1
|
Koirala A, Alshibli NA, Das BK, Brözel VS. Bacterial Isolation from Natural Grassland on Nitrogen-Free Agar Yields Many Strains Without Nitrogenase. Microorganisms 2025; 13:96. [PMID: 39858864 PMCID: PMC11768025 DOI: 10.3390/microorganisms13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Nitrogen inputs for sustainable crop production for a growing population require the enhancement of biological nitrogen fixation. Efforts to increase biological nitrogen fixation include bioprospecting for more effective nitrogen-fixing bacteria. As bacterial nitrogenases are extremely sensitive to oxygen, most primary isolation methods rely on the use of semisolid agar or broth to limit oxygen exposure. Without physical separation, only the most competitive strains are obtained. The distance between strains provided by plating on solid media in reduced oxygen environments has been found to increase the diversity of culturable potential diazotrophic bacteria. To obtain diverse nitrogen-fixing isolates from natural grasslands, we plated soil suspensions from 27 samples onto solid nitrogen-free agar and incubated them under atmospheric and oxygen-reducing conditions. Putative nitrogen fixers were confirmed by subculturing in liquid nitrogen-free media and PCR amplification of the nifH genes. Streaking of the 432 isolates on nitrogen-rich R2A revealed many cocultures. In most cases, only one community member then grew on NFA, indicating the coexistence of nonfixers in coculture with fixers when growing under nitrogen-limited conditions. To exclude isolates able to scavenge residual nitrogen, such as that from vitamins, we used a stringent nitrogen-free medium containing only 6.42 μmol/L total nitrogen and recultured them in a nitrogen-depleted atmosphere. Surprisingly, PCR amplification of nifH using various primer pairs yielded amplicons from only 17% of the 442 isolates. The majority of the nifH PCR-negative isolates were Bacillus and Streptomyces. It is unclear whether these isolates have highly effective uptake systems or nitrogen reduction systems that are not closely aligned with known nitrogenase families. We advise caution in determining the nitrogen fixation ability of plants from growth on nitrogen-free media, even where the total nitrogen is very limited.
Collapse
Affiliation(s)
- Amrit Koirala
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (A.K.); (N.A.A.); (B.K.D.)
| | - Nabilah Ali Alshibli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (A.K.); (N.A.A.); (B.K.D.)
| | - Bikram K. Das
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (A.K.); (N.A.A.); (B.K.D.)
| | - Volker S. Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (A.K.); (N.A.A.); (B.K.D.)
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
2
|
Bekkar AA, Zaim S. Newly isolated Brevundimonas naejangsanensis as a biocontrol agent against Fusarium redolens the causal of Fusarium yellows of chickpea. Folia Microbiol (Praha) 2024; 69:835-846. [PMID: 38175463 DOI: 10.1007/s12223-023-01126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Three endophytic bacteria, namely BvV, BvP and BvL, were newly isolated from the root nodules of bean, pea and lentil plants respectively cultivated in Mascara the northwest of Algeria, and identified by 16S ribosomal RNA gene sequencing as Brevundimonas naejangsanensis. These strains were able to produce hydrolytic enzymes and hydrogen cyanide. All strains produced a growth-promoting hormone, indole acetic acid, varying in concentration from 83.2 to 171.7 µg/mL. The phosphate solubilizing activity of BvV, BvP and BvL varied from 25.5 to 42.02 µg/mL for tricalcium phosphate. The three antagonistic Brevundimonas spp. showed in vitro the most inhibitory effect on mycelial growth of Fusarium redolens FRC (from 78.33 to 85.55%). Strain BvV, BvP and BvL produced also volatile metabolites which inhibited mycelial FRC growth up to 39.2%. All strains showed significant disease reduction in pot experiments. Chickpea Fusarium yellows severity caused by FRC was reduced significantly from 89.3 to 96.6% in the susceptible cultivar ILC 482 treated with antagonistic B. naejangsanensis. The maximum stimulatory effect on chickpea plants growth was observed by inoculation of strain BvV. This treatment resulted in a 7.40-26.21% increase in shoot height as compared to the control plants. It is concluded that the endophytic bacterial strains of B. naejangsanensis having different plant growth promoting (PGP) activities can be considered as beneficial microbes for sustainable agriculture. To our knowledge, this is the first report to use B. naejangsanensis strains as a new biocontrol agent against F. redolens, a new pathogen of chickpea plants causing Fusarium yellows disease in Algeria.
Collapse
Affiliation(s)
- Ahmed Amine Bekkar
- Laboratory of Research on Biological Systems and Geomatics (L.R.S.B.G), Department of Agronomy, Faculty of Life and Natural Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria.
| | - Souad Zaim
- Laboratory of Research on Biological Systems and Geomatics (L.R.S.B.G), Department of Agronomy, Faculty of Life and Natural Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria
| |
Collapse
|
3
|
Badmi R, Gogoi A, Doyle Prestwich B. Secondary Metabolites and Their Role in Strawberry Defense. PLANTS (BASEL, SWITZERLAND) 2023; 12:3240. [PMID: 37765404 PMCID: PMC10537498 DOI: 10.3390/plants12183240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Strawberry is a high-value commercial crop and a model for the economically important Rosaceae family. Strawberry is vulnerable to attack by many pathogens that can affect different parts of the plant, including the shoot, root, flowers, and berries. To restrict pathogen growth, strawberry produce a repertoire of secondary metabolites that have an important role in defense against diseases. Terpenes, allergen-like pathogenesis-related proteins, and flavonoids are three of the most important metabolites involved in strawberry defense. Genes involved in the biosynthesis of secondary metabolites are induced upon pathogen attack in strawberry, suggesting their transcriptional activation leads to a higher accumulation of the final compounds. The production of secondary metabolites is also influenced by the beneficial microbes associated with the plant and its environmental factors. Given the importance of the secondary metabolite pathways in strawberry defense, we provide a comprehensive overview of their literature and their role in the defense responses of strawberry. We focus on terpenoids, allergens, and flavonoids, and discuss their involvement in the strawberry microbiome in the context of defense responses. We discuss how the biosynthetic genes of these metabolites could be potential targets for gene editing through CRISPR-Cas9 techniques for strawberry crop improvement.
Collapse
Affiliation(s)
- Raghuram Badmi
- School of Biological Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland;
| | - Anupam Gogoi
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - Barbara Doyle Prestwich
- School of Biological Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland;
| |
Collapse
|
4
|
Kumar A, Rithesh L, Kumar V, Raghuvanshi N, Chaudhary K, Abhineet, Pandey AK. Stenotrophomonas in diversified cropping systems: friend or foe? Front Microbiol 2023; 14:1214680. [PMID: 37601357 PMCID: PMC10437078 DOI: 10.3389/fmicb.2023.1214680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
In the current scenario, the use of synthetic fertilizers is at its peak, which is an expensive affair, possesses harmful effects to the environment, negatively affecting soil fertility and beneficial soil microfauna as well as human health. Because of this, the demand for natural, chemical-free, and organic foods is increasing day by day. Therefore, in the present circumstances use of biofertilizers for plant growth-promotion and microbe-based biopesticides against biotic stresses are alternative options to reduce the risk of both synthetic fertilizers and pesticides. The plant growth promoting rhizobacteria (PGPR) and microbial biocontrol agents are ecologically safe and effective. Owning their beneficial properties on plant systems without harming the ecosystem, they are catching the widespread interest of researchers, agriculturists, and industrialists. In this context, the genus Stenotrophomonas is an emerging potential source of both biofertilizer and biopesticide. This genus is particularly known for producing osmoprotective substances which play a key role in cellular functions, i.e., DNA replication, DNA-protein interactions, and cellular metabolism to regulate the osmotic balance, and also acts as effective stabilizers of enzymes. Moreover, few species of this genus are disease causing agents in humans that is why; it has become an emerging field of research in the present scenario. In the past, many studies were conducted on exploring the different applications of Stenotrophomonas in various fields, however, further researches are required to explore the various functions of Stenotrophomonas in plant growth promotion and management of pests and diseases under diverse growth conditions and to demonstrate its interaction with plant and soil systems. The present review discusses various plant growth and biocontrol attributes of the genus Stenotrophomonas in various food crops along with knowledge gaps. Additionally, the potential risks and challenges associated with the use of Stenotrophomonas in agriculture systems have also been discussed along with a call for further research in this area.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
- Department of Agriculture, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Lellapalli Rithesh
- Department of Plant Pathology, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - Vikash Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Nikhil Raghuvanshi
- Department of Agronomy, Institute of Agriculture and Natural Science, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Kautilya Chaudhary
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Abhineet
- Department of Agriculture, Integral Institute of Agricultural Sciences & Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Abhay K. Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R&D Center, Nagrakata, West Bengal, India
| |
Collapse
|
5
|
Chauviat A, Meyer T, Favre-Bonté S. Versatility of Stenotrophomonas maltophilia: Ecological roles of RND efflux pumps. Heliyon 2023; 9:e14639. [PMID: 37089375 PMCID: PMC10113797 DOI: 10.1016/j.heliyon.2023.e14639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
S. maltophilia is a widely distributed bacterium found in natural, anthropized and clinical environments. The genome of this opportunistic pathogen of environmental origin includes a large number of genes encoding RND efflux pumps independently of the clinical or environmental origin of the strains. These pumps have been historically associated with the uptake of antibiotics and clinically relevant molecules because they confer resistance to many antibiotics. However, considering the environmental origin of S. maltophilia, the ecological role of these pumps needs to be clarified. RND efflux systems are highly conserved within bacteria and encountered both in pathogenic and non-pathogenic species. Moreover, their evolutionary origin, conservation and multiple copies in bacterial genomes suggest a primordial role in cellular functions and environmental adaptation. This review is aimed at elucidating the ecological role of S. maltophilia RND efflux pumps in the environmental context and providing an exhaustive description of the environmental niches of S. maltophilia. By looking at the substrates and functions of the pumps, we propose different involvements and roles according to the adaptation of the bacterium to various niches. We highlight that i°) regulatory mechanisms and inducer molecules help to understand the conditions leading to their expression, and ii°) association and functional redundancy of RND pumps and other efflux systems demonstrate their complex role within S. maltophilia cells. These observations emphasize that RND efflux pumps play a role in the versatility of S. maltophilia.
Collapse
|
6
|
Sidorova DE, Khmel IA, Chernikova AS, Chupriyanova TA, Plyuta VA. Biological activity of volatiles produced by the strains of two Pseudomonas and two Serratia species. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01038-y. [PMID: 36790684 DOI: 10.1007/s12223-023-01038-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S. proteamaculans 94 strain on Arabidopsis thaliana plants (on growth and germination of seeds). We demonstrated that total mixtures of volatile compounds emitted by these strains grown on Luria-Bertani agar, Tryptone Soya Agar, and Potato Dextrose Agar media inhibited the A. thaliana growth. When studied bacteria grew on Murashige and Skoog (MS) agar medium, volatile mixtures produced by bacteria could stimulate the growth of plants. Volatile compounds of bacteria slowed down the germination of plant seeds; in the presence of volatile mixtures of P. fluorescens B-4117, the seeds did not germinate. Of the individual VOCs, 2-heptanone had the most potent inhibitory effect on seed germination. We also showed that the tested VOCs did not cause oxidative stress in Escherichia coli cells using specific lux-biosensors. VOCs reduced the expression of the lux operon from the promoters of the katG, oxyS, and soxS genes (whose products involved in the protection of cells from oxidative stress) caused by the action of hydrogen peroxide and paraquat, respectively.
