1
|
Molpeceres G, Aza P, Ayuso-Fernández I, Padilla G, Ruiz-Dueñas FJ, Camarero S. Deciphering the distribution and types of Multicopper oxidases in Basidiomycota fungi. Mol Phylogenet Evol 2025; 206:108310. [PMID: 39993489 DOI: 10.1016/j.ympev.2025.108310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025]
Abstract
Multicopper oxidases (MCOs) comprise different types of enzymes widely distributed in nature with quite diverse functions. Laccases are the most interesting MCOs from a biotechnological point of view, particularly those secreted by ligninolytic Basidiomycota fungi due to their versatility to oxidize lignin and a variety of aromatic substrates. The term "laccase" has been broadly (but sometimes erroneously) applied due to their low sequence homology and some overlapping activities with other MCO groups. We examined the distribution and phylogenetic relationships of MCOs in Basidiomycota fungi aiming to provide a complete and precise picture of the different MCO types across the division, including fungal orders phylogenetically distant from those typically studied. The phylogenetic tree revealed eight clusters of MCOs, each sharing common sequence/structural features. With this information we classified the MCOs in eight groups and described their distinctive amino acid residues. These eight MCO types are: laccases (LAC), ferroxidases (FOX), laccase-ferroxidases (LAC-FOX), ascorbate oxidases (AO), fungal pigment MCOs, and three new groups of laccase-like enzymes or "atypical laccases" related to but different from laccases sensu stricto, namely novel laccases (NLAC), new MCO (NMCO) and new laccases with potential ferroxidase activity (NLF). Additionally, several MCOs already described in the literature were reclassified into the updated groups.
Collapse
Affiliation(s)
- Gonzalo Molpeceres
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Pablo Aza
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Iván Ayuso-Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Guillermo Padilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Francisco Javier Ruiz-Dueñas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Susana Camarero
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| |
Collapse
|
2
|
Pawlik A, Drozd R, Janusz G. Altering the Properties of Laccases from Ensifer meliloti ( Sinorhizobium meliloti) and Cerrena unicolor by Chemical Modifications of Proteins. Biomolecules 2025; 15:531. [PMID: 40305261 PMCID: PMC12025185 DOI: 10.3390/biom15040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Due to their catalytic performance, laccases constitute one of the most promising groups of enzymes for potential applications in modern biotechnology. In this study, we aimed to chemically modify Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor laccase and comparatively characterize the structures of both enzymes. The most characteristic feature was the spatial localization of lysine residues, predominantly positioned distal to the active site region for both compared enzymes. The solvent-accessible surface area (SASA) analysis showed that bacterial laccase was characterized by a larger hydrophobic SASA than the fungal enzyme. The pKa prediction identified only one Lys in the E. meliloti laccase structure susceptible to modification. Modifications were achieved by using mono- and bifunctional crosslinking agents, and glycosylations were also performed. The degree of protein modification ranged from 0% for glucose- and galactose-modified E. meliloti laccase and citraconic anhydride-modified (CA) C. unicolor laccase to 62.94% for the palmitic acid N-hydroxysuccinimide ester-modified E. meliloti enzyme. The stability of covalently modified laccases over a wide pH and temperature ranges and in the presence of inhibitors was investigated. Protein modifications with polymeric sucrose (PS) and ethylene glycol bis-(succinimidyl succinate) (EGNHS) significantly increased the activity of the bacterial and fungal laccases by 15 and 19%, respectively. Although pH optima remained relatively unchanged by modifications, certain variants, especially CA-modified bacterial protein and EGNHS-modified C. unicolor enzyme, exhibited improved stability at near-neutral pH (6-7). Modification of the bacterial enzyme with glutaraldehyde-carbodiimide (GA-CDI-ver) and of the fungal enzyme with CA was the most effective in improving its thermal stability. Chemical modifications using GA, CDI, GA-CDI, and PS allowed E. meliloti L 3.8 laccase to retain full activity in the presence of 5 mM NaI, whereas CA-, PS-, and EGNHS-modified C. unicolor variants retained their activity even at elevated NaCl concentrations. The results clearly demonstrate that the outcome of chemical modifications is closely linked to enzyme-specific structural features and that selecting an appropriate modification strategy is critical to achieving the desired effect.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastow Avenue, 71-311 Szczecin, Poland;
| | - Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| |
Collapse
|
3
|
Tamayo E, López-Lorca VM, Shim C, López-Castillo O, Castillo AG, Requena N, Benz JP, Ferrol N. The Rhizophagus irregularis permease RiFTR1 functions without a ferroxidase partner for reductive iron transport. Sci Rep 2025; 15:5840. [PMID: 39966403 PMCID: PMC11836134 DOI: 10.1038/s41598-025-88416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
