1
|
Li Q, Cheng X, Liu X, Gao P, Wang H, Su C, Huang Q. Ammonia-oxidizing archaea adapted better to the dark, alkaline oligotrophic karst cave than their bacterial counterparts. Front Microbiol 2024; 15:1377721. [PMID: 38659982 PMCID: PMC11041041 DOI: 10.3389/fmicb.2024.1377721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Subsurface karst caves provide unique opportunities to study the deep biosphere, shedding light on microbial contribution to elemental cycling. Although ammonia oxidation driven by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) is well explored in soil and marine environments, our understanding in the subsurface biosphere still remained limited to date. To address this gap, weathered rock and sediment samples were collected from the Xincuntun Cave in Guilin City, an alkaline karst cave, and subjected to high-throughput sequencing and quantification of bacterial and archaeal amoA, along with determination of the potential nitrification rates (PNR). Results revealed that AOA dominated in ammonia oxidation, contributing 48-100% to the PNR, and AOA amoA gene copies outnumbered AOB by 2 to 6 orders. Nitrososphaera dominated in AOA communities, while Nitrosopira dominated AOB communities. AOA demonstrated significantly larger niche breadth than AOB. The development of AOA communities was influenced by deterministic processes (50.71%), while AOB communities were predominantly influenced by stochastic processes. TOC, NH4+, and Cl- played crucial roles in shaping the compositions of ammonia oxidizers at the OTU level. Cross-domain co-occurrence networks highlighted the dominance of AOA nodes in the networks and positive associations between AOA and AOB, especially in the inner zone, suggesting collaborative effort to thrive in extreme environments. Their high gene copies, dominance in the interaction with ammonia oxidizing bacteria, expansive niche breadth and substantial contribution to PNR collectively confirmed that AOA better adapted to alkaline, oligotrophic karst caves environments, and thus play a fundamental role in nitrogen cycling in subsurface biosphere.
Collapse
Affiliation(s)
- Qing Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xiaoyan Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Pengfei Gao
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Chuntian Su
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR, Guilin, China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, Guangxi, China
| | - Qibo Huang
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR, Guilin, China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, Guangxi, China
| |
Collapse
|
2
|
Alcamán-Arias ME, Cifuentes-Anticevic J, Díez B, Testa G, Troncoso M, Bello E, Farías L. Surface Ammonia-Oxidizer Abundance During the Late Summer in the West Antarctic Coastal System. Front Microbiol 2022; 13:821902. [PMID: 35401462 PMCID: PMC8992545 DOI: 10.3389/fmicb.2022.821902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 01/04/2023] Open
Abstract
Marine ammonia oxidizers that oxidize ammonium to nitrite are abundant in polar waters, especially during the winter in the deeper mixed-layer of West Antarctic Peninsula (WAP) waters. However, the activity and abundance of ammonia-oxidizers during the summer in surface coastal Antarctic waters remain unclear. In this study, the ammonia-oxidation rates, abundance and identity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) were evaluated in the marine surface layer (to 30 m depth) in Chile Bay (Greenwich Island, WAP) over three consecutive late-summer periods (2017, 2018, and 2019). Ammonia-oxidation rates of 68.31 nmol N L−1 day−1 (2018) and 37.28 nmol N L−1 day−1 (2019) were detected from illuminated 2 m seawater incubations. However, high ammonia-oxidation rates between 267.75 and 109.38 nmol N L−1 day−1 were obtained under the dark condition at 30 m in 2018 and 2019, respectively. During the late-summer sampling periods both stratifying and mixing events occurring in the water column over short timescales (February–March). Metagenomic analysis of seven nitrogen cycle modules revealed the presence of ammonia-oxidizers, such as the Archaea Nitrosopumilus and the Bacteria Nitrosomonas and Nitrosospira, with AOA often being more abundant than AOB. However, quantification of specific amoA gene transcripts showed number of AOB being two orders of magnitude higher than AOA, with Nitrosomonas representing the most transcriptionally active AOB in the surface waters. Additionally, Candidatus Nitrosopelagicus and Nitrosopumilus, phylogenetically related to surface members of the NP-ε and NP-γ clades respectively, were the predominant AOA. Our findings expand the known distribution of ammonium-oxidizers to the marine surface layer, exposing their potential ecological role in supporting the marine Antarctic system during the productive summer periods.
Collapse
Affiliation(s)
- María E Alcamán-Arias
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile.,Center for Climate and Resilience Research (CR)2, Santiago, Chile.,Escuela de Medicina, Universidad Espíritu Santo, Guayaquil, Ecuador
| | | | - Beatriz Díez
- Center for Climate and Resilience Research (CR)2, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Genome Regulation (CGR), Universidad de Chile, Santiago, Chile
| | - Giovanni Testa
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile.,Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile.,Research Center Dynamics of High Latitude Marine Ecosystems (IDEAL), Punta Arenas, Chile
| | | | - Estrella Bello
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Laura Farías
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile.,Center for Climate and Resilience Research (CR)2, Santiago, Chile
| |
Collapse
|
3
|
Sanders T, Fiencke C, Hüpeden J, Pfeiffer EM, Spieck E. Cold Adapted Nitrosospira sp.: A Potential Crucial Contributor of Ammonia Oxidation in Cryosols of Permafrost-Affected Landscapes in Northeast Siberia. Microorganisms 2019; 7:E699. [PMID: 31847402 PMCID: PMC6955795 DOI: 10.3390/microorganisms7120699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Permafrost-affected landscape soils are rich in organic matter and contain a high fraction of organic nitrogen, but much of this organic matter remains inaccessible due to nitrogen limitation. Microbial nitrification is a key process in the nitrogen cycle, controlling the availability of dissolved inorganic nitrogen (DIN) such as ammonium and nitrate. In this study, we investigate the microbial diversity of canonical nitrifiers and their potential nitrifying activity in the active layer of different Arctic cryosols in the Lena River Delta in North-East Siberia. These cryosols are located on Samoylov Island, which has two geomorphological landscapes with mineral soils in the modern floodplain and organic-rich soils in the low-centered polygonal tundra of the Holocene river terrace. Microcosm incubations show that the highest potential ammonia oxidation rates are found in low organic soils, and the rates depend on organic matter content and quality, vegetation cover, and water content. As shown by 16S rRNA amplicon sequencing, nitrifiers represented 0.6% to 6.2% of the total microbial community. More than 50% of the nitrifiers belonged to the genus Nitrosospira. Based on PCR amoA analysis, ammonia-oxidizing bacteria (AOB) were found in nearly all soil types, whereas ammonia-oxidizing archaea (AOA) were only detected in low-organic soils. In cultivation-based approaches, mainly Nitrosospira-like AOB were enriched and characterized as psychrotolerant, with temperature optima slightly above 20 °C. This study suggests a ubiquitous distribution of ammonia-oxidizing microorganisms (bacteria and archaea) in permafrost-affected landscapes of Siberia with cold-adapted AOB, especially of the genus Nitrosospira, as potentially crucial ammonia oxidizers in the cryosols.
Collapse
Affiliation(s)
- Tina Sanders
- Helmholtz Zentrum Geesthacht, Institut für Küstenforschung, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Claudia Fiencke
- Universität Hamburg, Institut für Bodenkunde, Allende-Platz 2, 20146 Hamburg, Germany; (C.F.); (E.M.P.)