Collapse
Affiliation(s)
- Daria E Sidorova
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia
| | - Inessa A Khmel
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia
| | - Anastasya S Chernikova
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia
- Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Moscow, 125480, Russia
| | - Tanya A Chupriyanova
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia
- Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Moscow, 125480, Russia
| | - Vladimir A Plyuta
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Kurchatov sq. 2, Moscow, 123182, Russia.
| |
Collapse
|
7
|
Matilla MA, Evans TJ, Martín J, Udaondo Z, Lomas‐Martínez C, Rico‐Jiménez M, Reyes F, Salmond GPC. Herbicolin A production and its modulation by quorum sensing in a
Pantoea agglomerans
rhizobacterium bioactive against a broad spectrum of plant‐pathogenic fungi. Microb Biotechnol 2022. [PMID: 36528875 PMCID: PMC10364316 DOI: 10.1111/1751-7915.14193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Global population growth makes it necessary to increase agricultural production yields. However, climate change impacts and diseases caused by plant pathogens are challenging modern agriculture. Therefore, it is necessary to look for alternatives to the excessive use of chemical fertilizers and pesticides. The plant microbiota plays an essential role in plant nutrition and health, and offers enormous potential to meet future challenges of agriculture. In this context, here we characterized the antifungal properties of the rhizosphere bacterium Pantoea agglomerans 9Rz4, which is active against a broad spectrum of plant pathogenic fungi. Chemical analyses revealed that strain 9Rz4 produces the antifungal herbicolin A and its biosynthetic gene cluster was identified and characterized. We found that the only acyl-homoserine lactone-based quorum sensing system of 9Rz4 modulates herbicolin A gene cluster expression. No role of plasmid carriage in the production of herbicolin A was observed. Plant assays revealed that herbicolin A biosynthesis does not affect the root colonization ability of P. agglomerans 9Rz4. Current legislative restrictions are aimed at reducing the use of chemical pesticides in agriculture, and the results derived from this study may lay the foundations for the development of novel biopesticides from rhizosphere microorganisms.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Terry J. Evans
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Granada Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock Arkansas USA
| | - Cristina Lomas‐Martínez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - Míriam Rico‐Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Granada Spain
| | | |
Collapse
|
8
|
Genetic Determinants of Antagonistic Interactions and the Response of New Endophytic Strain Serratia quinivorans KP32 to Fungal Phytopathogens. Int J Mol Sci 2022; 23:ijms232415561. [PMID: 36555201 PMCID: PMC9779691 DOI: 10.3390/ijms232415561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Fungal phytopathogens are challenging to control due to their penetration into plant tissues. Therefore, plant-colonizing bacteria could serve as an excellent weapon in fighting fungal infections. In this study, we aim to determine the biocontrol potential of the new endophytic strain Serratia quinivorans KP32, isolated from the roots of Petroselinum crispum L.; identify the related mechanisms; and understand the basis of its antagonistic interaction with taxonomically diverse fungi at the molecular level. The KP32 strain presented biological activity against Rhizoctonia solani, Colletotrichum dematium, Fusarium avenaceum, and Sclerotinia sclerotiorum, and its ability to inhibit the growth of the phytopathogens was found to be mediated by a broad spectrum of biocontrol features, such as the production of a number of lytic enzymes (amylases, chitinases, and proteases), siderophores, volatile organic and inorganic compounds, salicylic acid, and N-acyl-homoserine lactones. The higher expression of chitinase (chiA) and genes involved in the biosynthesis of hydrogen cyanide (hcnC), enterobactin (entB), and acetoin (budA) in bacteria exposed to fungal filtrates confirmed that these factors could act in combination, leading to a synergistic inhibitory effect of the strain against phytopathogens. We also confirm the active movement, self-aggregation, exopolysaccharide production, and biofilm formation abilities of the KP32 strain, which are essential for effective plant colonization. Its biological activity and colonization potential indicate that KP32 holds tremendous potential for use as an active biopesticide and plant growth promoter.
Collapse
|
9
|
Li X, Kong P, Daughtrey M, Kosta K, Schirmer S, Howle M, Likins M, Hong C. Characterization of the Soil Bacterial Community from Selected Boxwood Gardens across the United States. Microorganisms 2022; 10:1514. [PMID: 35893572 PMCID: PMC9330173 DOI: 10.3390/microorganisms10081514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
In a recent study, we observed a rapid decline of the boxwood blight pathogen Calonectria pseudonaviculata (Cps) soil population in all surveyed gardens across the United States, and we speculated that these garden soils might be suppressive to Cps. This study aimed to characterize the soil bacterial community in these boxwood gardens. Soil samples were taken from one garden in California, Illinois, South Carolina, and Virginia and two in New York in early summer and late fall of 2017 and 2018. Soil DNA was extracted and its 16S rRNA amplicons were sequenced using the Nanopore MinION® platform. These garden soils were consistently dominated by Rhizobiales and Burkholderiales, regardless of garden location and sampling time. These two orders contain many species or strains capable of pathogen suppression and plant fitness improvement. Overall, 66 bacterial taxa were identified in this study that are known to have strains with biological control activity (BCA) against plant pathogens. Among the most abundant were Pseudomonas spp. and Bacillus spp., which may have contributed to the Cps decline in these garden soils. This study highlights the importance of soil microorganisms in plant health and provides a new perspective on garden disease management using the soil microbiome.
Collapse
Affiliation(s)
- Xiaoping Li
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA; (P.K.); (C.H.)
| | - Ping Kong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA; (P.K.); (C.H.)
| | - Margery Daughtrey
- Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901, USA;
| | - Kathleen Kosta
- California Department of Food and Agriculture, Sacramento, CA 95814, USA;
| | - Scott Schirmer
- Bureau of Environmental Programs, Illinois Department of Agriculture, Dekalb, IL 60115, USA;
| | - Matthew Howle
- Department of Plant Industry, Clemson University, Florence, SC 29506, USA;
| | - Michael Likins
- Chesterfield Cooperative Extension, Chesterfield County, VA 23832, USA;
| | - Chuanxue Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA; (P.K.); (C.H.)
| |
Collapse
|
10
|
Zhou Y, Wang H, Xu S, Liu K, Qi H, Wang M, Chen X, Berg G, Ma Z, Cernava T, Chen Y. Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions. STRESS BIOLOGY 2022; 2:22. [PMID: 37676347 PMCID: PMC10442017 DOI: 10.1007/s44154-022-00046-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 09/08/2023]
Abstract
Bacteria and fungi are dominant members of environmental microbiomes. Various bacterial-fungal interactions (BFIs) and their mutual regulation are important factors for ecosystem functioning and health. Such interactions can be highly dynamic, and often require spatiotemporally resolved assessments to understand the interplay which ranges from antagonism to mutualism. Many of these interactions are still poorly understood, especially in terms of the underlying chemical and molecular interplay, which is crucial for inter-kingdom communication and interference. BFIs are highly relevant under agricultural settings; they can be determinative for crop health. Advancing our knowledge related to mechanisms underpinning the interactions between bacteria and fungi will provide an extended basis for biological control of pests and pathogens in agriculture. Moreover, it will facilitate a better understanding of complex microbial community networks that commonly occur in nature. This will allow us to determine factors that are crucial for community assembly under different environmental conditions and pave the way for constructing synthetic communities for various biotechnological applications. Here, we summarize the current advances in the field of BFIs with an emphasis on agriculture.
Collapse
Affiliation(s)
- Yaqi Zhou
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Sunde Xu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kai Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hao Qi
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mengcen Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Xiaoyulong Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
- Leibniz-Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
- University of Potsdam, Potsdam, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria.
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Helal DS, El-Khawas H, Elsayed TR. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J Genet Eng Biotechnol 2022; 20:79. [PMID: 35608711 PMCID: PMC9130443 DOI: 10.1186/s43141-022-00361-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
Abstract
Background Successful rhizosphere colonization by plant growth promoting rhizobacteria (PGPR) is of crucial importance to perform the desired plant growth promoting activities. Since rhizocompetence is a dynamic process influenced by surrounding environmental conditions. In the present study, we hypothesized that bacterial isolates obtained from different tomato plant microhabitats (balk soil, rhizosphere, endorhiza, phyllosphere, and endoshoot) grown in different soils (sand, clay, and peat moss) will show different rhizocompetence abilities. Results To evaluate this hypothesis, bacterial isolates were obtained from different plant microhabitats and screened for their phosphate solubilizing and nitrogen fixing activates. BOX-PCR fingerprint profiles showed high genotypic diversity among the tested isolates and that same genotypes were shared between different soils and/or plant microhabitats. 16S rRNA gene sequences of 25 PGP isolates, representing different plant spheres and soil types, were affiliated to eight genera: Enterobacter, Paraburkholderia, Klebsiella, Bacillus, Paenibacillus, Stenotrophomonas, Pseudomonas, and Kosakonia. The rhizocompetence of each isolate was evaluated in the rhizosphere of tomato plants grown on a mixture of the three soils. Different genotypes of the same bacterial species displayed different rhizocompetence potentials. However, isolates obtained from the above-ground parts of the plant showed high rhizocompetence. In addition, biological control-related genes, ituD and srfC, were detected in the obtained spore forming bacterial isolates. Conclusion This study evaluates, for the first time, the relationship between plant microhabitat and the rhizocompetence ability in tomato rhizosphere. The results indicated that soil type and plant sphere can influence both the genotypic diversity and rhizocompetence ability of the same bacterial species. Bacterial isolates obtained in this study are promising to be used as an environmentally friendly substitution of chemical fertilizers. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00361-0.
Collapse
Affiliation(s)
- Donia S Helal
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Hussein El-Khawas
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt.
| |
Collapse
|
12
|
Omer AM, Osman MS, Badawy AA. Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. BOTANICAL STUDIES 2022; 63:15. [PMID: 35587317 PMCID: PMC9120335 DOI: 10.1186/s40529-022-00345-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/02/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Salinized soils negatively affect plant growth, so it has become necessary to use safe and eco-friendly methods to mitigate this stress. In a completely randomized design, a pot experiment was carried out to estimate the influence of the inoculation with endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata and their co-inoculation on growth and metabolic aspects of flax (Linum usitatissimum) plants that already grown in salinized soil. RESULTS The results observed that inoculation of salinity-stressed flax plants with the endophytes A. brasilense and P. geniculata (individually or in co-inoculation) increases almost growth characteristics (shoot and root lengths, fresh and dry weights as well as number of leaves). Moreover, contents of chlorophylls and carotenoids pigments, soluble sugars, proteins, free proline, total phenols, ascorbic acid, and potassium (K+) in flax plants grown in salinized soil were augmented because of the inoculation with A. brasilense and P. geniculata. Oppositely, there are significant decreases in free proline, malondialdehyde (MDA), hydrogen peroxide (H2O2), and sodium (Na+) contents. Regarding antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), the inoculation with the tested endophytes led to significant enhancements in the activities of antioxidant enzymes in stressed flax plants. CONCLUSIONS The results of this work showed that the use of the endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata (individually or in co-inoculation) could be regarded as an uncommon new model to alleviate salinity stress, especially in salinized soils.