The contribution of arbuscular mycorrhizal fungi (AM fungi) to plant iron (Fe) acquisition has been demonstrated in several studies. A previous investigation revealed that the AM fungus Rhizophagus irregularis utilizes a high-affinity reductive pathway for Fe uptake, mediated by the Fe transporter RiFTR1. In this study, we used a genome-wide approach in R. irregularis to find genes encoding ferroxidases of the multicopper oxidase (MCO) gene family in an attempt to identify the ferroxidase partner of RiFTR1. Nine genes putatively encoding MCOs (RiMCO1-9) were identified. Yeast complementation assays demonstrated that RiMCO1 and RiMCO3 can function as ferroxidases, suggesting their involvement in the reductive Fe uptake pathway. Surprisingly, RiFTR1 was capable of transporting Fe in yeast without a ferroxidase partner, resembling the Fe transport mechanism of plant IRT1-like systems. RiFTR1 exhibited increase expression in arbuscules. Overexpression of RiFTR1 in Medicago truncatula roots led to enhanced mycorrhizal colonization and arbuscule abundance, highlighting the significance of Fe for AM symbiosis.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain.
- Holzforschung München, TUM School of Life Sciences, Technische Universität München, Freising, Germany.
| | - Víctor Manuel López-Lorca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Chaeeun Shim
- Holzforschung München, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, UK
| | - Olga López-Castillo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM, UMA-CSIC), Málaga, Spain
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
4
|
Aza P, Camarero S. Fungal Laccases: Fundamentals, Engineering and Classification Update. Biomolecules 2023; 13:1716. [PMID: 38136587 PMCID: PMC10741624 DOI: 10.3390/biom13121716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Multicopper oxidases (MCOs) share a common catalytic mechanism of activation by oxygen and cupredoxin-like folding, along with some common structural determinants. Laccases constitute the largest group of MCOs, with fungal laccases having the greatest biotechnological applicability due to their superior ability to oxidize a wide range of aromatic compounds and lignin, which is enhanced in the presence of redox mediators. The adaptation of these versatile enzymes to specific application processes can be achieved through the directed evolution of the recombinant enzymes. On the other hand, their substrate versatility and the low sequence homology among laccases make their exact classification difficult. Many of the ever-increasing amounts of MCO entries from fungal genomes are automatically (and often wrongly) annotated as laccases. In a recent comparative genomic study of 52 basidiomycete fungi, MCO classification was revised based on their phylogeny. The enzymes clustered according to common structural motifs and theoretical activities, revealing three novel groups of laccase-like enzymes. This review provides an overview of the structure, catalytic activity, and oxidative mechanism of fungal laccases and how their biotechnological potential as biocatalysts in industry can be greatly enhanced by protein engineering. Finally, recent information on newly identified MCOs with laccase-like activity is included.
Collapse
Affiliation(s)
| | - Susana Camarero
- Margarita Salas Center for Biological Research, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain;
| |
Collapse
|
5
|
Zhang LB, Yang WWJ, Qiu TT. Genome-wide study of Cerrena unicolor 87613 laccase gene family and their mode prediction in association with substrate oxidation. BMC Genomics 2023; 24:504. [PMID: 37649000 PMCID: PMC10466755 DOI: 10.1186/s12864-023-09606-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Laccases are green biocatalysts with wide industrial applications. The study of efficient and specific laccase producers remains a priority. Cerrena species have been shown to be promising basidiomycete candidates for laccase production. Although two sets of Cerrena genome data have been publicly published, no comprehensive bioinformatics study of laccase gene family in C. unicolor has been reported, particularly concerning the analysis of their three-dimensional (3D) structures and molecular docking to substrates, like ABTS and aflatoxin B1 (AFB1). RESULTS In this study, we conducted a comprehensive genome-wide analysis of laccase gene family in C. unicolor 87613. We identified eighteen laccase genes (CuLacs) and classified them into three clades using phylogenetic analysis. We characterized these laccases, including their location in contig 5,6,9,12,15,19,26,27, gene structures of different exon-intron arrangements, molecular weight ranging from 47.89 to 141.41 kDa, acidic pI value, 5-15 conserved protein motifs, signaling peptide of extracellular secretion (harbored by 13 CuLacs) and others. In addition, the analysis of cis-acting element in laccase promoters indicated that the transcription response of CuLac gene family was regulatable and complex under different environmental cues. Furthermore, analysis of transcription pattern revealed that CuLac8, 12 and CuLac2, 13 were the predominant laccases in response to copper ions or oxidative stress, respectively. Finally, we focused on the 3D structure analysis of CuLac proteins. Seven laccases with extra transmembrane domains or special sequences were particularly interesting. Predicted structures of each CuLac protein with or without these extra sequences showed altered interacting amino acid residues and binding sites, leading to varied affinities to both ABTS and AFB1. As far as we know, it is the first time to discuss the influence of the extra sequence on laccase's affinity to substrates. CONCLUSIONS Our findings provide robust genetic data for a better understanding of the laccase gene family in C. unicolor 87613, and create a foundation for the molecular redesign of CuLac proteins to enhance their industrial applications.