- Center for Earth System Research and Sustainability, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
| | - Jennifer Hüpeden
- Universität Hamburg, Mikrobiologie und Biotechnologie, Ohnhorststr. 18, 22609 Hamburg, Germany; (J.H.); (E.S.)
| | - Eva Maria Pfeiffer
- Universität Hamburg, Institut für Bodenkunde, Allende-Platz 2, 20146 Hamburg, Germany; (C.F.); (E.M.P.)
- Center for Earth System Research and Sustainability, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
| | - Eva Spieck
- Universität Hamburg, Mikrobiologie und Biotechnologie, Ohnhorststr. 18, 22609 Hamburg, Germany; (J.H.); (E.S.)
| |
Collapse
|
4
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
5
|
Meng J, Li J, Li J, Nan J, Deng K, Antwi P. Effect of temperature on nitrogen removal and biological mechanism in an up-flow microaerobic sludge reactor treating wastewater rich in ammonium and lack in carbon source. CHEMOSPHERE 2019; 216:186-194. [PMID: 30368083 DOI: 10.1016/j.chemosphere.2018.10.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/25/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Previous study has demonstrated that microaerobic process is effective in nitrogen removal from the wastewater with high ammonium and low carbon to nitrogen ratio. In the microaerobic system, synergistic action of anammox, ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and denitrifiers was the key issues to remove nitrogen from the wastewater rich in ammonium. Temperature has a significant effect on specific growth rate and activity of various nitrogen removal functional bacteria. In this study, the effect of temperature (35 °C-15 °C) on nitrogen removal were investigated in an up-flow microaerobic sludge reactor (UMSR) at the HRT of 8 h and reflux ratio of 45. Above 71.2% of total nitrogen (TN) and 80.7% of NH4+ removal efficiencies were observed at the temperature no less than 17 °C. With the temperature further decreasing to 15 °C, denitrifiers still dominant the UMSR, but AOB, NOB and Candidatus Brocadia as the predominant anammox bacteria were inhibited revealed by high throughput sequencing, resulting in the decrease of TN and NH4+ removal to 39.7% and 61.8%, respectively. Fortunately, when the temperature rebounded to 20 °C, a higher TN and NH4+ removal of 81.2% and 97.3% were obtained again in the UMSR.
Collapse
Affiliation(s)
- Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China; Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Philip Antwi
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
6
|
Meng J, Li J, Li J, Deng K, Nan J, Xu P. Effect of reflux ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating piggery wastewater with high ammonium and low COD/TN ratio: Efficiency and quantitative molecular mechanism. BIORESOURCE TECHNOLOGY 2017; 243:922-931. [PMID: 28738547 DOI: 10.1016/j.biortech.2017.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
A novel upflow microaerobic sludge reactor (UMSR) was constructed to treat manure-free piggery wastewater with high NH4+-N and low COD/TN ratio. In the light of the potential effect of effluent reflux ratio (RR) on nitrogen removal, performance of the UMSR was evaluated at 35°C and hydraulic retention time 8h with RR decreased from 45 to 25 by stages. A COD, NH4+-N and TN removal of above 77.1%, 80.0% and 86.6%, respectively, was kept with a RR over 35. To get an effluent of TN not more than 80mg/L with a TN load removal above 0.88kg/(m3·d), the RR should be at least 34. Real-time quantitative polymerase chain reaction of functional bacteria revealed that the RR of less than 34 stimulated ammonium oxidation but badly inhibited anammox, the dominant nitrogen removal pathway, resulting in the remarkable decrease of nitrogen removal in the reactor.
Collapse
Affiliation(s)
- Jia Meng
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianzheng Li
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Kaiwen Deng
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jun Nan
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Pianpian Xu
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| |
Collapse
|
7
|
Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms. ISME JOURNAL 2016; 10:2879-2891. [PMID: 27187796 PMCID: PMC5148195 DOI: 10.1038/ismej.2016.74] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 02/01/2023]
Abstract
Extremely acidic (pH 0–1.5) Acidithiobacillus-dominated biofilms known as snottites are found in sulfide-rich caves around the world. Given the extreme geochemistry and subsurface location of the biofilms, we hypothesized that snottite Acidithiobacillus populations would be genetically isolated. We therefore investigated biogeographic relationships among snottite Acidithiobacillus spp. separated by geographic distances ranging from meters to 1000s of kilometers. We determined genetic relationships among the populations using techniques with three levels of resolution: (i) 16S rRNA gene sequencing, (ii) 16S–23S intergenic transcribed spacer (ITS) region sequencing and (iii) multi-locus sequencing typing (MLST). We also used metagenomics to compare functional gene characteristics of select populations. Based on 16S rRNA genes, snottites in Italy and Mexico are dominated by different sulfur-oxidizing Acidithiobacillus spp. Based on ITS sequences, Acidithiobacillus thiooxidans strains from different cave systems in Italy are genetically distinct. Based on MLST of isolates from Italy, genetic distance is positively correlated with geographic distance both among and within caves. However, metagenomics revealed that At. thiooxidans populations from different cave systems in Italy have different sulfur oxidation pathways and potentially other significant differences in metabolic capabilities. In light of those genomic differences, we argue that the observed correlation between genetic and geographic distance among snottite Acidithiobacillus populations is partially explained by an evolutionary model in which separate cave systems were stochastically colonized by different ancestral surface populations, which then continued to diverge and adapt in situ.
Collapse
|
8
|
Daniel ADC, Pedrós-Alió C, Pearce DA, Alcamí A. Composition and Interactions among Bacterial, Microeukaryotic, and T4-like Viral Assemblages in Lakes from Both Polar Zones. Front Microbiol 2016; 7:337. [PMID: 27047459 PMCID: PMC4796948 DOI: 10.3389/fmicb.2016.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/03/2016] [Indexed: 02/01/2023] Open
Abstract
In this study we assess global biogeography and correlation patterns among three components of microbial life: bacteria, microeukaryotes, and T4-like myoviruses. In addition to environmental and biogeographical considerations, we have focused our study on samples from high-latitude pristine lakes from both poles, since these simple island-like ecosystems represent ideal ecological models to probe the relationships among microbial components and with the environment. Bacterial assemblages were dominated by members of the same groups found to dominate freshwater ecosystems elsewhere, and microeukaryotic assemblages were dominated by photosynthetic microalgae. Despite inter-lake variations in community composition, the overall percentages of OTUs shared among sites was remarkable, indicating that many microeukaryotic, bacterial, and viral OTUs are globally-distributed. We observed an intriguing negative correlation between bacterial and microeukaryotic diversity values. Notably, our analyses show significant global correlations between bacterial and microeukaryotic community structures, and between the phylogenetic compositions of bacterial and T4-like virus assemblages. Overall, environmental filtering emerged as the main factor driving community structures.