Collapse
Affiliation(s)
- Amal M Omer
- Soil Fertility and Microbiology Department, Desert Research Center, El-Matareya 11753, Cairo, Egypt
| | - Mahmoud S Osman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ali A Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
13
|
Olimi E, Kusstatscher P, Wicaksono WA, Abdelfattah A, Cernava T, Berg G. Insights into the microbiome assembly during different growth stages and storage of strawberry plants. ENVIRONMENTAL MICROBIOME 2022; 17:21. [PMID: 35484554 PMCID: PMC9052558 DOI: 10.1186/s40793-022-00415-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/17/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Microbiome assembly was identified as an important factor for plant growth and health, but this process is largely unknown, especially for the fruit microbiome. Therefore, we analyzed strawberry plants of two cultivars by focusing on microbiome tracking during the different growth stages and storage using amplicon sequencing, qPCR, and microscopic approaches. RESULTS Strawberry plants carried a highly diverse microbiome, therein the bacterial families Sphingomonadaceae (25%), Pseudomonadaceae (17%), and Burkholderiaceae (11%); and the fungal family Mycosphaerella (45%) were most abundant. All compartments were colonized by high number of bacteria and fungi (107-1010 marker gene copies per g fresh weight), and were characterized by high microbial diversity (6049 and 1501 ASVs); both were higher for the belowground samples than in the phyllosphere. Compartment type was the main driver of microbial diversity, structure, and abundance (bacterial: 45%; fungal: 61%) when compared to the cultivar (1.6%; 2.2%). Microbiome assembly was strongly divided for belowground habitats and the phyllosphere; only a low proportion of the microbiome was transferred from soil via the rhizosphere to the phyllosphere. During fruit development, we observed the highest rates of microbial transfer from leaves and flowers to ripe fruits, where most of the bacteria occured inside the pulp. In postharvest fruits, microbial diversity decreased while the overall abundance increased. Developing postharvest decay caused by Botrytis cinerea decreased the diversity as well, and induced a reduction of potentially beneficial taxa. CONCLUSION Our findings provide insights into microbiome assembly in strawberry plants and highlight the importance of microbe transfer during fruit development and storage with potential implications for food health and safety.
Collapse
Affiliation(s)
- Expedito Olimi
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
14
|
Bennis M, Perez-Tapia V, Alami S, Bouhnik O, Lamin H, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Characterization of plant growth-promoting bacteria isolated from the rhizosphere of Robinia pseudoacacia growing in metal-contaminated mine tailings in eastern Morocco. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114321. [PMID: 35021593 DOI: 10.1016/j.jenvman.2021.114321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mining activity in the Touissit district of Eastern Morocco has led to an unprecedented accumulation of heavy metals, mainly lead and zinc, in the tailing ponds of the open-air mines. This poses a real danger to both the environment and local population. OBJECTIVES The goal of this work was to characterize the Plant Growth Promoting Rhizobacteria (PGPR) isolated from the rhizosphere soil of R. pseudoacacia plants grown wild in the abandoned Pb- and Zn-contaminated tailing ponds in the mining district of Touissit, in Eastern Morocco. MAIN RESULTS One hundred bacterial strains were isolated from the rhizosphere of black locust (Robinia pseudoacacia L.) plants growing naturally in the Touissit mine tailings. Quantitative determination of indole-acetic and siderophores production, inorganic phosphate solubilization, hydrolysis of 1-aminocyclopropane-1-carboxylic acid (ACC deaminase activity), and ability to act as a biocontrol agent allowed selection of the 3 strains, 7MBT, 17MBT and 84MBT with improved PGP properties. The three strains grew well in the presence of high concentration of Pb-acetate and ZnCl2; and the addition of Pb or Zn to the culture medium differently affected the PGP properties analyzed. NOVELTY STATEMENT Inoculation of black locust grown with the 3 selected strains, in the presence 1000 μg ml-1 of Pb-acetate, produced varying effects on the plant dry weight. The strain 84MBT alone or in combination with strains 7MBT and 17MBT increased significantly the dry weight of the plants by 91, 62, and 85% respectively. The 16S rRNA gene sequence analysis of each strain showed that the strains 7MBT 17MBT and 84MBT had 99.34, 100, and had 99.72% similarity with Priestia endophytica (formerly B. endophyticus), B. pumilus NBRC 12092T, and B. halotolerans NBRC 15718T, respectively.
Collapse
Affiliation(s)
- Meryeme Bennis
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Vicente Perez-Tapia
- Departamento de Microbiología del Suelo y Sistemas Simbióticos Estación Experimental del Zaidín, CSIC Apartado Postal 419, 18008, Granada, Spain
| | - Soufiane Alami
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos Estación Experimental del Zaidín, CSIC Apartado Postal 419, 18008, Granada, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco.
| |
Collapse
|
15
|
Das P, Effmert U, Baermann G, Quella M, Piechulla B. Impact of bacterial volatiles on phytopathogenic fungi: an in vitro study on microbial competition and interaction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:596-614. [PMID: 34718549 DOI: 10.1093/jxb/erab476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms in the rhizosphere are abundant and exist in very high taxonomic diversity. The major players are bacteria and fungi, and bacteria have evolved many strategies to prevail over fungi, among them harmful enzyme activities and noxious secondary metabolites. Interactions between plant growth promoting rhizobacteria and phytopathogenic fungi are potentially valuable since the plant would benefit from fungal growth repression. In this respect, the role of volatile bacterial metabolites in fungistasis has been demonstrated, but the mechanisms of action are less understood. We used three phytopathogenic fungal species (Sclerotinia sclerotiorum, Rhizoctonia solani, and Juxtiphoma eupyrena) as well as one non-phytopathogenic species (Neurospora crassa) and the plant growth promoting rhizobacterium Serratia plymuthica 4Rx13 in co-cultivation assays to investigate the influence of bacterial volatile metabolites on fungi on a cellular level. As a response to the treatment, we found elevated lipid peroxidation, which indirectly reflected the loss of fungal cell membrane integrity. An increase in superoxide dismutase, catalase, and laccase activities indicated oxidative stress. Acclimation to these adverse growth conditions completely restored fungal growth. One of the bioactive bacterial volatile compounds seemed to be ammonia, which was a component of the bacterial volatile mixture. Applied as a single compound in biogenic concentrations ammonia also caused an increase in lipid peroxidation and enzyme activities, but the extent and pattern did not fully match the effect of the entire bacterial volatile mixture.
Collapse
Affiliation(s)
- Piyali Das
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| | - Uta Effmert
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| | - Gunnar Baermann
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| | - Manuel Quella
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| | - Birgit Piechulla
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
16
|
Gruet C, Muller D, Moënne-Loccoz Y. Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Front Microbiol 2022; 12:782135. [PMID: 35058901 PMCID: PMC8764353 DOI: 10.3389/fmicb.2021.782135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Wheat, one of the major crops in the world, has had a complex history that includes genomic hybridizations between Triticum and Aegilops species and several domestication events, which resulted in various wild and domesticated species (especially Triticum aestivum and Triticum durum), many of them still existing today. The large body of information available on wheat-microbe interactions, however, was mostly obtained without considering the importance of wheat evolutionary history and its consequences for wheat microbial ecology. This review addresses our current understanding of the microbiome of wheat root and rhizosphere in light of the information available on pre- and post-domestication wheat history, including differences between wild and domesticated wheats, ancient and modern types of cultivars as well as individual cultivars within a given wheat species. This analysis highlighted two major trends. First, most data deal with the taxonomic diversity rather than the microbial functioning of root-associated wheat microbiota, with so far a bias toward bacteria and mycorrhizal fungi that will progressively attenuate thanks to the inclusion of markers encompassing other micro-eukaryotes and archaea. Second, the comparison of wheat genotypes has mostly focused on the comparison of T. aestivum cultivars, sometimes with little consideration for their particular genetic and physiological traits. It is expected that the development of current sequencing technologies will enable to revisit the diversity of the wheat microbiome. This will provide a renewed opportunity to better understand the significance of wheat evolutionary history, and also to obtain the baseline information needed to develop microbiome-based breeding strategies for sustainable wheat farming.
Collapse
Affiliation(s)
| | | | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
17
|
Ercole TG, Savi DC, Adamoski D, Kava VM, Hungria M, Galli-Terasawa LV. Diversity of maize (Zea mays L.) rhizobacteria with potential to promote plant growth. Braz J Microbiol 2021; 52:1807-1823. [PMID: 34458975 DOI: 10.1007/s42770-021-00596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
Plant growth-limiting factors, such as low nutrient availability and weak pathogen resistance, may hinder the production of several crops. Plant growth-promoting bacteria (PGPB) used in agriculture, which stimulate plant growth and development, can serve as a potential tool to mitigate or even circumvent these limitations. The present study evaluated the feasibility of using bacteria isolated from the maize rhizosphere as PGPB for the cultivation of this crop. A total of 282 isolates were collected and clustered into 57 groups based on their genetic similarity using BOX-PCR. A representative isolate from each group was selected and identified at the genus level with 16S rRNA sequencing. The identified genera included Bacillus (61.5% of the isolates), Lysinibacillus (30.52%), Pseudomonas (3.15%), Stenotrophomonas (2.91%), Paenibacillus (1.22%), Enterobacter (0.25%), Rhizobium (0.25%), and Atlantibacter (0.25%). Eleven isolates with the highest performance were selected for analyzing the possible pathways underlying plant growth promotion using biochemical and molecular techniques. Of the selected isolates, 90.9% were positive for indolepyruvate/phenylpyruvate decarboxylase, 54.4% for pyrroloquinoline quinine synthase, 36.4% for nitrogenase reductase, and 27.3% for nitrite reductase. Based on biochemical characterization, 9.1% isolates could fix nitrogen, 36.6% could solubilize phosphate, 54.5% could produce siderophores, and 90.9% could produce indole acetic acid. Enzymatic profiling revealed that the isolates could degrade starch (90.1%), cellulose (72.7%), pectin (81.8%), protein (90.9%), chitin (18.2%), urea (54.5%), and esters (45.4%). Based on the data obtained, we identified three Bacillus spp. (LGMB12, LGMB273, and LGMB426), one Stenotrophomonas sp. (LGMB417), and one Pseudomonas sp. (LGMB456) with the potential to serve as PGPB for maize. Further research is warranted to evaluate the biotechnological potential of these isolates as biofertilizers under field conditions.
Collapse
Affiliation(s)
- Tairine G Ercole
- Department of Genetics, Universidade Federal Do Paraná, Av. Coronel Francisco Heráclito Dos Santos, 210. CEP, Curitiba, PR, 81531-970, Brazil
| | - Daiani C Savi
- Department of Biomedicine, Centro Universitário Católica de Santa Catarina, R. Visconde de Taunay, 427. CEP, Joinville, SC, 89203-005, Brazil
| | - Douglas Adamoski
- Department of Genetics, Universidade Federal Do Paraná, Av. Coronel Francisco Heráclito Dos Santos, 210. CEP, Curitiba, PR, 81531-970, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, Sao Paulo, Brazil
| | - Vanessa M Kava
- Department of Genetics, Universidade Federal Do Paraná, Av. Coronel Francisco Heráclito Dos Santos, 210. CEP, Curitiba, PR, 81531-970, Brazil
| | | | - Lygia V Galli-Terasawa
- Department of Genetics, Universidade Federal Do Paraná, Av. Coronel Francisco Heráclito Dos Santos, 210. CEP, Curitiba, PR, 81531-970, Brazil.
| |
Collapse
|
18
|
Tal O, Bartuv R, Vetcos M, Medina S, Jiang J, Freilich S. NetCom: A Network-Based Tool for Predicting Metabolic Activities of Microbial Communities Based on Interpretation of Metagenomics Data. Microorganisms 2021; 9:microorganisms9091838. [PMID: 34576734 PMCID: PMC8468097 DOI: 10.3390/microorganisms9091838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
The study of microbial activity can be viewed as a triangle with three sides: environment (dominant resources in a specific habitat), community (species dictating a repertoire of metabolic conversions) and function (production and/or utilization of resources and compounds). Advances in metagenomics enable a high-resolution description of complex microbial communities in their natural environments and support a systematic study of environment-community-function associations. NetCom is a web-tool for predicting metabolic activities of microbial communities based on network-based interpretation of assembled and annotated metagenomics data. The algorithm takes as an input, lists of differentially abundant enzymatic reactions and generates the following outputs: (i) pathway associations of differently abundant enzymes; (ii) prediction of environmental resources that are unique to each treatment, and their pathway associations; (iii) prediction of compounds that are produced by the microbial community, and pathway association of compounds that are treatment-specific; (iv) network visualization of enzymes, environmental resources and produced compounds, that are treatment specific (2 and 3D). The tool is demonstrated on metagenomic data from rhizosphere and bulk soil samples. By predicting root-specific activities, we illustrate the relevance of our framework for forecasting the impact of soil amendments on the corresponding microbial communities. NetCom is available online.