Collapse
Affiliation(s)
- Long-Bin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| | - Wu-Wei-Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Ting-Ting Qiu
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| |
Collapse
|
6
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
7
|
Multicopper oxidases with laccase-ferroxidase activity: Classification and study of ferroxidase activity determinants in a member from Heterobasidion annosum s. l.. Comput Struct Biotechnol J 2023; 21:1041-1053. [PMID: 36733701 PMCID: PMC9880977 DOI: 10.1016/j.csbj.2023.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Multi-copper oxidases (MCO) share a common molecular architecture and the use of copper ions as cofactors to reduce O2 to H2O, but show high sequence heterogeneity and functional diversity. Many new emerging MCO genes are wrongly annotated as laccases, the largest group of MCOs, with the widest range of biotechnological applications (particularly those from basidiomycete fungi) due to their ability to oxidise aromatic compounds and lignin. Thus, comprehensive studies for a better classification and structure-function characterisation of MCO families are required. Laccase-ferroxidases (LAC-FOXs) constitute a separate and unexplored group of MCOs with proposed dual features between laccases and ferroxidases. We aim to better define this cluster and the structural determinants underlying putative hybrid activity. We performed a phylogenetic analysis of the LAC-FOXs from basidiomycete fungi, that resulted in two subgroups. This division seemed to correlate with the presence or absence of some of the three acidic residues responsible for ferroxidase activity in Fet3p from Saccharomyces cerevisiae. One of these LAC-FOXs (with only one of these residues) from the fungus Heterobasidion annosum s. l. (HaLF) was synthesised, heterologously expressed and characterised to evaluate its catalytic activity. HaLF oxidised typical laccase substrates (phenols, aryl amines and N-heterocycles), but no Fe (II). The enzyme was subjected to site-directed mutagenesis to determine the key residues that confer ferroxidase activity. The mutated HaLF variant with full restoration of the three acidic residues exhibited efficient ferroxidase activity, while it partially retained the wide-range oxidative activity of the native enzyme associated to laccases sensu stricto.
Collapse
|
8
|
Tavares MP, Dutra TR, Morgan T, Ventorim RZ, de Souza Ladeira Ázar RI, Varela EM, Ferreira RC, de Oliveira Mendes TA, de Rezende ST, Guimarães VM. Multicopper oxidase enzymes from Chrysoporthe cubensis improve the saccharification yield of sugarcane bagasse. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Enhanced fungal delignification and enzymatic digestibility of poplar wood by combined CuSO4 and MnSO4 supplementation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Xu X, Wang J, Huang R, Qi W, Su R, He Z. Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00074h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The construction of a nanozyme that mimics a natural enzyme is a promising strategy to obtain a highly stable catalyst.