Collapse
Affiliation(s)
- Aguirre de Cárcer Daniel
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| | | | - David A Pearce
- British Antarctic Survey, Natural Environment Research CouncilCambridge, UK; Faculty of Health and Life Sciences, University of NorthumbriaNewcastle Upon Tyne, UK; University Center in SvalbardLonyearbyen, Norway
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
9
|
Lee KH, Wang YF, Li H, Gu JD. Niche specificity of ammonia-oxidizing archaeal and bacterial communities in a freshwater wetland receiving municipal wastewater in Daqing, Northeast China. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:2081-2091. [PMID: 25163821 DOI: 10.1007/s10646-014-1334-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
Ecophysiological differences between ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) enable them to adapt to different niches in complex freshwater wetland ecosystems. The community characters of AOA and AOB in the different niches in a freshwater wetland receiving municipal wastewater, as well as the physicochemical parameters of sediment/soil samples, were investigated in this study. AOA community structures varied and separated from each other among four different niches. Wetland vegetation including aquatic macrophytes and terrestrial plants affected the AOA community composition but less for AOB, whereas sediment depths might contribute to the AOB community shift. The diversity of AOA communities was higher than that of AOB across all four niches. Archaeal and bacterial amoA genes (encoding for the alpha-subunit of ammonia monooxygenases) were most diverse in the dry-land niche, indicating O2 availability might favor ammonia oxidation. The majority of AOA amoA sequences belonged to the Soil/sediment Cluster B in the freshwater wetland ecosystems, while the dominant AOB amoA sequences were affiliated with Nitrosospira-like cluster. In the Nitrosospira-like cluster, AOB amoA gene sequences affiliated with the uncultured ammonia-oxidizing beta-proteobacteria constituted the largest portion (99%). Moreover, independent methods for phylogenetic tree analysis supported high parsimony bootstrap values. As a consequence, it is proposed that Nitrosospira-like amoA gene sequences recovered in this study represent a potentially novel cluster, grouping with the sequences from Gulf of Mexico deposited in the public databases.
Collapse
Affiliation(s)
- Kwok-Ho Lee
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Monteiro M, Séneca J, Magalhães C. The history of aerobic ammonia oxidizers: from the first discoveries to today. J Microbiol 2014; 52:537-47. [PMID: 24972807 DOI: 10.1007/s12275-014-4114-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022]
Abstract
Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.
Collapse
Affiliation(s)
- Maria Monteiro
- EcoBioTec Laboratory, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123, Porto, Portugal
| | | | | |
Collapse
|
11
|
Comprehensive analysis of prokaryotes in environmental water using DNA microarray analysis and whole genome amplification. Pathogens 2013; 2:591-605. [PMID: 25437334 PMCID: PMC4235703 DOI: 10.3390/pathogens2040591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 11/28/2022] Open
Abstract
The microflora in environmental water consists of a high density and diversity of bacterial species that form the foundation of the water ecosystem. Because the majority of these species cannot be cultured in vitro, a different approach is needed to identify prokaryotes in environmental water. A novel DNA microarray was developed as a simplified detection protocol. Multiple DNA probes were designed against each of the 97,927 sequences in the DNA Data Bank of Japan and mounted on a glass chip in duplicate. Evaluation of the microarray was performed using the DNA extracted from one liter of environmental water samples collected from seven sites in Japan. The extracted DNA was uniformly amplified using whole genome amplification (WGA), labeled with Cy3-conjugated 16S rRNA specific primers and hybridized to the microarray. The microarray successfully identified soil bacteria and environment-specific bacteria clusters. The DNA microarray described herein can be a useful tool in evaluating the diversity of prokaryotes and assessing environmental changes such as global warming.
Collapse
|
12
|
Di Giuseppe G, Barbieri M, Vallesi A, Luporini P, Dini F. Phylogeographical pattern ofEuplotes nobilii, a protist ciliate with a bipolar biogeographical distribution. Mol Ecol 2013; 22:4029-37. [DOI: 10.1111/mec.12363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology; Department of Environmental Sciences; University of Camerino; 62032 Camerino MC Italy
| | - Pierangelo Luporini
- Laboratory of Eukaryotic Microbiology and Animal Biology; Department of Environmental Sciences; University of Camerino; 62032 Camerino MC Italy
| | - Fernando Dini
- Department of Biology; University of Pisa; 56126 Pisa Italy
| |
Collapse
|
13
|
Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 2013; 37:303-35. [DOI: 10.1111/1574-6976.12007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/11/2012] [Accepted: 10/01/2012] [Indexed: 11/27/2022] Open
|
14
|
Murakami Y, Otsuka S, Senoo K. Abundance and community structure of sphingomonads in leaf residues and nearby bulk soil. Microbes Environ 2011; 25:183-9. [PMID: 21576871 DOI: 10.1264/jsme2.me10114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the abundance and community structure of sphingomonads in the decaying leaf residues of eight plant species as well as the nearby soil, by 16S rRNA gene-based real-time PCR and denaturing gradient gel electrophoresis. In the leaf residues, the sphingomonads generally accumulated to high levels, comprising approximately 15% of the total bacteria, and formed a community structure related to sampling locations. At least within the time period studied, their abundance in leaf residues changed, but their community structure was basically maintained. In soil, sphingomonads made up only 1.7% of total bacteria on average. The community structure of sphingomonads differed between the leaf residues and bulk soil, among plant plots, and among samples collected at different times. The results show that particular sphingomonad populations accumulate in leaf residues compared to the surrounding bulk soil under field conditions.
Collapse
Affiliation(s)
- Yuta Murakami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | | | | |
Collapse
|
15
|
Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters. Biotechnol Bioeng 2011; 108:2876-83. [DOI: 10.1002/bit.23267] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 11/07/2022]
|
16
|
Zehr JP, Kudela RM. Nitrogen cycle of the open ocean: from genes to ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:197-225. [PMID: 21329204 DOI: 10.1146/annurev-marine-120709-142819] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The marine nitrogen (N) cycle controls the productivity of the oceans. This cycle is driven by complex biogeochemical transformations, including nitrogen fixation, denitrification, and assimilation and anaerobic ammonia oxidation, mediated by microorganisms. New processes and organisms continue to be discovered, complicating the already complex picture of oceanic N cycling. Genomics research has uncovered the diversity of nitrogen metabolism strategies in phytoplankton and bacterioplankton. The elemental ratios of nutrients in biological material are more flexible than previously believed, with implications for vertical export of carbon and associated nutrients to the deep ocean. Estimates of nitrogen fixation and denitrification continue to be modified, and anaerobic ammonia oxidation has been identified as a new process involved in denitrification in oxygen minimum zones. The nitrogen cycle in the oceans is an integral feature of the function of ocean ecosystems and will be a central player in how oceans respond during global environmental change.
Collapse
Affiliation(s)
- Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
17
|
|
18
|
Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microbiol 2010; 76:4691-702. [PMID: 20511433 DOI: 10.1128/aem.02563-09] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ongoing anthropogenic eutrophication of Jiaozhou Bay offers an opportunity to study the influence of human activity on bacterial communities that drive biogeochemical cycling. Nitrification in coastal waters appears to be a sensitive indicator of environmental change, suggesting that function and structure of the microbial nitrifying community may be associated closely with environmental conditions. In the current study, the amoA gene was used to unravel the relationship between sediment aerobic obligate ammonia-oxidizing Betaproteobacteria (Beta-AOB) and their environment in Jiaozhou Bay. Protein sequences deduced from amoA gene sequences grouped within four distinct clusters in the Nitrosomonas lineage, including a putative new cluster. In addition, AmoA sequences belonging to three newly defined clusters in the Nitrosospira lineage were also identified. Multivariate statistical analyses indicated that the studied Beta-AOB community structures correlated with environmental parameters, of which nitrite-N and sediment sand content had significant impact on the composition, structure, and distribution of the Beta-AOB community. Both amoA clone library and quantitative PCR (qPCR) analyses indicated that continental input from the nearby wastewater treatment plants and polluted rivers may have significant impact on the composition and abundance of the sediment Beta-AOB assemblages in Jiaozhou Bay. Our work is the first report of a direct link between a sedimentological parameter and the composition and distribution of the sediment Beta-AOB and indicates the potential for using the Beta-AOB community composition in general and individual isolates or environmental clones in the Nitrosomonas oligotropha lineage in particular as bioindicators and biotracers of pollution or freshwater or wastewater input in coastal environments.