Collapse
Affiliation(s)
- Ofir Tal
- Newe Ya’ar Research Center, Institute of Plant Sciences, The Agricultural Research Organization, Ramat Yishay 30095, Israel; (O.T.); (R.B.); (M.V.); (S.M.)
| | - Rotem Bartuv
- Newe Ya’ar Research Center, Institute of Plant Sciences, The Agricultural Research Organization, Ramat Yishay 30095, Israel; (O.T.); (R.B.); (M.V.); (S.M.)
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 7628604, Israel
| | - Maria Vetcos
- Newe Ya’ar Research Center, Institute of Plant Sciences, The Agricultural Research Organization, Ramat Yishay 30095, Israel; (O.T.); (R.B.); (M.V.); (S.M.)
| | - Shlomit Medina
- Newe Ya’ar Research Center, Institute of Plant Sciences, The Agricultural Research Organization, Ramat Yishay 30095, Israel; (O.T.); (R.B.); (M.V.); (S.M.)
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shiri Freilich
- Newe Ya’ar Research Center, Institute of Plant Sciences, The Agricultural Research Organization, Ramat Yishay 30095, Israel; (O.T.); (R.B.); (M.V.); (S.M.)
- Correspondence:
| |
Collapse
|
19
|
Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. CHEMOSPHERE 2021; 274:129819. [PMID: 33582538 DOI: 10.1016/j.chemosphere.2021.129819] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/09/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal and metalloid toxicity in agricultural land needs special attention for crop production essential to feed increasing population globally. Plant growth-promoting rhizobacteria (PGPR) are native biological agents that have tremendous potential to augment crop production in contaminated fields. This study involves selection and identification (through 16S rRNA gene sequence and FAME analysis) of a potent Pseudomonas sp. (strain K32) isolated from a metal-contaminated rice rhizosphere, aimed to its application for sustainable agriculture. Apart from multi-heavy metal(loid) resistance (Cd2+, Pb2+ and As3+ upto 4000, 3800, 3700 μg/ml respectively) along with remarkable Cd bioaccumulation potential (∼90%), this strain showed IAA production, nitrogen-fixation and phosphate solubilization under Cd stress. This bioaccumulation efficiency coupled with PGP traits resulted in the significant enhancement of rice seedling growth under Cd stress. This positive impact of K32 strain was clearly manifested in morphological and biochemical improvements under Cd stress including successful root colonization with rice roots. Cd uptake was also reduced significantly in seedlings in presence of K32 strain. Together with all mentioned properties, K32 showed bio-control potential against plant pathogenic fungi viz. Aspergillus flavus, Aspergillus parasiticus, Paecilomyces sp., Cladosporium herbarum, Rhizopus stolonifer and Alternaria alternata which establish K32 strain a key player in effective bioremediation of agricultural fields. Biocontrol potential was found to be the result of enzymatic activities viz. chitinase, β-1,3-glucanase and protease which were estimated as 8.17 ± 0.44, 4.38 ± 0.35 and 7.72 ± 0.28 U/mg protein respectively.
Collapse
Affiliation(s)
- Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| | - Subhrangshu Mandal
- Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| | - Sandipan Banerjee
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| | - Antara Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| |
Collapse
|
20
|
Menezes RC, Piechulla B, Warber D, Svatoš A, Kai M. Metabolic Profiling of Rhizobacteria Serratia plymuthica and Bacillus subtilis Revealed Intra- and Interspecific Differences and Elicitation of Plipastatins and Short Peptides Due to Co-cultivation. Front Microbiol 2021; 12:685224. [PMID: 34135882 PMCID: PMC8200778 DOI: 10.3389/fmicb.2021.685224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Rhizobacteria live in diverse and dynamic communities having a high impact on plant growth and development. Due to the complexity of the microbial communities and the difficult accessibility of the rhizosphere, investigations of interactive processes within this bacterial network are challenging. In order to better understand causal relationships between individual members of the microbial community of plants, we started to investigate the inter- and intraspecific interaction potential of three rhizobacteria, the S. plymuthica isolates 4Rx13 and AS9 and B. subtilis B2g, using high resolution mass spectrometry based metabolic profiling of structured, low-diversity model communities. We found that by metabolic profiling we are able to detect metabolite changes during cultivation of all three isolates. The metabolic profile of S. plymuthica 4Rx13 differs interspecifically to B. subtilis B2g and surprisingly intraspecifically to S. plymuthica AS9. Thereby, the release of different secondary metabolites represents one contributing factor of inter- and intraspecific variations in metabolite profiles. Interspecific co-cultivation of S. plymuthica 4Rx13 and B. subtilis B2g showed consistently distinct metabolic profiles compared to mono-cultivated species. Thereby, putative known and new variants of the plipastatin family are increased in the co-cultivation of S. plymuthica 4Rx13 and B. subtilis B2g. Interestingly, intraspecific co-cultivation of S. plymuthica 4Rx13 and S. plymuthica AS9 revealed a distinct interaction zone and showed distinct metabolic profiles compared to mono-cultures. Thereby, several putative short proline-containing peptides are increased in co-cultivation of S. plymuthica 4Rx13 with S. plymuthica AS9 compared to mono-cultivated strains. Our results demonstrate that the release of metabolites by rhizobacteria alters due to growth and induced by social interactions between single members of the microbial community. These results form a basis to elucidate the functional role of such interaction-triggered compounds in establishment and maintenance of microbial communities and can be applied under natural and more realistic conditions, since rhizobacteria also interact with the plant itself and many other members of plant and soil microbiota.
Collapse
Affiliation(s)
- Riya C Menezes
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Birgit Piechulla
- Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| | - Dörte Warber
- Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Kai
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany.,Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| |
Collapse
|
21
|
Nordstedt NP, Jones ML. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals. Front Microbiol 2021; 12:653556. [PMID: 34046022 PMCID: PMC8144289 DOI: 10.3389/fmicb.2021.653556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
22
|
Elsayed TR, Grosch R, Smalla K. Potato plant spheres and to a lesser extent the soil type influence the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Ralstonia solanacearum. FEMS Microbiol Ecol 2021; 97:6155061. [PMID: 33674848 DOI: 10.1093/femsec/fiab038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ralstonia solanacearum biovar2-race3 (Rs r3b2) is an epidemic soil-borne bacterial phytopathogen causing brown rot disease in potato. In this study, we assessed how three soil types stored at the same field site influenced the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Rs in bulk soil and different potato plant spheres (rhizosphere, endorhiza and endocaulosphere; ecto- and endosphere of seed and yield tubers). In general, the plate counts observed for each sample type were not significantly different. A total of 96 colonies per sample type was picked and screened for in vitro antagonistic activity against Rs. Antagonists were obtained from all bulk soils and plant spheres with the highest proportion obtained from the endorhiza and endocaulosphere of potato plants. BOX-PCR fingerprints of antagonists showed that some were specific for particular plant spheres independent of the soil type, while others originated from different plant spheres of a particular soil type. The majority of antagonists belonged to Pseudomonas. A high proportion of antagonists produced siderophores, and interestingly antagonists from potato tubers frequently carried multiple antibiotic production genes. Our data showed an enrichment of bacteria with genes or traits potentially involved in biocontrol in the rhizosphere and in endophytic compartments. We report that the proportion and diversity of in vitro antagonists towards Rs isolated from bulk soil and different spheres of potato plants grown under field conditions in three different soil types was mainly shaped by the plant sphere and to a lesser extent by the soil type. Bacteria with antagonistic activity towards Ralstonia solanacearum were isolated from all plant spheres and bulk soils but their proportion was highest in endophytic compartments.
Collapse
Affiliation(s)
- Tarek R Elsayed
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany.,Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Plant-Microbe Systems, Großbeeren, Germany
| | - Kornelia Smalla
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
23
|
Modulation of Arabidopsis thaliana growth by volatile substances emitted by Pseudomonas and Serratia strains. World J Microbiol Biotechnol 2021; 37:82. [PMID: 33855623 DOI: 10.1007/s11274-021-03047-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Many volatile compounds secreted by bacteria play an important role in the interactions of microorganisms, can inhibit the growth of phytopathogenic bacteria and fungi, can suppress or stimulate plant growth and serve as infochemicals presenting a new type of interspecies communication. In this work, we investigated the effect of total pools of volatile substances and individual volatile organic compounds (VOCs) synthesized by the rhizosphere bacteria Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270, the soil-borne strain P. fluorescens B-4117 and the spoiled meat isolate S. proteamaculans 94 on Arabidopsis thaliana plants. We showed that total gas mixtures secreted by these strains during their growth on Luria-Bertani agar inhibited A. thaliana growth. Hydrogen cyanide synthesis was unnecessary for the growth suppression. A decrease in the inhibition level was observed for the strain P. chlororaphis 449 with a mutation in the gacS gene, while inactivation of the rpoS gene had no effect. Individual VOCs synthesized by these bacteria (1-indecene, ketones 2-nonanone, 2-heptanone, 2-undecanone, and dimethyl disulfide) inhibited the growth of plants or killed them. Older A. thaliana seedlings were more resistant to VOCs than younger seedlings. The results indicated that the ability of some volatiles emitted by the rhizosphere and soil bacteria to inhibit plant growth should be considered when assessing the potential of such bacteria for the biocontrol of plant diseases.
Collapse
|
24
|
Pulami D, Schauss T, Eisenberg T, Wilharm G, Blom J, Goesmann A, Kämpfer P, Glaeser SP. Acinetobacter baumannii in manure and anaerobic digestates of German biogas plants. FEMS Microbiol Ecol 2021; 96:5896450. [PMID: 32832994 DOI: 10.1093/femsec/fiaa176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Studies considering environmental multidrug-resistant Acinetobacter spp. are scarce. The application of manure on agricultural fields is one source of multidrug-resistant bacteria from livestock into the environment. Here, Acinetobacter spp. were quantified by quantitative polymerase chain reaction in manure applied to biogas plants and in the output of the anaerobic digestion, and Acinetobacter spp. isolated from those samples were comprehensively characterized. The concentration of Acinetobacter 16S ribosomal ribonucleic acid (rRNA) gene copies per g fresh weight was in range of 106-108 in manure and decreased (partially significantly) to a still high concentration (105-106) in digestates. 16S rRNA, gyrB-rpoB and blaOXA51-like gene sequencing identified 17 different Acinetobacter spp., including six A. baumannii strains. Multilocus sequence typing showed no close relation of the six strains with globally relevant clonal complexes; however, they represented five novel sequence types. Comparative genomics and physiological tests gave an explanation how Acinetobacter could survive the anaerobic biogas process and indicated copper resistance and the presence of intrinsic beta-lactamases, efflux-pump and virulence genes. However, the A. baumannii strains lacked acquired resistance against carbapenems, colistin and quinolones. This study provided a detailed characterization of Acinetobacter spp. including A. baumannii released via manure through mesophilic or thermophilic biogas plants into the environment.