Collapse
Affiliation(s)
- Xiaojian Xu
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P.R. China
| | - Jinghui Wang
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P.R. China
| | - Renliang Huang
- School of Marine Science and Technology
- Tianjin University
- Tianjin 300072
- P.R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P.R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P.R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P.R. China
| |
Collapse
|
11
|
Genes Identification, Molecular Docking and Dynamics Simulation Analysis of Laccases from Amylostereum areolatum Provides Molecular Basis of Laccase Bound to Lignin. Int J Mol Sci 2020; 21:ijms21228845. [PMID: 33266512 PMCID: PMC7700495 DOI: 10.3390/ijms21228845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022] Open
Abstract
An obligate mutualistic relationship exists between the fungus Amylostereum areolatum and woodwasp Sirex noctilio. The fungus digests lignin in the host pine, providing essential nutrients for the growing woodwasp larvae. However, the functional properties of this symbiosis are poorly described. In this study, we identified, cloned, and characterized 14 laccase genes from A. areolatum. These genes encoded proteins of 508 to 529 amino acids and contained three typical copper-oxidase domains, necessary to confer laccase activity. Besides, we performed molecular docking and dynamics simulation of the laccase proteins in complex with lignin compounds (monomers, dimers, trimers, and tetramers). AaLac2, AaLac3, AaLac6, AaLac8, and AaLac10 were found that had low binding energies with all lignin model compounds tested and three of them could maintain stability when binding to these compounds. Among these complexes, amino acid residues ALA, GLN, LEU, PHE, PRO, and SER were commonly present. Our study reveals the molecular basis of A. areolatum laccases interacting with lignin, which is essential for understanding how the fungus provides nutrients to S. noctilio. These findings might also provide guidance for the control of S. noctilio by informing the design of enzyme mutants that could reduce the efficiency of lignin degradation.
Collapse
|
12
|
Wu Z, Zheng R, Liu G, Liu R, Wu S, Sun C. Calcium protects bacteria against cadmium stress via reducing nitric oxide production and increasing iron acquisition. Environ Microbiol 2020; 23:3541-3553. [PMID: 32939902 DOI: 10.1111/1462-2920.15237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022]
Abstract
Cadmium (Cd) is a common toxic heavy metal in the environment, and bacteria have evolved different strategies against Cd-toxicity. Here, we found that marine bacterium Bacillus sp. 98 could significantly alleviate Cd-toxicity by recruiting calcium (Ca) for reducing excessive intracellular nitric oxide (NO) and enhancing iron acquisition. To investigate the underlying mechanisms, mass spectrometry-based proteomic analysis was applied to Bacillus sp. 98 after treated with Cd supplemented with or without Ca. Compared with bacterial cells treated with Cd only, the proteomic results showed that the expression level of NO synthase was markedly down-regulated, while the expression levels of NO dioxygenase, which is responsible for converting NO to nitrate, and proteins associated with iron uptake were profoundly enhanced when Ca was supplemented. Consistently, bacterial intracellular NO amount was dramatically increased after Bacillus sp. 98 was treated with Cd, and reversed to a normal level when Ca or iron was supplemented. Notably, Ca also protected bacteria against stresses from other heavy metals including Cu, Cr, Mn, Ni and Zn, and this self-protection strategy was adopted as well in zebrafish, which encourages us to develop Ca-associated products against heavy metals toxicity in the future.
Collapse
Affiliation(s)
- Zuodong Wu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Rikuan Zheng
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ge Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Rui Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
13
|
Agrawal K, Shankar J, Kumar R, Verma P. Insight into multicopper oxidase laccase from Myrothecium verrucaria ITCC-8447: a case study using in silico and experimental analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:1048-1060. [PMID: 32877269 DOI: 10.1080/03601234.2020.1812334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxidation activity of multicopper-oxidases overlaps with different substrates of laccases and bilirubin oxidases, thus in the present study an integrated approach of bioinformatics using homology modeling, docking, and experimental validation was used to confirm the type of multicopper-oxidase in Myrothecium verrucaria ITCC-8447. The result of peptide sequence of M. verrucaria ITCC-8447 enabled to predict the 3 D-structure of multicopper-oxidase. It was overlapped with the structure of laccase and root mean square deviation (RMSD) was 1.53 Å for 533 and, 171 residues. The low binding energy with azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (-5.64) as compared to bilirubin (-4.39) suggested that M. verrucaria ITCC-8447 have laccase-like activity. The experimental analysis confirmed high activity with laccase specific substrates, phenol (18.3 U/L), ampyrone (172.4 U/L) and, ampyrone phenol coupling (50 U/L) as compared to bilirubin oxidase substrate bilirubin (16.6 U/L). In addition, lowest binding energy with ABTS (-5.64), syringaldazine SYZ (-4.83), guaiacol GCL (-4.42), and 2,6-dimethoxyphenol DMP (-4.41) confirmed the presence of laccase. Further, complete remediation of two hazardous model pollutants i.e., phenol and resorcinol (1.5 mM) after 12 h of incubation and low binding energy of -4.32 and, -4.85 respectively confirmed its removal by laccase. The results confirmed the presence of laccase in M. verrucaria ITCC-8447 and its effective bioremediation potential.