Collapse
|
19
|
Junier P, Molina V, Dorador C, Hadas O, Kim OS, Junier T, Witzel JP, Imhoff JF. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol 2010; 85:425-40. [PMID: 19830422 PMCID: PMC2802487 DOI: 10.1007/s00253-009-2228-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 12/17/2022]
Abstract
The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments.
Collapse
Affiliation(s)
- Pilar Junier
- Laboratory of Microbial Ecology, University of Neuchatel, Neuchatel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zeng Y, Zheng T, Yu Y, Chen B, He J. Relationships between Arctic and Antarctic Shewanella strains evaluated by a polyphasic taxonomic approach. Polar Biol 2009. [DOI: 10.1007/s00300-009-0730-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Kalanetra KM, Bano N, Hollibaugh JT. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 2009; 11:2434-45. [PMID: 19601959 DOI: 10.1111/j.1462-2920.2009.01974.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0-45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45-105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105-3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans.
Collapse
Affiliation(s)
- Karen M Kalanetra
- Department of Marine Science, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
22
|
Agogué H, Brink M, Dinasquet J, Herndl GJ. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 2008; 456:788-91. [PMID: 19037244 DOI: 10.1038/nature07535] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/13/2008] [Indexed: 11/09/2022]
Abstract
Aerobic nitrification of ammonia to nitrite and nitrate is a key process in the oceanic nitrogen cycling mediated by prokaryotes. Apart from Bacteria belonging to the beta- and gamma-Proteobacteria involved in the first nitrification step, Crenarchaeota have recently been recognized as main drivers of the oxidation of ammonia to nitrite in soil as well as in the ocean, as indicated by the dominance of archaeal ammonia monooxygenase (amoA) genes over bacterial amoA. Evidence is accumulating that archaeal amoA genes are common in a wide range of marine systems. Essentially, all these reports focused on surface and mesopelagic (200-1,000 m depth) waters, where ammonia concentrations are higher than in waters below 1,000 m depth. However, Crenarchaeota are also abundant in the water column below 1,000 m, where ammonia concentrations are extremely low. Here we show that, throughout the North Atlantic Ocean, the abundance of archaeal amoA genes decreases markedly from subsurface waters to 4,000 m depth, and from subpolar to equatorial deep waters, leading to pronounced vertical and latitudinal gradients in the ratio of archaeal amoA to crenarchaeal 16S ribosomal RNA (rRNA) genes. The lack of significant copy numbers of amoA genes and the very low fixation rates of dark carbon dioxide in the bathypelagic North Atlantic suggest that most bathypelagic Crenarchaeota are not autotrophic ammonia oxidizers: most likely, they utilize organic matter and hence live heterotrophically.
Collapse
Affiliation(s)
- Hélène Agogué
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (Royal NIOZ), PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | | | | | | |
Collapse
|
23
|
Bayer K, Schmitt S, Hentschel U. Physiology, phylogeny andin situevidence for bacterial and archaeal nitrifiers in the marine spongeAplysina aerophoba. Environ Microbiol 2008; 10:2942-55. [DOI: 10.1111/j.1462-2920.2008.01582.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Nelson JD, Boehme SE, Reimers CE, Sherrell RM, Kerkhof LJ. Temporal patterns of microbial community structure in the Mid-Atlantic Bight. FEMS Microbiol Ecol 2008; 65:484-93. [DOI: 10.1111/j.1574-6941.2008.00553.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
25
|
Tremblay JÉ, Simpson K, Martin J, Miller L, Gratton Y, Barber D, Price NM. Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jc004547] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Evaluation of PCR primer selectivity and phylogenetic specificity by using amplification of 16S rRNA genes from betaproteobacterial ammonia-oxidizing bacteria in environmental samples. Appl Environ Microbiol 2008; 74:5231-6. [PMID: 18567688 DOI: 10.1128/aem.00288-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of primer specificity for studying the diversity of ammonia-oxidizing betaproteobacteria (betaAOB) was evaluated. betaAOB represent a group of phylogenetically related organisms for which the 16S rRNA gene approach is especially suitable. We used experimental comparisons of primer performance with water samples, together with an in silico analysis of published sequences and a literature review of clone libraries made with four specific PCR primers for the betaAOB 16S rRNA gene. With four aquatic samples, the primers NitA/NitB produced the highest frequency of ammonia-oxidizing-bacterium-like sequences compared to clone libraries with products amplified with the primer combinations betaAMOf/betaAMOr, betaAMOf/Nso1255g, and NitA/Nso1225g. Both the experimental examination of ammonia-oxidizing-bacterium-specific 16S rRNA gene primers and the literature search showed that neither specificity nor sensitivity of primer combinations can be evaluated reliably only by sequence comparison. Apparently, the combination of sequence comparison and experimental data is the best approach to detect possible biases of PCR primers. Although this study focused on betaAOB, the results presented here more generally exemplify the importance of primer selection and potential primer bias when analyzing microbial communities in environmental samples.
Collapse
|
27
|
Pawlowski J, Majewski W, Longet D, Guiard J, Cedhagen T, Gooday AJ, Korsun S, Habura AA, Bowser SS. Genetic differentiation between Arctic and Antarctic monothalamous foraminiferans. Polar Biol 2008. [DOI: 10.1007/s00300-008-0459-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Magalhães C, Bano N, Wiebe WJ, Hollibaugh JT, Bordalo AA. Composition and activity of beta-Proteobacteria ammonia-oxidizing communities associated with intertidal rocky biofilms and sediments of the Douro River estuary, Portugal. J Appl Microbiol 2008; 103:1239-50. [PMID: 17897228 DOI: 10.1111/j.1365-2672.2007.03390.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To characterize the phylogenetic composition of ammonia-oxidizing bacteria (AOB) of the beta-subclass of the class Proteobacteria in intertidal sediment and rocky biofilms of the Douro estuary, and evaluate relationships with environmental variables and N-biogeochemistry. METHODS AND RESULTS Cluster analysis of denaturing gradient gel electrophoresis profiles showed differences in beta-Proteobacteria AOB assemblage composition between rocky biofilms and sediments. All sequences obtained from intertidal rocky biofilm sites exhibited phylogenetic affinity to Nitrosomonas sp. lineages, whereas a majority of the sequences from the sediment sites were most similar to marine Nitrosospira cluster 1. Hierarchical cluster analysis based on environmental variables identified two main groups of samples. The first contained samples from rocky biofilm sites characterized by high concentrations of NO2- and NH4+, and high organic matter and chlorophyll a content. The second group contained all of the sediment samples; these sites were characterized by lower values for the variables above. In addition, rocky biofilm sites exhibited higher nitrification rates. CONCLUSIONS Intersite differences in environmental and/or physical conditions led to the selection of different populations of beta-Proteobacteria AOB, supporting different magnitudes of N-cycling regimes. SIGNIFICANCE AND IMPACT OF THE STUDY This study represents an important step in establishing the influence of environmental factors on the distribution of beta-Proteobacteria AOB with possible consequences for N-biogeochemistry.