Collapse
Affiliation(s)
- Dipen Pulami
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Thorsten Schauss
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), D-35392 Giessen, Germany; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392, Giessen, Germany
| | - Gottfried Wilharm
- Project Group P2, Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
25
|
Strategy of Salt Tolerance and Interactive Impact of Azotobacter chroococcum and/or Alcaligenes faecalis Inoculation on Canola ( Brassica napus L.) Plants Grown in Saline Soil. PLANTS 2021; 10:plants10010110. [PMID: 33430173 PMCID: PMC7825586 DOI: 10.3390/plants10010110] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
A pot experiment was designed and performed in a completely randomized block design (CRBD) to determine the main effect of two plant growth-promoting rhizobacteria (PGPR) and their co-inoculation on growth criteria and physio-biochemical attributes of canola plants (Brassica napus L.) plant grown in saline soil. The results showed that inoculation with two PGPR (Azotobacter chroococcum and/or Alcaligenes faecalis) energized the growth parameters and photosynthetic pigments of stressed plants. Moreover, soluble sugars’ and proteins’ contents were boosted due to the treatments mentioned above. Proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents were markedly declined. At the same time, antioxidant enzymes, viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD), were augmented due to the inoculation with Azotobacter chroococcum and/or Alcaligenes faecalis. Regarding minerals’ uptake, there was a decline in sodium (Na) and an increase in nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) uptake due to the application of either individual or co-inoculation with the mentioned bacterial isolates. This study showed that co-inoculation with Azotobacter chroococcum and Alcaligenes faecalis was the most effective treatment and could be considered a premium tool used in facing environmental problems, especially saline soils.
Collapse
|
26
|
Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review. SUSTAINABILITY 2020. [DOI: 10.3390/su13010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review pays attention to the newest insights on the soil microbiome in plant disease-suppressive soil (DSS) for sustainable plant health management from the perspective of a circular economy that provides beneficial microbiota by recycling agro-wastes into the soil. In order to increase suppression of soil-borne plant pathogens, the main goal of this paper is to critically discuss and compare the potential use of reshaped soil microbiomes by assembling different agricultural practices such as crop selection; land use and conservative agriculture; crop rotation, diversification, intercropping and cover cropping; compost and chitosan application; and soil pre-fumigation combined with organic amendments and bio-organic fertilizers. This review is seen mostly as a comprehensive understanding of the main findings regarding DSS, starting from the oldest concepts to the newest challenges, based on the assumption that sustainability for soil quality and plant health is increasingly viable and supported by microbiome-assisted strategies based on the next-generation sequencing (NGS) methods that characterize in depth the soil bacterial and fungal communities. This approach, together with the virtuous reuse of agro-wastes to produce in situ green composts and organic bio-fertilizers, is the best way to design new sustainable cropping systems in a circular economy system. The current knowledge on soil-borne pathogens and soil microbiota is summarized. How microbiota determine soil suppression and what NGS strategies are available to understand soil microbiomes in DSS are presented. Disturbance of soil microbiota based on combined agricultural practices is deeply considered. Sustainable soil microbiome management by recycling in situ agro-wastes is presented. Afterwards, how the resulting new insights can drive the progress in sustainable microbiome-based disease management is discussed.
Collapse
|
27
|
Shrestha A, Schikora A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol 2020; 96:5957528. [DOI: 10.1093/femsec/fiaa226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
ABSTRACTBacteria communicate with each other through quorum sensing (QS) molecules. N-acyl homoserine lactones (AHL) are one of the most extensively studied groups of QS molecules. The role of AHL molecules is not limited to interactions between bacteria; they also mediate inter-kingdom interaction with eukaryotes. The perception mechanism of AHL is well-known in bacteria and several proteins have been proposed as putative receptors in mammalian cells. However, not much is known about the perception of AHL in plants. Plants generally respond to short-chained AHL with modification in growth, while long-chained AHL induce AHL-priming for enhanced resistance. Since plants may host several AHL-producing bacteria and encounter multiple AHL at once, a coordinated response is required. The effect of the AHL combination showed relatively low impact on growth but enhanced resistance. Microbial consortium of bacterial strains that produce different AHL could therefore be an interesting approach in sustainable agriculture. Here, we review the molecular and genetical basis required for AHL perception. We highlight recent advances in the field of AHL-priming. We also discuss the recent discoveries on the impact of combination(s) of multiple AHL on crop plants and the possible use of this knowledge in sustainable agriculture.
Collapse
Affiliation(s)
- Abhishek Shrestha
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
28
|
The Importance of Microbial Inoculants in a Climate-Changing Agriculture in Eastern Mediterranean Region. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Climate change has gained importance due to its severe consequences for many aspects of life. Increasing temperature, drought and greenhouse gases affect directly or indirectly the productivity of agricultural and natural ecosystems as well as human health. The nutrient supply capacity of the soil is diminishing, while food requirements for the growing population are increasing. The ongoing application of agrochemicals results in adverse effects on ecosystem functioning and food chain. Now, more than ever, there is a need to mitigate the effects of agricultural activities on climate change using environmentally friendly techniques. The role of plant beneficial microorganisms on this global challenge is increasingly being explored, and there is strong evidence that could be important. The use of functional microbial guilds forms an alternative or even a supplementary approach to common agricultural practices, due to their ability to act as biofertilizers and promote plant growth. Application of microbial inocula has a significantly lower impact on the environment compared to chemical inputs, while the agricultural sector will financially benefit, and consumers will have access to quality products. Microbial inoculants could play an important role in agricultural stress management and ameliorate the negative impacts of climate change. This short review highlights the role of microbes in benefiting agricultural practices against climate-changing conditions. In particular, the main microbial plant growth-promoting functional traits that are related to climate change are presented and discussed. The importance of microbial inoculants’ multifunctionality is debated, while future needs and challenges are also highlighted.
Collapse
|
29
|
Shrestha A, Grimm M, Ojiro I, Krumwiede J, Schikora A. Impact of Quorum Sensing Molecules on Plant Growth and Immune System. Front Microbiol 2020; 11:1545. [PMID: 32765447 PMCID: PMC7378388 DOI: 10.3389/fmicb.2020.01545] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 02/05/2023] Open
Abstract
Bacterial quorum-sensing (QS) molecules are one of the primary means allowing communication between bacterial cells or populations. Plants also evolved to perceive and respond to those molecules. N-acyl homoserine lactones (AHL) are QS molecules, of which impact has been extensively studied in different plants. Most studies, however, assessed the interactions in a bilateral manner, a nature of interactions, which occurs rarely, if at all, in nature. Here, we investigated how Arabidopsis thaliana responds to the presence of different single AHL molecules and their combinations. We assumed that this reflects the situation in the rhizosphere more accurately than the presence of a single AHL molecule. In order to assess those effects, we monitored the plant growth and defense responses as well as resistance to the plant pathogen Pseudomonas syringae pathovar tomato (Pst). Our results indicate that the complex interactions between multiple AHL and plants may have surprisingly similar outcomes. Individually, some of the AHL molecules positively influenced plant growth, while others induced the already known AHL-priming for induced resistance. Their combinations had a relatively low impact on the growth but seemed to induce resistance mechanisms. Very striking was the fact that all triple, the quadruple as well as the double combination(s) with long-chained AHL molecules increased the resistance to Pst. These findings indicate that induced resistance against plant pathogens could be one of the major outcomes of an AHL perception. Taken together, we present here the first study on how plants respond to the complexity of bacterial quorum sensing.
Collapse
Affiliation(s)
- Abhishek Shrestha
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Braunschweig, Germany
| | - Maja Grimm
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Braunschweig, Germany
| | - Ichie Ojiro
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Johannes Krumwiede
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Braunschweig, Germany
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Braunschweig, Germany
| |
Collapse
|
30
|
Rybakova D, Wikström M, Birch-Jensen F, Postma J, Ehlers RU, Schmuck M, Kollmann R, Köhl J, Berg G. Verticillium Wilt in Oilseed Rape-the Microbiome is Crucial for Disease Outbreaks as Well as for Efficient Suppression. PLANTS 2020; 9:plants9070866. [PMID: 32650549 PMCID: PMC7412322 DOI: 10.3390/plants9070866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Microbiome management is a promising way to suppress verticillium wilt, a severe disease in Brassica caused by Verticillium longisporum. In order to improve current biocontrol strategies, we compared bacterial Verticillium antagonists in different assays using a hierarchical selection and evaluation scheme, and we integrated outcomes of our previous studies. The result was strongly dependent on the assessment method chosen (in vitro, in vivo, in situ), on the growth conditions of the plants and their genotype. The most promising biocontrol candidate identified was a Brassica endophyte Serratia plymuthica F20. Positive results were confirmed in field trials and by microscopically visualizing the three-way interaction. Applying antagonists in seed treatment contributes to an exceptionally low ecological footprint, supporting efficient economic and ecological solutions to controlling verticillium wilt. Indigenous microbiome, especially soil and seed microbiome, has been identified as key to understanding disease outbreaks and suppression. We suggest that verticillium wilt is a microbiome-driven disease caused by a reduction in microbial diversity within seeds and in the soil surrounding them. We strongly recommend integrating microbiome data in the development of new biocontrol and breeding strategies and combining both strategies with the aim of designing healthy microbiomes, thus making plants more resilient toward soil-borne pathogens.
Collapse
Affiliation(s)
- Daria Rybakova
- Graz University of Technology, Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria; (D.R.); (M.S.)
| | - Mariann Wikström
- Agro Plantarum AB, Kärrarpsvägen 410, S-265 90 Åstorp, Sweden; (M.W.); (F.B.-J.)
| | - Fia Birch-Jensen
- Agro Plantarum AB, Kärrarpsvägen 410, S-265 90 Åstorp, Sweden; (M.W.); (F.B.-J.)
| | - Joeke Postma
- Wageningen University & Research, 6708 PB Wageningen, Netherlands; (J.P.); (J.K.)
| | - Ralf Udo Ehlers
- E-nema GmbH, Klausdorfer Str. 28–36, 24223 Schwentinental, Germany;
| | - Maria Schmuck
- Graz University of Technology, Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria; (D.R.); (M.S.)
| | - René Kollmann
- Strateco OG, Ruckerlberggasse 13, 8010 Graz, Austria;
- Sekem Energy GmbH, Steinberg 132, 8151 Hitzendorf, Austria
| | - Jürgen Köhl
- Wageningen University & Research, 6708 PB Wageningen, Netherlands; (J.P.); (J.K.)
| | - Gabriele Berg
- Graz University of Technology, Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria; (D.R.); (M.S.)
- Correspondence: ; Tel.: +43-316-873-8819
| |
Collapse
|
31
|
Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, Souza RSCD, van Overbeek L, Singh BK, Wagner M, Walsh A, Sessitsch A, Schloter M. Microbiome definition re-visited: old concepts and new challenges. MICROBIOME 2020; 8:103. [PMID: 32605663 PMCID: PMC7329523 DOI: 10.1186/s40168-020-00875-0] [Citation(s) in RCA: 902] [Impact Index Per Article: 180.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 05/03/2023]
Abstract
The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term "microbiome." Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstract.
