the ScTAL1 gene. These results suggest that PsTAL1 is a better gene target for engineering of the pentose phosphate pathway in recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Yong-Su Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
46
|
Jin YS, Laplaza JM, Jeffries TW. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 2005; 70:6816-25. [PMID: 15528549 PMCID: PMC525251 DOI: 10.1128/aem.70.11.6816-6825.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for d-xylose utilization through the heterologous expression of genes for aldose reductase (XYL1), xylitol dehydrogenase (XYL2), and d-xylulokinase (XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2, and XYL3, mRNA transcript levels for glycolytic, fermentative, and pentose phosphate enzymes did not change significantly on glucose or xylose under aeration or oxygen limitation. However, expression of genes encoding the tricarboxylic acid cycle, respiration enzymes (HXK1, ADH2, COX13, NDI1, and NDE1), and regulatory proteins (HAP4 and MTH1) increased significantly when cells were cultivated on xylose, and the genes for respiration were even more elevated under oxygen limitation. These results suggest that recombinant S. cerevisiae does not recognize xylose as a fermentable carbon source and that respiratory proteins are induced in response to cytosolic redox imbalance; however, lower sugar uptake and growth rates on xylose might also induce transcripts for respiration. A petite respiration-deficient mutant (rho degrees ) of the engineered strain produced more ethanol and accumulated less xylitol from xylose. It formed characteristic colonies on glucose, but it did not grow on xylose. These results are consistent with the higher respiratory activity of recombinant S. cerevisiae when growing on xylose and with its inability to grow on xylose under anaerobic conditions.
Collapse
Affiliation(s)
- Yong-Su Jin
- Department of Food Science, University of Wisconsin--Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
47
|
Jin YS, Jeffries TW. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng 2005; 6:229-38. [PMID: 15256213 DOI: 10.1016/j.ymben.2003.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 11/14/2003] [Indexed: 11/28/2022]
Abstract
Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast traditionally used in ethanol production from hexose. However, recombinant S. cerevisiae created in several laboratories have used xylose oxidatively rather than in the fermentative manner that this yeast metabolizes glucose. To understand the differences between glucose and engineered xylose metabolic networks, we performed a flux balance analysis (FBA) and calculated extreme pathways using a stoichiometric model that describes the biochemistry of yeast cell growth. FBA predicted that the ethanol yield from xylose exhibits a maximum under oxygen-limited conditions, and a fermentation experiment confirmed this finding. Fermentation results were largely consistent with in silico phenotypes based on calculated extreme pathways, which displayed several phases of metabolic phenotype with respect to oxygen availability from anaerobic to aerobic conditions. However, in contrast to the model prediction, xylitol production continued even after the optimum aeration level for ethanol production was attained. These results suggest that oxygen (or some other electron accepting system) is required to resolve the redox imbalance caused by cofactor difference between xylose reductase and xylitol dehydrogenase, and that other factors limit glycolytic flux when xylose is the sole carbon source.
Collapse
Affiliation(s)
- Yong-Su Jin
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Drive, 53706, USA
| | | |
Collapse
|
48
|
Jin YS, Cruz J, Jeffries TW. Xylitol production by a Pichia stipitis D-xylulokinase mutant. Appl Microbiol Biotechnol 2005; 68:42-5. [PMID: 15635458 DOI: 10.1007/s00253-004-1854-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/01/2004] [Accepted: 11/12/2004] [Indexed: 11/25/2022]
Abstract
Xylitol production by Pichia stipitis FPL-YS30, a xyl3-delta1 mutant that metabolizes xylose using an alternative metabolic pathway, was investigated under aerobic and oxygen-limited culture conditions. Under both culture conditions, FPL-YS30 (xyl3-delta1) produced a negligible amount of ethanol and converted xylose mainly into xylitol with comparable yields (0.30 and 0.27 g xylitol/g xylose). However, xylose consumption increased five-fold under aerobic compared to oxygen-limited conditions. This suggests that the efficiency of the alternative route of xylose assimilation is affected by respiration. As a result, the FPL-YS30 strain produced 26 g/l of xylitol, and exhibited a higher volumetric productivity (0.22 g xylitol l(-1) h(-1)) under aerobic conditions.
Collapse
Affiliation(s)
- Yong-Su Jin
- Department of Food Science, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
49
|
Lin CC, Hsieh PC, Mau JL, Teng DF. Construction of an intergeneric fusion from Schizosaccharomyces pombe and Lentinula edodes for xylan degradation and polyol production. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Verho R, Putkonen M, Londesborough J, Penttilä M, Richard P. A novel NADH-linked l-xylulose reductase in the l-arabinose catabolic pathway of yeast. J Biol Chem 2004; 279:14746-51. [PMID: 14736891 DOI: 10.1074/jbc.m312533200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An NADH-dependent l-xylulose reductase and the corresponding gene were identified from the yeast Ambrosiozyma monospora. The enzyme is part of the yeast pathway for l-arabinose catabolism. A fungal pathway for l-arabinose utilization has been described previously for molds. In this pathway l-arabinose is sequentially converted to l-arabinitol, l-xylulose, xylitol, and d-xylulose and enters the pentose phosphate pathway as d-xylulose 5-phosphate. In molds the reductions are NADPH-linked, and the oxidations are NAD(+)-linked. Here we show that in A. monospora the pathway is similar, i.e. it has the same two reduction and two oxidation reactions, but the reduction by l-xylulose reductase is not performed by a strictly NADPH-dependent enzyme as in molds but by a strictly NADH-dependent enzyme. The ALX1 gene encoding the NADH-dependent l-xylulose reductase is strongly expressed during growth on l-arabinose as shown by Northern analysis. The gene was functionally overexpressed in Saccharomyces cerevisiae and the purified His-tagged protein characterized. The reversible enzyme converts l-xylulose to xylitol. It also converts d-ribulose to d-arabinitol but has no activity with l-arabinitol or adonitol, i.e. it is specific for sugar alcohols where, in a Fischer projection, the hydroxyl group of the C-2 is in the l-configuration and the hydroxyl group of C-3 is in the d-configuration. It also has no activity with C-6 sugars or sugar alcohols. The K(m) values for l-xylulose and d-ribulose are 9.6 and 4.7 mm, respectively. To our knowledge this is the first report of an NADH-linked l-xylulose reductase.
Collapse
Affiliation(s)
- Ritva Verho
- VTT Biotechnology, P. O. Box 1500, FIN-02044 VTT, Finland
| | | | | | | | | |
Collapse
|