Collapse
Affiliation(s)
- C Magalhães
- Laboratory of Hydrobiology, Institute of Biomedical Sciences, University of Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|
29
|
Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME JOURNAL 2008; 2:429-41. [PMID: 18200070 DOI: 10.1038/ismej.2007.118] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitrification plays an important role in marine biogeochemistry, yet efforts to link this process to the microorganisms that mediate it are surprisingly limited. In particular, ammonia oxidation is the first and rate-limiting step of nitrification, yet ammonia oxidation rates and the abundance of ammonia-oxidizing bacteria (AOB) have rarely been measured in tandem. Ammonia oxidation rates have not been directly quantified in conjunction with ammonia-oxidizing archaea (AOA), although mounting evidence indicates that marine Crenarchaeota are capable of ammonia oxidation, and they are among the most abundant microbial groups in the ocean. Here, we have directly quantified ammonia oxidation rates by 15N labeling, and AOA and AOB abundances by quantitative PCR analysis of ammonia monooxygenase subunit A (amoA) genes, in the Gulf of California. Based on markedly different archaeal amoA sequence types in the upper water column (60 m) and oxygen minimum zone (OMZ; 450 m), novel amoA PCR primers were designed to specifically target and quantify 'shallow' (group A) and 'deep' (group B) clades. These primers recovered extensive variability with depth. Within the OMZ, AOA were most abundant where nitrification may be coupled to denitrification. In the upper water column, group A tracked variations in nitrogen biogeochemistry with depth and between basins, whereas AOB were present in relatively low numbers or undetectable. Overall, 15NH4+ oxidation rates were remarkably well correlated with AOA group A amoA gene copies (r2=0.90, P<0.001), and with 16S rRNA gene copies from marine Crenarchaeota (r2=0.85, P<0.005). These findings represent compelling evidence for an archaeal role in oceanic nitrification.
Collapse
|
30
|
Ward BB, Eveillard D, Kirshtein JD, Nelson JD, Voytek MA, Jackson GA. Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray. Environ Microbiol 2007; 9:2522-38. [PMID: 17803777 DOI: 10.1111/j.1462-2920.2007.01371.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relationship between environmental factors and functional gene diversity of ammonia-oxidizing bacteria (AOB) was investigated across a transect from the freshwater portions of the Chesapeake Bay and Choptank River out into the Sargasso Sea. Oligonucleotide probes (70-bp) designed to represent the diversity of ammonia monooxygenase (amoA) genes from Chesapeake Bay clone libraries and cultivated AOB were used to construct a glass slide microarray. Hybridization patterns among the probes in 14 samples along the transect showed clear variations in amoA community composition. Probes representing uncultivated members of the Nitrosospira-like AOB dominated the probe signal, especially in the more marine samples. Of the cultivated species, only Nitrosospira briensis was detected at appreciable levels. Discrimination analysis of hybridization signals detected two guilds. Guild 1 was dominated by the marine Nitrosospira-like probe signal, and Guild 2's largest contribution was from upper bay (freshwater) sediment probes. Principal components analysis showed that Guild 1 was positively correlated with salinity, temperature and chlorophyll a concentration, while Guild 2 was positively correlated with concentrations of oxygen, dissolved organic carbon, and particulate nitrogen and carbon, suggesting that different amoA sequences represent organisms that occupy different ecological niches within the estuarine/marine environment. The trend from most diversity of AOB in the upper estuary towards dominance of a single type in the polyhaline region of the Bay is consistent with the declining importance of AOB with increasing salinity, and with the idea that AO-Archaea are the more important ammonia oxidizers in the ocean.
Collapse
Affiliation(s)
- Bess B Ward
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Pawlowski J, Fahrni J, Lecroq B, Longet D, Cornelius N, Excoffier L, Cedhagen T, Gooday AJ. Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 2007; 16:4089-96. [PMID: 17725572 DOI: 10.1111/j.1365-294x.2007.03465.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite its often featureless appearance, the deep-ocean floor includes some of the most diverse habitats on Earth. However, the accurate assessment of global deep-sea diversity is impeded by a paucity of data on the geographical ranges of bottom-dwelling species, particularly at the genetic level. Here, we present molecular evidence for exceptionally wide distribution of benthic foraminifera, which constitute the major part of deep-sea meiofauna. Our analyses of nuclear ribosomal RNA genes revealed high genetic similarity between Arctic and Antarctic populations of three common deep-sea foraminiferal species (Epistominella exigua, Cibicides wuellerstorfi and Oridorsalis umbonatus), separated by distances of up to 17, 000 km. Our results contrast with the substantial level of cryptic diversity usually revealed by molecular studies, of shallow-water benthic and planktonic marine organisms. The very broad ranges of the deep-sea foraminifera that we examined support the hypothesis of global distribution of small eukaryotes and suggest that deep-sea biodiversity may be more modest at global scales than present estimates suggest.
Collapse
Affiliation(s)
- J Pawlowski
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, 30, Quai Ernest Ansermet, CH 1211 Genève 4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Crump RC, Adams HE, Hobbie JE, Kling GW. Biogeography of bacterioplankton in lakes and streams of an Arctic tundra catchment. Ecology 2007; 88:1365-78. [PMID: 17601129 DOI: 10.1890/06-0387] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterioplankton community composition was compared across 10 lakes and 14 streams within the catchment of Toolik Lake, a tundra lake in Arctic Alaska, during seven surveys conducted over three years using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified rDNA. Bacterioplankton communities in streams draining tundra were very different than those in streams draining lakes. Communities in streams draining lakes were similar to communities in lakes. In a connected series of lakes and streams, the stream communities changed with distance from the upstream lake and with changes in water chemistry, suggesting inoculation and dilution with bacteria from soil waters or hyporheic zones. In the same system, lakes shared similar bacterioplankton communities (78% similar) that shifted gradually down the catchment. In contrast, unconnected lakes contained somewhat different communities (67% similar). We found evidence that dispersal influences bacterioplankton communities via advection and dilution (mass effects) in streams, and via inoculation and subsequent growth in lakes. The spatial pattern of bacterioplankton community composition was strongly influenced by interactions among soil water, stream, and lake environments. Our results reveal large differences in lake-specific and stream-specific bacterial community composition over restricted spatial scales (<10 km) and suggest that geographic distance and connectivity influence the distribution of bacterioplankton communities across a landscape.