Collapse
Affiliation(s)
- Gabriele Berg
- Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Daria Rybakova
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Tomislav Cernava
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Trevor Charles
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Metagenom Bio, 550 Parkside Drive, Unit A9, Waterloo, ON, N2L 5 V4, Canada
| | - Xiaoyulong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Luca Cocolin
- European Food Information Council, Brussels, Belgium
| | - Kellye Eversole
- International Alliance for Phytobiomes Research, Summit, Lee, MO, 's, USA
| | | | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lene Lange
- BioEconomy, Research, & Advisory, Valby, Denmark
| | - Nelson Lima
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alexander Loy
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | - Emmanuelle Maguin
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tim Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, UK
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Birgit Mitter
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Inga Sarand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - G Seghal Kiran
- Dept of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leo van Overbeek
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Michael Wagner
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Aaron Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | |
Collapse
|
32
|
Wehrmann M, Toussaint M, Pfannstiel J, Billard P, Klebensberger J. The Cellular Response to Lanthanum Is Substrate Specific and Reveals a Novel Route for Glycerol Metabolism in Pseudomonas putida KT2440. mBio 2020; 11:e00516-20. [PMID: 32345644 PMCID: PMC7188995 DOI: 10.1128/mbio.00516-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
Ever since the discovery of the first rare earth element (REE)-dependent enzyme, the physiological role of lanthanides has become an emerging field of research due to the environmental implications and biotechnological opportunities. In Pseudomonas putida KT2440, the two pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) PedE and PedH are inversely regulated in response to REE availability. This transcriptional switch is orchestrated by a complex regulatory network that includes the PedR2/PedS2 two-component system and is important for efficient growth on several alcoholic volatiles. To study whether cellular responses beyond the REE switch exist, the differential proteomic responses that occur during growth on various model carbon sources were analyzed. Apart from the Ca2+-dependent enzyme PedE, the differential abundances of most identified proteins were conditional. During growth on glycerol-and concomitant with the proteomic changes-lanthanum (La3+) availability affected different growth parameters, including the onset of logarithmic growth and final optical densities. Studies with mutant strains revealed a novel metabolic route for glycerol utilization, initiated by PedE and/or PedH activity. Upon oxidation to glycerate via glyceraldehyde, phosphorylation by the glycerate kinase GarK most likely yields glycerate-2-phosphate, which is eventually channeled into the central metabolism of the cell. This new route functions in parallel with the main degradation pathway encoded by the glpFKRD operon and provides a growth advantage to the cells by allowing an earlier onset of growth with glycerol as the sole source of carbon and energy.IMPORTANCE The biological role of REEs has long been underestimated, and research has mainly focused on methanotrophic and methylotrophic bacteria. We have recently demonstrated that P. putida, a plant growth-promoting bacterium that thrives in the rhizosphere of various food crops, possesses a REE-dependent alcohol dehydrogenase (PedH), but knowledge about REE-specific effects on physiological traits in nonmethylotrophic bacteria is still scarce. This study demonstrates that the cellular response of P. putida to lanthanum (La3+) is mostly substrate specific and that La3+ availability highly affects the growth of cells on glycerol. Further, a novel route for glycerol metabolism is identified, which is initiated by PedE and/or PedH activity and provides a growth advantage to this biotechnologically relevant organism by allowing a faster onset of growth. Overall, these findings demonstrate that lanthanides can affect physiological traits in nonmethylotrophic bacteria and might influence their competitiveness in various environmental niches.
Collapse
Affiliation(s)
- Matthias Wehrmann
- University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, Stuttgart, Germany
| | | | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Module, University of Hohenheim, Stuttgart, Germany
| | | | - Janosch Klebensberger
- University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, Stuttgart, Germany
| |
Collapse
|
33
|
Gamalero E, Bona E, Novello G, Boatti L, Mignone F, Massa N, Cesaro P, Berta G, Lingua G. Discovering the bacteriome of Vitis vinifera cv. Pinot Noir in a conventionally managed vineyard. Sci Rep 2020; 10:6453. [PMID: 32296119 PMCID: PMC7160115 DOI: 10.1038/s41598-020-63154-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/16/2020] [Indexed: 01/22/2023] Open
Abstract
The structure of the bacteriome associated with grapevine roots can affect plant development, health and grape quality. We previously investigated the bacterial biodiversity of the Vitis vinifera cv. Pinot Noir rhizosphere in a vineyard subjected to integrated pest management. The aim of this work is to characterize the bacteriome of V. vinifera cv. Pinot Noir in a conventionally managed vineyard using a metabarcoding approach. Comparisons between the microbial community structure in bulk soil and rhizosphere (variable space) were performed and shifts of bacteriome according to two sampling times (variable time) were characterized. Bacterial biodiversity was higher at the second than at the first sampling and did not differ according to the variable space. Actinobacteria was the dominant class, with Gaiella as the most represented genus in all the samples. Among Proteobacteria, the most represented classes were Alpha, Beta and Gamma-Proteobacteria, with higher abundance at the second than at the first sampling time. Bradyrhizobium was the most frequent genus among Alpha-Proteobacteria, while Burkholderia was the predominant Beta-Proteobacteria. Among Firmicutes, the frequency of Staphylococcus was higher than 60% in bulk soil and rhizosphere. Finally, the sampling time can be considered as one of the drivers responsible for the bacteriome variations assessed.
Collapse
Affiliation(s)
- Elisa Gamalero
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Elisa Bona
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Piazza San Eusebio 5, 13100, Vercelli, Italy
| | - Giorgia Novello
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Lara Boatti
- SmartSeq s.r.l., spin-off of the Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Flavio Mignone
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy.,SmartSeq s.r.l., spin-off of the Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Nadia Massa
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Patrizia Cesaro
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy.
| | - Graziella Berta
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Guido Lingua
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, Alessandria, 15121, Italy
| |
Collapse
|
34
|
Kai M. Diversity and Distribution of Volatile Secondary Metabolites Throughout Bacillus subtilis Isolates. Front Microbiol 2020; 11:559. [PMID: 32322244 PMCID: PMC7156558 DOI: 10.3389/fmicb.2020.00559] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Bacillus subtilis releases a broad range of volatile secondary metabolites, which are considered as long- and short distance infochemical signals mediating inter- and intra-specific processes. In addition, they often show antimicrobial or antifungal activities. This review attempts to summarize yet known volatile secondary metabolites produced and emitted by Bacillus subtilis isolates focusing on the structural diversity and distribution patterns. Using in vitro volatile-collection systems, 26 strains of B. subtilis isolated from different habitats were found to produce in total 231 volatile secondary metabolites. These volatile secondary metabolites comprised mainly hydrocarbons, ketones, alcohols, aldehydes, ester, acids, aromatics, sulfur- and nitrogen-containing compounds. Reviewed data revealed to a great extent isolate-specific emission patterns. The production and release of several volatile bioactive compounds was retained in isolates of the species B. subtilis, while volatiles without a described function seemed to be isolate-specifically produced. Detailed analysis, however, also indicated that the original data were strongly influenced by insufficient descriptions of the bacterial isolates, heterogeneous and poorly documented culture conditions as well as sampling techniques and inadequate compound identification. In order to get deeper insight into the nature, diversity, and ecological function of volatile secondary metabolites produced by B. subtilis, it will be necessary to follow well-documented workflows and fulfill state-of-the-art standards to unambiguously identify the volatile metabolites. Future research should consider the dynamic of a bacterial culture leading to differences in cell morphology and cell development. Single cell investigations could help to attribute certain volatile metabolites to defined cell forms and developmental stages.
Collapse
Affiliation(s)
- Marco Kai
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
35
|
Liu J, Ridgway HJ, Jones EE. Apple endophyte community is shaped by tissue type, cultivar and site and has members with biocontrol potential against Neonectria ditissima. J Appl Microbiol 2020; 128:1735-1753. [PMID: 31981438 DOI: 10.1111/jam.14587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/29/2022]
Abstract
AIMS This research aimed to identify factors influencing endophyte community structure in apple shoots and the bioactivity of cultured representatives against the fungal pathogen Neonectria ditissima. METHODS AND RESULTS The endophyte community in leaves and stems of the apple cultivars 'Royal Gala' and 'Braeburn' were analysed by a cultivation-independent method (PCR-DGGE) which showed that tissue type, cultivar and site were determinant factors, with the endophyte taxa in 'Royal Gala' more variable than that in 'Braeburn', with leaf endophyte communities typically differing from stems in both cultivars. Seasonal (spring vs autumn) and regional (Nelson vs Hawke's Bay) variations were not obvious in woody stems. A collection of 783 bacterial and 87 fungal endophytes were recovered from leaves and stems of 'Royal Gala', 'Braeburn', 'Scilate' and/or 'Scifresh' from Nelson (nine sites) and Hawke's Bay (five sites) in spring and from Nelson (three sites) in autumn. A dual culture plating assay was used to test their ability to inhibit the mycelial growth of N. ditissima. Thirteen bacterial (mean of percent inhibition ≥20%) and 17 fungal isolates were antagonistic towards N. ditissima. These isolates belonged to the bacterial genera Bacillus and Pseudomonas, and fungal genera Chaetomium, Epicoccum, Biscogniauxia, Penicillium, Diaporthe, Phlyctema and two unidentified fungal isolates. CONCLUSIONS Endophyte communities in apple shoots were determined by tissue type, cultivar and site. Endophytic bacterial and fungal isolates inhibiting N. ditissima growth in vitro were found. SIGNIFICANCE AND IMPACT OF THE STUDY These results provided new evidence of factors influencing apple endophyte community in New Zealand. Endophytes with potential to reduce N. ditissima infection were identified, with the potential to be developed into a biocontrol strategy for European canker.
Collapse
Affiliation(s)
- J Liu
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - H J Ridgway
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand.,The New Zealand Institute for Plant and Food Research Ltd, Christchurch, New Zealand
| | - E E Jones
- Department of Pest-management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| |
Collapse
|
36
|
Clairmont LK, Slawson RM. Contrasting Water Quality Treatments Result in Structural and Functional Changes to Wetland Plant-Associated Microbial Communities in Lab-Scale Mesocosms. MICROBIAL ECOLOGY 2020; 79:50-63. [PMID: 31144004 DOI: 10.1007/s00248-019-01389-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The impact of contrasting water quality treatments on wetland plant-associated microbial communities was investigated in this study using 12 lab-scale wetland mesocosms (subsurface flow design) planted with reed canary grass (Phalaris arundinacea) or water speedwell (Veronica anagallis-aquatica) over a 13-week period. Mesocosms received water collected from two sites along the Grand River (Ontario, Canada) designated as having either high or poor water quality according to Grand River Conservation Authority classifications. All mesocosms were established using sediment collected from the high water quality site and received water from this source pre-treatment. Resulting changes to microbial community structure were assessed using PCR-denaturing gel gradient electrophoresis (DGGE) on microbial 16S rDNA sequences extracted from rhizoplane, rhizosphere, and water samples before and after exposure to water quality treatments. Functional community changes were determined using Biolog™ EcoPlates which assess community-level carbon source utilization profiles. Wetland mesocosm removal of inorganic nutrients (N, P) and fecal coliforms was also determined, and compared among treatments. Treatment-specific effects were assessed using a repeated measures restricted maximum likelihood (REML) analysis. Structural and functional characteristics of rhizoplane microbial communities were significantly influenced by the interaction between plant species and water treatment (P = 0.04, P = 0.01). Plant species-specific effects were observed for rhizosphere structural diversity (P = 0.01) and wetland water community metabolic diversity (P = 0.03). The effect of water treatment alone was significant for structural diversity measurements in wetland water communities (P = 0.03). The effect of plant species, water quality treatment, and the interaction between the two is dependent on the microhabitat type (rhizoplane, rhizosphere, or water). Rhizoplane communities appear to be more sensitive to water quality-specific environmental changes and may be a good candidate for microbial community-based monitoring of wetland ecosystems.
Collapse
Affiliation(s)
- Lindsey K Clairmont
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada.
| | - Robin M Slawson
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
37
|
Wassermann B, Kusstatscher P, Berg G. Microbiome Response to Hot Water Treatment and Potential Synergy With Biological Control on Stored Apples. Front Microbiol 2019; 10:2502. [PMID: 31781054 PMCID: PMC6852696 DOI: 10.3389/fmicb.2019.02502] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/17/2019] [Indexed: 01/16/2023] Open
Abstract
Postharvest food decay is one major issue for today’s food loss along the supply chain. Hot water treatment (HWT), a sustainable method to reduce pathogen-induced postharvest fruit decay, has been proven to be effective on a variety of crops. However, the microbiome response to HWT is still unknown, and the role of postharvest microbiota for fruit quality is largely unexplored. To study both, we applied a combined approach of metabarcoding analysis and real time qPCR for microbiome tracking. Overall, HWT was highly effective in reducing rot symptoms on apples under commercial conditions, and induced only slight changes to the fungal microbiota, and insignificantly affected the bacterial community. Pathogen infection, however, significantly decreased the bacterial and fungal diversity, and especially rare taxa were almost eradicated in diseased apples. Here, about 90% of the total fungal community was composed by co-occurring storage pathogens Neofabraea alba and Penicillium expansum. Additionally, the prokaryote to eukaryote ratio, almost balanced in apples before storage, was shifted to 0.6% bacteria and 99.4% fungi in diseased apples, albeit the total bacterial abundance was stable across all samples. Healthy stored apples shared 18 bacterial and 4 fungal taxa that were not found in diseased apples; therefore, defining a health-related postharvest microbiome. In addition, applying a combined approach of HWT and a biological control consortium consisting of Pantoea vagans 14E4, Bacillus amyloliquefaciens 14C9 and Pseudomonas paralactis 6F3, were proven to be efficient in reducing both postharvest pathogens. Our results provide first insights into the microbiome response to HWT, and suggest a combined treatment with biological control agents.
Collapse
Affiliation(s)
- Birgit Wassermann
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
| | - Peter Kusstatscher
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
| | - Gabriele Berg
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
| |
Collapse
|
38
|
Deciphering the microbiome shift during fermentation of medicinal plants. Sci Rep 2019; 9:13461. [PMID: 31530872 PMCID: PMC6748931 DOI: 10.1038/s41598-019-49799-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
The importance of the human-microbiome relationship for positive health outcomes has become more apparent over the last decade. Influencing the gut microbiome via modification of diet represents a possibility of maintaining a healthy gut flora. Fermented food and lactic acid bacteria (LAB) display a preventive way to inhibit microbial dysbioses and diseases, but their ecology on plants is poorly understood. We characterized the microbiome of medicinal plants (Matricaria chamomilla L. and Calendula officinalis L.) using 16S rRNA gene profiling from leaves that were fermented over a six-week time course. The unfermented samples were characterized by a distinct phyllosphere microbiome, while the endosphere revealed a high similarity. During fermentation, significant microbial shifts were observed, whereby LAB were enhanced in all approaches but never numerically dominated. Among the LAB, Enterococcaceae were identified as the most dominant family in both plants. M. chamomilla community had higher relative abundances of Lactobacillaceae and Carnobacteriaceae, while C. officinalis showed a higher presence of Leuconostocaceae and Streptococcaceae. The natural leaf microbiome and the indigenous LAB communities of field-grown Asteraceae medicinal plants are plant-specific and habitat-specific and are subjected to significant shifts during fermentation. Leaf surfaces as well as leaf endospheres were identified as sources for biopreservative LAB.
Collapse
|
39
|
Mahmoudi TR, Yu JM, Liu S, Pierson LS, Pierson EA. Drought-Stress Tolerance in Wheat Seedlings Conferred by Phenazine-Producing Rhizobacteria. Front Microbiol 2019; 10:1590. [PMID: 31354678 PMCID: PMC6636665 DOI: 10.3389/fmicb.2019.01590] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
The specific role of phenazines produced by rhizosphere-colonizing Pseudomonas in mediating wheat seedling drought-stress tolerance and recovery from water deficit was investigated using Pseudomonas chlororaphis 30-84 and isogenic derivatives deficient or enhanced in phenazine production compared to wild type. Following a 7-day water deficit, seedlings that received no-inoculum or were colonized by the phenazine mutant wilted to collapse, whereas seedlings colonized by phenazine producers displayed less severe symptoms. After a 7-day recovery period, survival of seedlings colonized by phenazine-producing strains exceeded 80%, but was less than 60% for no-inoculum controls. A second 7-day water deficit reduced overall survival rates to less than 10% for no-inoculum control seedlings, whereas survival was ∼50% for seedlings colonized by phenazine-producers. The relative water content of seedlings colonized by phenazine-producers was 10-20% greater than for the no-inoculum controls at every stage of water deficit and recovery, resulting in higher recovery indices than observed for the no-inoculum controls. For 10-day water deficits causing the collapse of all seedlings, survival rates remained high for plants colonized by phenazine-producers, especially the enhanced phenazine producer (∼74%), relative to the no-inoculum control (∼25%). These observations indicate that seedlings colonized by the phenazine-producing strains suffered less from dehydration during water deficit and recovered better, potentially contributing to better resilience from a second drought/recovery cycle. Seedlings colonized by phenazine-producing strains invested more in root systems and produced 1.5 to 2 fold more root tips than seedlings colonized by the phenazine mutant or the no-inoculum controls when grown with or without water deficit. The results suggest that the presence of phenazine-producing bacteria in the rhizosphere provides wheat seedlings with a longer adjustment period resulting in greater drought-stress avoidance and resilience.
Collapse
Affiliation(s)
- Tessa Rose Mahmoudi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Jun Myoung Yu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Shuyu Liu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
40
|
Wolfgang A, Taffner J, Guimarães RA, Coyne D, Berg G. Novel Strategies for Soil-Borne Diseases: Exploiting the Microbiome and Volatile-Based Mechanisms Toward Controlling Meloidogyne-Based Disease Complexes. Front Microbiol 2019; 10:1296. [PMID: 31231356 PMCID: PMC6568234 DOI: 10.3389/fmicb.2019.01296] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/23/2019] [Indexed: 11/24/2022] Open
Abstract
Under more intensified cropping conditions agriculture will face increasing incidences of soil-borne plant pests and pathogens, leading to increasingly higher yield losses world-wide. Soil-borne disease complexes, in particular, are especially difficult to control. In order to better understand soil-borne Meloidogyne-based disease complexes, we studied the volatile-based control mechanism of associated bacteria as well as the rhizospheric microbiome on Ugandan tomato plants presenting different levels of root-galling damage, using a multiphasic approach. The experimental design was based on representative samplings of healthy and infected tomato plants from two field locations in Uganda, to establish species collections and DNA libraries. Root galling symptoms on tomato resulted from a multispecies infection of root-knot nematodes (Meloidogyne spp.). Results revealed that 16.5% of the bacterial strain collection produced nematicidal volatile organic compounds (nVOC) active against Meloidogyne. Using SPME GC-MS, diverse VOC were identified, including sulfuric compounds, alkenes and one pyrazine. Around 28% of the bacterial strains were also antagonistic toward at least one fungal pathogen of the disease complex. However, antagonistic interactions appear highly specific. Nematicidal antagonists included Pseudomonas, Comamonas, and Variovorax and fungicidal antagonists belonged to Bacillus, which interestingly, were primarily recovered from healthy roots, while nematode antagonists were prominent in the rhizosphere and roots of diseased roots. In summary, all antagonists comprised up to 6.4% of the tomato root microbiota. In general, the microbiota of healthy and diseased root endospheres differed significantly in alpha and quantitative beta diversity indices. Bacteria-derived volatiles appear to provide a remarkable, yet wholly unexploited, potential to control Meloidogyne-based soil-borne disease complexes. The highly specific observed antagonism indicates that a combination of volatiles or VOC-producing bacteria are necessary to counter the range of pathogens involved in such complexes.
Collapse
Affiliation(s)
- Adrian Wolfgang
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Danny Coyne
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
41
|
Kiani T, Khan SA, Noureen N, Yasmin T, Zakria M, Ahmed H, Mehboob F, Farrakh S. Isolation and characterization of culturable endophytic bacterial community of stripe rust-resistant and stripe rust-susceptible Pakistani wheat cultivars. Int Microbiol 2019; 22:191-201. [PMID: 30810983 DOI: 10.1007/s10123-018-00039-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
In this study, endophytic bacteria isolated from root, stem, and leaf tissues of stripe rust-susceptible (Inqilab 91, Galaxy 2013, and 15BT023) and stripe rust-resistant (NARC 2011, Ujala 2015, TW1410) cultivars were identified and characterized. Abundance of endophytes was found in roots as compared with stems and leaves. Resistant and susceptible cultivars significantly differed in abundance of endophytic bacteria. Restriction analysis of 16S rRNA genes amplified from 100 bacterial isolates produced 17 unique patterns. Representatives of each of the 17 unique patterns were sequenced and identified. Among the sequenced bacteria, 8 belonged to Firmicutes, 7 were Proteobacteria, and 2 were Actinobacteria. Most of the isolates have plant growth-promoting properties and a few have the potential of producing hydrolytic enzymes. Two isolates showed significant inhibition of rust spore germination. These endophytic bacteria not only can be helpful in growth-promoting activities but also can assist in biocontrol of stripe rust disease.
Collapse
Affiliation(s)
- Tehmina Kiani
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Shahzad Abid Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nighat Noureen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Sumaira Farrakh
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
42
|
Arrebola E, Tienda S, Vida C, de Vicente A, Cazorla FM. Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcPCL1606. Front Microbiol 2019; 10:719. [PMID: 31024497 PMCID: PMC6469467 DOI: 10.3389/fmicb.2019.00719] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/21/2019] [Indexed: 12/31/2022] Open
Abstract
The goal of this mini review is to summarize the relevant contribution of some beneficial traits to the behavior of the species Pseudomonas chlororaphis, and using that information, to give a practical point of view using the model biocontrol strain P. chlororaphis PCL1606 (PcPCL1606). Among the group of plant-beneficial rhizobacteria, P. chlororaphis has emerged as a plant- and soil-related bacterium that is mainly known because of its biological control of phytopathogenic fungi. Many traits have been reported to be crucial during the multitrophic interaction involving the plant, the fungal pathogen and the soil environment. To explore the different biocontrol-related traits, the biocontrol rhizobacterium PcPCL1606 has been used as a model in recent studies. This bacterium is antagonistic to many phytopathogenic fungi and displays effective biocontrol against fungal phytopathogens. Antagonistic and biocontrol activities are directly related to the production of the compound 2-hexyl, 5-propyl resorcinol (HPR), despite the production of other antifungal compounds. Furthermore, PcPCL1606 has displayed additional traits regarding its fitness in soil and plant root environments such as soil survival, efficient plant root colonization, cell-to-cell interaction or promotion of plant growth.