Collapse
Affiliation(s)
- Ron C Crump
- University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, Maryland 21613, USA.
| | | | | | | |
Collapse
|
33
|
Molina V, Ulloa O, Farías L, Urrutia H, Ramírez S, Junier P, Witzel KP. Ammonia-oxidizing beta-proteobacteria from the oxygen minimum zone off northern Chile. Appl Environ Microbiol 2007; 73:3547-55. [PMID: 17416686 PMCID: PMC1932683 DOI: 10.1128/aem.02275-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The composition of ammonia-oxidizing bacteria from the beta-Proteobacteria subclass (betaAOB) was studied in the surface and upper-oxycline oxic waters (2- to 50-m depth, approximately 200 to 44 microM O(2)) and within the oxygen minimum zone (OMZ) suboxic waters (50- to 400-m depth, < or =10 microM O(2)) of the eastern South Pacific off northern Chile. This study was carried out through cloning and sequencing of genes coding for 16S rRNA and the ammonia monooxygenase enzyme active subunit (amoA). Sequences affiliated with Nitrosospira-like cluster 1 dominated the 16S rRNA gene clone libraries constructed from both oxic and suboxic waters. Cluster 1 consists exclusively of yet-uncultivated betaAOB from marine environments. However, a single clone, out of 224 obtained from the OMZ, was found to belong to Nitrosospira lineage cluster 0. To our knowledge, cluster 0 sequences have been derived from betaAOB isolated only from sand, soil, and freshwater environments. Sequences in clone libraries of the amoA gene from the surface and upper oxycline could be grouped in a marine subcluster, also containing no cultured representatives. In contrast, all 74 amoA sequences originating from the OMZ were either closely affiliated with cultured Nitrosospira spp. from clusters 0 and 2 or with other yet-uncultured betaAOB from soil and an aerated-anoxic Orbal process waste treatment plant. Our results reveal the presence of Nitrosospira-like betaAOB in both oxic and suboxic waters associated with the OMZ but with a clear community shift at the functional level (amoA) along the strong oxygen gradient.
Collapse
MESH Headings
- Ammonia/metabolism
- Bacterial Proteins/genetics
- Chile
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Molecular Sequence Data
- Nitrosomonadaceae/classification
- Nitrosomonadaceae/genetics
- Nitrosomonadaceae/isolation & purification
- Nitrosomonadaceae/metabolism
- Oxidation-Reduction
- Oxidoreductases/genetics
- Oxygen/metabolism
- Pacific Ocean
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Verónica Molina
- Departamento de Oceanografía, Universidad de Concepción, PROFC-Cabina 7, Casilla 160-C, Concepción, Chile.
| | | | | | | | | | | | | |
Collapse
|
34
|
Qin YY, Li DT, Yang H. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China. FEMS Microbiol Lett 2007; 268:126-34. [PMID: 17263855 DOI: 10.1111/j.1574-6968.2006.00571.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The community composition of total bacteria and ammonia-oxidizing bacteria in a full-scale aerated submerged biofilm reactor for drinking water pretreatment was characterized by analysis of 16S rRNA gene and the functional gene amoA, respectively. Sampling was performed in February and in July. 16S rRNA gene clone libraries revealed 13 bacterial divisions. At both sampling dates, the majority of clone sequences were related to the Alpha- and Betaproteobacteria. A minor proportion belonged to the following groups: Gammaproteobacteria, Deltaproteobacteria, Nitrospira, Firmicutes, Acidobacteria, Verrucomicrobia, Actinobacteria, Planctomycetes, Chloroflexi, Gemmatimonadetes and the Cytophaga-Flavobacterium-Bacteroides group. Some sequences related to bacteria owning high potential metabolic capacities were detected in both samples, such as Rhodobacter-like rRNA gene sequences. Surveys of cloned amoA genes from the two biofilm samples revealed ammonia-oxidizing bacterial sequences affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage. An unknown Nitrosomonas group of amoA gene sequences was also detected.
Collapse
Affiliation(s)
- Ying-Ying Qin
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | | | | |
Collapse
|
35
|
Freitag TE, Chang L, Prosser JI. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ Microbiol 2006; 8:684-96. [PMID: 16584480 DOI: 10.1111/j.1462-2920.2005.00947.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To determine whether the distribution of estuarine ammonia-oxidizing bacteria (AOB) was influenced by salinity, the community structure of betaproteobacterial ammonia oxidizers (AOB) was characterized along a salinity gradient in sediments of the Ythan estuary, on the east coast of Scotland, UK, by denaturant gradient gel electrophoresis (DGGE), cloning and sequencing of 16S rRNA gene fragments. Ammonia-oxidizing bacteria communities at sampling sites with strongest marine influence were dominated by Nitrosospira cluster 1-like sequences and those with strongest freshwater influence were dominated by Nitrosomonas oligotropha-like sequences. Nitrosomonas sp. Nm143 was the prevailing sequence type in communities at intermediate brackish sites. Diversity indices of AOB communities were similar at marine- and freshwater-influenced sites and did not indicate lower species diversity at intermediate brackish sites. The presence of sequences highly similar to the halophilic Nitrosomonas marina and the freshwater strain Nitrosomonas oligotropha at identical sampling sites indicates that AOB communities in the estuary are adapted to a range of salinities, while individual strains may be active at different salinities. Ammonia-oxidizing bacteria communities that were dominated by Nitrosospira cluster 1 sequence types, for which no cultured representative exists, were subjected to stable isotope probing (SIP) with 13C-HCO3-, to label the nucleic acids of active autotrophic nitrifiers. Analysis of 13C-associated 16S rRNA gene fragments, following CsCl density centrifugation, by cloning and DGGE indicated sequences highly similar to the AOB Nitrosomonas sp. Nm143 and Nitrosomonas cryotolerans and to the nitrite oxidizer Nitrospira marina. No sequence with similarity to the Nitrosospira cluster 1 clade was recovered during SIP analysis. The potential role of Nitrosospira cluster 1 in autotrophic ammonia oxidation therefore remains uncertain.
Collapse
Affiliation(s)
- Thomas E Freitag
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | | | | |
Collapse
|
36
|
Sunamura M, Maruyama A. A digital imaging procedure for seven-probe-labeling FISH (Rainbow-FISH) and its application to estuarine microbial communities. FEMS Microbiol Ecol 2006; 55:159-66. [PMID: 16420624 DOI: 10.1111/j.1574-6941.2005.00013.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
For multi-probe-labeling fluorescence in situ hybridization (FISH), a digital imaging procedure was developed consisting of systematic background noise reduction and target signal equalization using a hue, saturation, value color partitioning technique. By the combined application of seven DNA probes, each labeled with three fluorochromes at maximum, seven kinds of cultured type strains were distinguished in a microscopic field simultaneously. Using this seven-probe-labeling FISH (Rainbow-FISH), several phylogenetic groups of microbes that occur frequently in aquatic environments, such as Alpha-, Beta- and Gammaproteobacteria, Cytophaga-Flavobacterium and Actinobacteria, were identified and quantified. The total counts of cells specified by Rainbow-FISH were in the range of 96-108% of those of general FISH, showing that the method is highly reliable for quantitative population analysis. Analyzing samples obtained at points along a river to a sea, we found a reverse population change in two groups: apparent decreases in Betaproteobacteria but gradual increases in Gammaproteobacteria. This method provides a platform toward the improvement of semiautomatic analysis of aquatic microbes under various metabolic conditions.
Collapse
Affiliation(s)
- Michinari Sunamura
- Biological Resources and Functions, National Institute of Advanced and Industrial Science and Technology, AIST, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
37
|
Neufeld JD, Mohn WW. Fluorophore-labeled primers improve the sensitivity, versatility, and normalization of denaturing gradient gel electrophoresis. Appl Environ Microbiol 2005; 71:4893-6. [PMID: 16085891 PMCID: PMC1183338 DOI: 10.1128/aem.71.8.4893-4896.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Denaturing gradient gel electrophoresis (DGGE) is widely used in microbial ecology. We tested the effect of fluorophore-labeled primers on DGGE band migration, sensitivity, and normalization. The fluorophores Cy5 and Cy3 did not visibly alter DGGE fingerprints; however, 6-carboxyfluorescein retarded band migration. Fluorophore modification improved the sensitivity of DGGE fingerprint detection and facilitated normalization of samples from multiple gels by the application of intralane standards.
Collapse
Affiliation(s)
- Josh D Neufeld
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
38
|
Pernthaler J, Amann R. Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol Mol Biol Rev 2005; 69:440-61. [PMID: 16148306 PMCID: PMC1197807 DOI: 10.1128/mmbr.69.3.440-461.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major biogeochemical processes in the water columns of lakes and oceans are related to the activities of heterotrophic microbes, e.g., the mineralization of organic carbon from photosynthesis and allochthonous influx or its transport to the higher trophic levels. During the last 15 years, cultivation-independent molecular techniques have substantially contributed to our understanding of the diversity of the microbial communities in different aquatic systems. In parallel, the complexity of aquatic habitats at a microscale has inspired research on the ecophysiological properties of uncultured microorganisms that thrive in a continuum of dissolved to particulate organic matter. One possibility to link these two aspects is to adopt a"Gleasonian" perspective, i.e., to study aquatic microbial assemblages in situ at the population level rather than looking at microbial community structure, diversity, or function as a whole. This review compiles current knowledge about the role and fate of different populations of heterotrophic picoplankton in marine and inland waters. Specifically, we focus on a growing suite of techniques that link the analysis of bacterial identity with growth, morphology, and various physiological activities at the level of single cells. An overview is given of the potential and limitations of methodological approaches, and factors that might control the population sizes of different microbes in pelagic habitats are discussed.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station, Institute of Plant Biology, Seestrasse 187, CH-8802 Kilchberg, Switzerland.
| | | |
Collapse
|
39
|
O'Mullan GD, Ward BB. Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, California. Appl Environ Microbiol 2005; 71:697-705. [PMID: 15691919 PMCID: PMC546699 DOI: 10.1128/aem.71.2.697-705.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 09/15/2004] [Indexed: 11/20/2022] Open
Abstract
Temporal and spatial dynamics of ammonia-oxidizing bacteria (AOB) were examined using genes encoding 16S rRNA and ammonia monooxygenase subunit A (AmoA) in Monterey Bay, Calif. Samples were collected from three depths in the water column on four dates at one mid-bay station. Diversity estimators for the two genes showed a strong positive correlation, indicating that overlapping bacterial populations had been sampled by both sets of clone libraries. Some samples that were separated by only 15 m in depth had less genetic similarity than samples that were collected from the same depth months apart. Clone libraries from the Monterey Bay AOB community were dominated by Nitrosospira-like sequences and clearly differentiated from the adjacent AOB community in Elkhorn Slough. Many Monterey Bay clones clustered with previously identified 16S rRNA and amoA groups composed entirely of marine sequences, supporting the hypothesis that these groups are specific to the marine environment and are dominant marine AOB. In addition, novel, phylogenetically distinct groups of AOB sequences were identified and compared to sequences in the database. Only one cluster of gammaproteobacterial AOB was detected using 16S rRNA genes. Although significant genetic variation was detected in AOB populations from both vertical and temporal samples, no significant correlation was detected between diversity and environmental variables or the rate of nitrification.
Collapse
Affiliation(s)
- G D O'Mullan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
40
|
Sekar R, Fuchs BM, Amann R, Pernthaler J. Flow sorting of marine bacterioplankton after fluorescence in situ hybridization. Appl Environ Microbiol 2004; 70:6210-9. [PMID: 15466568 PMCID: PMC522093 DOI: 10.1128/aem.70.10.6210-6219.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe an approach to sort cells from coastal North Sea bacterioplankton by flow cytometry after in situ hybridization with rRNA-targeted horseradish peroxidase-labeled oligonucleotide probes and catalyzed fluorescent reporter deposition (CARD-FISH). In a sample from spring 2003 >90% of the cells were detected by CARD-FISH with a bacterial probe (EUB338). Approximately 30% of the microbial assemblage was affiliated with the Cytophaga-Flavobacterium lineage of the Bacteroidetes (CFB group) (probe CF319a), and almost 10% was targeted by a probe for the beta-proteobacteria (probe BET42a). A protocol was optimized to detach cells hybridized with EUB338, BET42a, and CF319a from membrane filters (recovery rate, 70%) and to sort the cells by flow cytometry. The purity of sorted cells was >95%. 16S rRNA gene clone libraries were constructed from hybridized and sorted cells (S-EUB, S-BET, and S-CF libraries) and from unhybridized and unsorted cells (UNHYB library). Sequences related to the CFB group were significantly more frequent in the S-CF library (66%) than in the UNHYB library (13%). No enrichment of beta-proteobacterial sequence types was found in the S-BET library, but novel sequences related to Nitrosospira were found exclusively in this library. These bacteria, together with members of marine clade OM43, represented >90% of the beta-proteobacteria in the water sample, as determined by CARD-FISH with specific probes. This illustrates that a combination of CARD-FISH and flow sorting might be a powerful approach to study the diversity and potentially the activity and the genomes of different bacterial populations in aquatic habitats.
Collapse
Affiliation(s)
- Raju Sekar
- Max-Planck-Institut für Marine Mikrobiologie, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | | | | | |
Collapse
|
41
|
Casciotti KL, Ward BB. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol Ecol 2004; 52:197-205. [PMID: 16329906 DOI: 10.1016/j.femsec.2004.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 09/15/2004] [Accepted: 11/03/2004] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) and nitrous oxide (N2O) are climatically important trace gases that are produced by both nitrifying and denitrifying bacteria. In the denitrification pathway, N2O is produced from nitric oxide (NO) by the enzyme nitric oxide reductase (NOR). The ammonia-oxidizing bacterium Nitrosomonas europaea also possesses a functional nitric oxide reductase, which was shown recently to serve a unique function. In this study, sequences homologous to the large subunit of nitric oxide reductase (norB) were obtained from eight additional strains of ammonia-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both beta- and gamma-Proteobacterial ammonia oxidizers), showing widespread occurrence of a norB homologue in ammonia-oxidizing bacteria. However, despite efforts to detect norB homologues from Nitrosospira strains, sequences have not yet been obtained. Phylogenetic analysis placed nitrifier norB homologues in a subcluster, distinct from denitrifier sequences. The similarities and differences of these sequences highlight the need to understand the variety of metabolisms represented within a "functional group" defined by the presence of a single homologous gene. These results expand the database of norB homologue sequences in nitrifying bacteria.
Collapse
Affiliation(s)
- Karen L Casciotti
- Department of Geosciences, Princeton University, Princeton, NJ 08540, USA.
| | | |
Collapse
|
42
|
Freitag TE, Prosser JI. Differences between betaproteobacterial ammonia-oxidizing communities in marine sediments and those in overlying water. Appl Environ Microbiol 2004; 70:3789-93. [PMID: 15184194 PMCID: PMC427763 DOI: 10.1128/aem.70.6.3789-3793.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess links between betaproteobacterial ammonia-oxidizing bacteria (AOB) in marine sediment and in overlying water, communities in Loch Duich, Scotland, were characterized by analysis of clone libraries and denaturant gradient gel electrophoresis of 16S rRNA gene fragments. Nitrosospira cluster 1-like sequences were isolated from both environments, but different sequence types dominated water and sediment samples. Detailed phylogenetic analysis of marine Nitrosospira cluster 1-like sequences in Loch Duich and surrounding regions suggests the existence of at least two different phylogenetic subgroups, potentially indicative of new lineages within the betaproteobacterial AOB, representing different marine ecotypes.