Collapse
Affiliation(s)
- Eva Arrebola
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| |
Collapse
|
43
|
Wassermann B, Kusstatscher P, Berg G. Microbiome Response to Hot Water Treatment and Potential Synergy With Biological Control on Stored Apples. Front Microbiol 2019. [PMID: 31781054 DOI: 10.3389/fmicb.2019.02502/full] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Postharvest food decay is one major issue for today's food loss along the supply chain. Hot water treatment (HWT), a sustainable method to reduce pathogen-induced postharvest fruit decay, has been proven to be effective on a variety of crops. However, the microbiome response to HWT is still unknown, and the role of postharvest microbiota for fruit quality is largely unexplored. To study both, we applied a combined approach of metabarcoding analysis and real time qPCR for microbiome tracking. Overall, HWT was highly effective in reducing rot symptoms on apples under commercial conditions, and induced only slight changes to the fungal microbiota, and insignificantly affected the bacterial community. Pathogen infection, however, significantly decreased the bacterial and fungal diversity, and especially rare taxa were almost eradicated in diseased apples. Here, about 90% of the total fungal community was composed by co-occurring storage pathogens Neofabraea alba and Penicillium expansum. Additionally, the prokaryote to eukaryote ratio, almost balanced in apples before storage, was shifted to 0.6% bacteria and 99.4% fungi in diseased apples, albeit the total bacterial abundance was stable across all samples. Healthy stored apples shared 18 bacterial and 4 fungal taxa that were not found in diseased apples; therefore, defining a health-related postharvest microbiome. In addition, applying a combined approach of HWT and a biological control consortium consisting of Pantoea vagans 14E4, Bacillus amyloliquefaciens 14C9 and Pseudomonas paralactis 6F3, were proven to be efficient in reducing both postharvest pathogens. Our results provide first insights into the microbiome response to HWT, and suggest a combined treatment with biological control agents.
Collapse
Affiliation(s)
- Birgit Wassermann
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
| | - Peter Kusstatscher
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
| | - Gabriele Berg
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
| |
Collapse
|
44
|
Genome Sequence of the Oocydin A-Producing Rhizobacterium Serratia plymuthica 4Rx5. Microbiol Resour Announc 2018; 7:MRA00997-18. [PMID: 30533641 PMCID: PMC6256664 DOI: 10.1128/mra.00997-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/21/2018] [Indexed: 11/29/2022] Open
Abstract
Serratia plymuthica 4Rx5 was isolated from the rhizosphere of oilseed rape due to its antagonistic properties against plant-pathogenic fungi. The strain 4Rx5 produces the antifungal and antioomycete haterumalide, oocydin A. Serratia plymuthica 4Rx5 was isolated from the rhizosphere of oilseed rape due to its antagonistic properties against plant-pathogenic fungi. The strain 4Rx5 produces the antifungal and antioomycete haterumalide, oocydin A. Analysis of its genome revealed the presence of various gene clusters putatively involved in the biosynthesis of additional secondary metabolites.
Collapse
|
45
|
Pudova DS, Lutfullin MT, Shagimardanova EI, Hadieva GF, Shigapova L, Toymentseva AA, Kabanov DA, Mardanova AM, Vologin SG, Sharipova MR. Draft genome sequence data of Lysinibacillus fusiformis strain GM, isolated from potato phyllosphere as a potential probiotic. Data Brief 2018; 21:2504-2509. [PMID: 30761330 PMCID: PMC6288392 DOI: 10.1016/j.dib.2018.11.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022] Open
Abstract
Here we present the morphological and physiological properties of isolated Lysinibacillus fusiformis strain GM, its draft genome sequence as well as annotation and analysis of its genome. Initial analysis of MALDI-TOF mass spectrometry, 16S rRNA gene analysis and in silico DNA-DNA hybridization revealed that the strain belongs to the species Lysinibacillus fusiformis. The 4,678,122 bp draft genome consist of 17 scaffolds encoding 4588 proteins and 137 RNAs. Annotation of the genome sequence revealed cellulase and protease encoding genes, genes of adhesion proteins and putative genes responsible for the biosynthesis of antimicrobial metabolites. The Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number NTMQ00000000.1 (https://www.ncbi.nlm.nih.gov/nuccore/NZ_NTMQ00000000.1).
Collapse
Affiliation(s)
- Daria S Pudova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Marat T Lutfullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Elena I Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Guzel F Hadieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Leyla Shigapova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Anna A Toymentseva
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Daniil A Kabanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Ayslu M Mardanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | | | - Margarita R Sharipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
46
|
Interspecific formation of the antimicrobial volatile schleiferon. Sci Rep 2018; 8:16852. [PMID: 30442919 PMCID: PMC6237861 DOI: 10.1038/s41598-018-35341-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
Microorganisms release a plethora of volatile secondary metabolites. Up to now, it has been widely accepted that these volatile organic compounds are produced and emitted as a final product by a single organism e.g. a bacterial cell. We questioned this commonly assumed perspective and hypothesized that in diversely colonized microbial communities, bacterial cells can passively interact by emitting precursors which non-enzymatically react to form the active final compound. This hypothesis was inspired by the discovery of the bacterial metabolite schleiferon A. This bactericidal volatile compound is formed by a non-enzymatic reaction between acetoin and 2-phenylethylamine. Both precursors are released by Staphylococcus schleiferi cells. In order to provide evidence for our hypothesis that these precursors could also be released by bacterial cells of different species, we simultaneously but separately cultivated Serratia plymuthica 4Rx13 and Staphylococcus delphini 20771 which held responsible for only one precursor necessary for schleiferon A formation, respectively. By mixing their headspace, we demonstrated that these two species were able to deliver the active principle schleiferon A. Such a joint formation of a volatile secondary metabolite by different bacterial species has not been described yet. This highlights a new aspect of interpreting multispecies interactions in microbial communities as not only direct interactions between species might determine and influence the dynamics of the community. Events outside the cell could lead to the appearance of new compounds which could possess new community shaping properties.
Collapse
|
47
|
Scott M, Rani M, Samsatly J, Charron JB, Jabaji S. Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Can J Microbiol 2018; 64:664-680. [PMID: 29911410 DOI: 10.1139/cjm-2018-0108] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plant endophytes are a group of microorganisms that reside asymptomatically within the healthy living tissue. The diversity and molecular and biochemical characterization of industrial hemp-associated endophytes have not been previously studied. This study explored the abundance and diversity of culturable endophytes residing in petioles, leaves, and seeds of three industrial hemp cultivars, and examined their biochemical attributes and antifungal potential. A total of 134 bacterial and 53 fungal strains were isolated from cultivars Anka, CRS-1, and Yvonne. The number of bacterial isolates was similarly distributed among the cultivars, with the majority recovered from petiole tissue. Most fungal strains originated from leaf tissue of cultivar Anka. Molecular and phylogenetic analyses grouped the endophytes into 18 bacterial and 13 fungal taxa, respectively. The most abundant bacterial genera were Pseudomonas, Pantoea, and Bacillus, and the fungal genera were Aureobasidium, Alternaria, and Cochliobolus. The presence of siderophores, cellulase production, and phosphorus solubilization were the main biochemical traits. In proof-of-concept experiments, re-inoculation of tomato roots with some endophytes confirmed their migration to aerial tissues of the plant. Taken together, this study demonstrates that industrial hemp harbours a diversity of microbial endophytes, some of which could be used in growth promotion and (or) in biological control designed experiments.
Collapse
Affiliation(s)
- Maryanne Scott
- Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada.,Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Mamta Rani
- Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada.,Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Jamil Samsatly
- Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada.,Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Jean-Benoit Charron
- Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada.,Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Suha Jabaji
- Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada.,Plant Science Department, MacDonald Campus of McGill University, 21 111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
48
|
Kim MJ, Jeon CW, Cho G, Kim DR, Kwack YB, Kwak YS. Comparison of Microbial Community Structure in Kiwifruit Pollens. THE PLANT PATHOLOGY JOURNAL 2018; 34:143-149. [PMID: 29628821 PMCID: PMC5880359 DOI: 10.5423/ppj.nt.12.2017.0281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 05/29/2023]
Abstract
Flowers of kiwifruit are morphologically hermaphroditic and survivable binucleate pollen is produced by the male flowers. In this study, we investigated microbial diversity in kiwifruit pollens by analyzing amplicon sequences of 16S rRNA. Four pollen samples were collected: 'NZ' was imported from New Zealand, 'CN' from China in year of 2014, respectively. 'KR13' and 'KR14' were collected in 2013' and 2014' in South Korea. Most of the identified bacterial phyla in the four different pollens were Proteobacteria, Actinobacteria and Firmicutes. However, the imported and the domestic pollen samples showed different aspects of microbial community structures. The domestic pollens had more diverse in diversity than the imported samples. Among top 20 OTUs, Pseudomonas spp. was the most dominant specie. Interestingly, a bacterial pathogen of kiwifruit canker, Pseudomonas syringae pv. actinidiae was detected in 'NZ' by the specific PCR. This study provides insights microbial distribution and community structure information in kiwifruit pollen.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Chang-Wook Jeon
- Dvision of Applied Life Science (BK21plus), Gyeongsang National University, Jinju 52828,
Korea
| | - Gyongjun Cho
- Dvision of Applied Life Science (BK21plus), Gyeongsang National University, Jinju 52828,
Korea
| | - Da-Ran Kim
- Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | | | - Youn-Sig Kwak
- Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
- Dvision of Applied Life Science (BK21plus), Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
49
|
Wassermann B, Rybakova D, Müller C, Berg G. Harnessing the microbiomes of Brassica vegetables for health issues. Sci Rep 2017; 7:17649. [PMID: 29247170 PMCID: PMC5732279 DOI: 10.1038/s41598-017-17949-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023] Open
Abstract
Plant health is strongly connected with plants´ microbiome. In case of raw-eaten plants, the microbiome can also affect human health. To study potential impacts on health issues of both hosts, the microbiome composition of seven different Brassica vegetables, originating from different food processing pathways, was analyzed by a combined approach of amplicon sequencing, metagenomic mining and cultivation. All Brassica vegetables harbored a highly diverse microbiota as identified by 16S rRNA gene amplicon sequencing. The composition of the microbiota was found to be rather driven by the plant genotype than by the processing pathway. We characterized isolates with potential cancer-preventing properties by tracing myrosinase activity as well as isolates with biological control activity towards plant pathogens. We identified a novel strain with myrosinase activity and we found bacterial myrosinase genes to be enriched in rhizosphere and phyllosphere metagenomes of Brassica napus and Eruca sativa in comparison to the surrounding soil. Strains which were able to suppress plant pathogens were isolated from naturally processed vegetables and represent a substantial part (4.1%) of all vegetable microbiomes. Our results shed first light on the microbiome of edible plants and open the door to harnessing the Brassica microbiome for plant disease resistance and human health.
Collapse
Affiliation(s)
- Birgit Wassermann
- Graz University of Technology, Institute of Environmental Biotechnology, Petersgasse 12, 8010, Graz, Austria
| | - Daria Rybakova
- Graz University of Technology, Institute of Environmental Biotechnology, Petersgasse 12, 8010, Graz, Austria
| | - Christina Müller
- Graz University of Technology, Institute of Environmental Biotechnology, Petersgasse 12, 8010, Graz, Austria
| | - Gabriele Berg
- Graz University of Technology, Institute of Environmental Biotechnology, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|
50
|
Gkarmiri K, Mahmood S, Ekblad A, Alström S, Högberg N, Finlay R. Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape. Appl Environ Microbiol 2017; 83:e01938-17. [PMID: 28887416 PMCID: PMC5666129 DOI: 10.1128/aem.01938-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. "Candidatus Nitrososphaera" was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napusIMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture.
Collapse
Affiliation(s)
- Konstantia Gkarmiri
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shahid Mahmood
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alf Ekblad
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Sadhna Alström
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nils Högberg
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roger Finlay
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|