Collapse
Affiliation(s)
- Thomas E Freitag
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | |
Collapse
|
43
|
Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 2004; 69:6610-9. [PMID: 14602620 PMCID: PMC262250 DOI: 10.1128/aem.69.11.6610-6619.2003] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comprehensive assessment of bacterial diversity and community composition in arctic and antarctic pack ice was conducted through cultivation and cultivation-independent molecular techniques. We sequenced 16S rRNA genes from 115 and 87 pure cultures of bacteria isolated from arctic and antarctic pack ice, respectively. Most of the 33 arctic phylotypes were >97% identical to previously described antarctic species or to our own antarctic isolates. At both poles, the alpha- and gamma-proteobacteria and the Cytophaga-Flavobacterium group were the dominant taxonomic bacterial groups identified by cultivation as well as by molecular methods. The analysis of 16S rRNA gene clone libraries from multiple arctic and antarctic pack ice samples revealed a high incidence of closely overlapping 16S rRNA gene clone and isolate sequences. Simultaneous analysis of environmental samples with fluorescence in situ hybridization (FISH) showed that approximately 95% of 4',6'-diamidino-2-phenylindole (DAPI)-stained cells hybridized with the general bacterial probe EUB338. More than 90% of those were further assignable. Approximately 50 and 36% were identified as gamma-proteobacteria in arctic and antarctic samples,respectively. Approximately 25% were identified as alpha-proteobacteria, and 25% were identified as belonging to the Cytophaga-Flavobacterium group. For the quantification of specific members of the sea ice community, new oligonucleotide probes were developed which target the genera Octadecabacter, Glaciecola, Psychrobacter, Marinobacter, Shewanella, and Polaribacter: High FISH detection rates of these groups as well as high viable counts corroborated the overlap of clone and isolate sequences. A terrestrial influence on the arctic pack ice community was suggested by the presence of limnic phylotypes.
Collapse
Affiliation(s)
- Robin Brinkmeyer
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Purkhold U, Wagner M, Timmermann G, Pommerening-Röser A, Koops HP. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol 2003; 53:1485-1494. [PMID: 13130037 DOI: 10.1099/ijs.0.02638-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic relationship of 12 ammonia-oxidizing isolates (eight nitrosospiras and four nitrosomonads), for which no gene sequence information was available previously, was investigated based on their genes encoding 16S rRNA and the active site subunit of ammonia monooxygenase (AmoA). Almost full-length 16S rRNA gene sequences were determined for the 12 isolates. In addition, 16S rRNA gene sequences of 15 ammonia-oxidizing bacteria (AOB) published previously were completed to allow for a more reliable phylogeny inference of members of this guild. Moreover, sequences of 453 bp fragments of the amoA gene were determined from 15 AOB, including the 12 isolates, and completed for 10 additional AOB. 16S rRNA gene and amoA-based analyses, including all available sequences of AOB pure cultures, were performed to determine the position of the newly retrieved sequences within the established phylogenetic framework. The resulting 16S rRNA gene and amoA tree topologies were similar but not identical and demonstrated a superior resolution of 16S rRNA versus amoA analysis. While 11 of the 12 isolates could be assigned to different phylogenetic groups recognized within the betaproteobacterial AOB, the estuarine isolate Nitrosomonas sp. Nm143 formed a separate lineage together with three other marine isolates whose 16S rRNA sequences have not been published but have been deposited in public databases. In addition, 17 environmentally retrieved 16S rRNA gene sequences not assigned previously and all originating exclusively from marine or estuarine sites clearly belong to this lineage.
Collapse
Affiliation(s)
- Ulrike Purkhold
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany
| | - Michael Wagner
- Lehrstuhl für Mikrobielle Ökologie, Universität Wien, Althanstr. 14, A-1090 Wien, Austria
| | - Gabriele Timmermann
- Institut für Allgemeine Botanik, Abteilung Mikrobiologie, Universität Hamburg, D-22609 Hamburg, Germany
| | - Andreas Pommerening-Röser
- Institut für Allgemeine Botanik, Abteilung Mikrobiologie, Universität Hamburg, D-22609 Hamburg, Germany
| | - Hans-Peter Koops
- Institut für Allgemeine Botanik, Abteilung Mikrobiologie, Universität Hamburg, D-22609 Hamburg, Germany
| |
Collapse
|
45
|
Bowman JP, McCuaig RD. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 2003; 69:2463-83. [PMID: 12732511 PMCID: PMC154503 DOI: 10.1128/aem.69.5.2463-2483.2003] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
16S ribosomal DNA (rDNA) clone library analysis was conducted to assess prokaryotic diversity and community structural changes within a surficial sediment core obtained from an Antarctic continental shelf area (depth, 761 m) within the Mertz Glacier Polynya (MGP) region. Libraries were created from three separate horizons of the core (0- to 0.4-cm, 1.5- to 2.5-cm, and 20- to 21-cm depth positions). The results indicated that at the oxic sediment surface (depth, 0 to 0.4 cm) the microbial community appeared to be dominated by a small subset of potentially r-strategist (fast-growing, opportunistic) species, resulting in a lower-than-expected species richness of 442 operational taxonomic units (OTUs). At a depth of 1.5 to 2.5 cm, the species richness (1,128 OTUs) was much higher, with the community dominated by numerous gamma and delta proteobacterial phylotypes. At a depth of 20 to 21 cm, a clear decline in species richness (541 OTUs) occurred, accompanied by a larger number of more phylogenetically divergent phylotypes and a decline in the predominance of Proteobacteria. Based on rRNA and clonal abundance as well as sequence comparisons, syntrophic cycling of oxidized and reduced sulfur compounds appeared to be the dominant process in surficial MGP sediment, as phylotype groups putatively linked to these processes made up a large proportion of clones throughout the core. Between 18 and 65% of 16S rDNA phylotypes detected in a wide range of coastal and open ocean sediments possessed high levels of sequence similarity (>95%) with the MGP sediment phylotypes, indicating that many sediment prokaryote phylotype groups defined in this study are ubiquitous in marine sediment.
Collapse
Affiliation(s)
- John P Bowman
- School of Agricultural Science, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | | |
Collapse
|
46
|
Abstract
Most reviews of microbial life in cold environments begin with a lament of how little is known about the psychrophilic (cold-loving) inhabitants or their specific adaptations to the cold. This situation is changing, as research becomes better focused by new molecular genetic (and other) approaches, by awareness of accelerated environmental change in polar regions, and by strong interest in the habitability of frozen environments elsewhere in the solar system. This review highlights recent discoveries in molecular adaptation, biodiversity and microbial dynamics in the cold, along with the concept of eutectophiles, organisms living at the critical interface inherent to the phase change of water to ice.
Collapse
Affiliation(s)
- Jody W Deming
- School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|