Collapse
Affiliation(s)
- Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Jata Shankar
- Genomics Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Raj Kumar
- Genomics Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
14
|
Gräff M, Buchholz PCF, Le Roes‐Hill M, Pleiss J. Multicopper oxidases: modular structure, sequence space, and evolutionary relationships. Proteins 2020; 88:1329-1339. [DOI: 10.1002/prot.25952] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/22/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Maike Gräff
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart Stuttgart Germany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart Stuttgart Germany
| | - Marilize Le Roes‐Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology Bellville South Africa
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart Stuttgart Germany
| |
Collapse
|
15
|
Multicopper Oxidases in Saccharomyces cerevisiae and Human Pathogenic Fungi. J Fungi (Basel) 2020; 6:jof6020056. [PMID: 32349384 PMCID: PMC7345259 DOI: 10.3390/jof6020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022] Open
Abstract
Multicopper oxidases (MCOs) are produced by microscopic and macroscopic fungal species and are involved in various physiological processes such as morphogenesis, lignin degradation, and defense mechanisms to stress inducing environmental conditions as well as fungal virulence. This review will summarize our current understanding regarding the functions of MCOs present in Saccharomyces cerevisiae and in different human fungal pathogens. Of the two main MCO groups, the first group of MCOs is involved in iron homoeostasis and the second includes laccases. This review will also discuss their role in the pathogenesis of human fungal pathogens.
Collapse
|
16
|
|
17
|
Systematic Analysis of the Pleurotus ostreatus Laccase Gene (PoLac) Family and Functional Characterization of PoLac2 Involved in the Degradation of Cotton-Straw Lignin. Molecules 2018; 23:molecules23040880. [PMID: 29641470 PMCID: PMC6017272 DOI: 10.3390/molecules23040880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 11/17/2022] Open
Abstract
Fungal laccases play important roles in the degradation of lignocellulose. Although some PoLacs have been reported in several studies, still no comprehensive bioinformatics study of the LAC family in Pleurotus ostreatus has been reported. In this study, we identified 12 laccase genes in the whole genome sequence of P. ostreatus and their physical characteristics, gene distribution, phylogenic relationships, gene structure, conserved motifs, and cis-elements were also analyzed. The expression patterns of 12 PoLac genes at different developmental stages and under different culture substrates were also analyzed. The results revealed that PoLac2 and PoLac12 may be involved in the degradation of lignin and the formation of the fruiting body, respectively. Subsequently, we overexpressed PoLac2 in P. ostreatus by the Agrobacterium tumefaciens-mediated transformation (ATMT) method. The transformants' laccase activity increased in varying degrees, and the gene expression level of PoLac2 in transformants was 2-8 times higher than that of the wild-type strain. Furthermore, the lignin degradation rate by transgenic fungus over 30 days was 2.36-6.3% higher than that of wild-type. Our data show that overexpression of PoLac2 significantly enhanced the lignin degradation of cotton-straw. To our knowledge, this study is the first report to demonstrate the functions of PoLac2 in P. ostreatus.
Collapse
|
18
|
Xie N, Ruprich-Robert G, Silar P, Herbert E, Ferrari R, Chapeland-Leclerc F. Characterization of three multicopper oxidases in the filamentous fungus Podospora anserina: A new role of an ABR1-like protein in fungal development? Fungal Genet Biol 2018; 116:1-13. [PMID: 29654834 DOI: 10.1016/j.fgb.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
Abstract
The Podospora anserina genome contains a large family of 15 multicopper oxidases (MCOs), including three genes encoding a FET3-like protein, an ABR1-like protein and an ascorbate oxidase (AO)-like protein. FET3, ABR1 and AO1 are involved in global laccase-like activity since deletion of the relevant genes led to a decrease of activity when laccase substrate (ABTS) was used as substrate. However, contrary to the P. anserina MCO proteins previously characterized, none of these three MCOs seemed to be involved in lignocellulose degradation and in resistance to phenolic compounds and oxidative stress. We showed that the bulk of ferroxidase activity was clearly due to ABR1, and only in minor part to FET3, although ABR1 does not contain all the residues typical of FET3 proteins. Moreover, we showed that ABR1, related to the Aspergillus fumigatus ABR1 protein, was clearly and specifically involved in pigmentation of ascospores. Surprisingly, phenotypes were more severe in mutants lacking both abr1 and ao1. Deletion of the ao1 gene led to an almost total loss of AO activity. No direct involvement of AO1 in fungal developmental process in P. anserina was evidenced, except in a abr1Δ background. Overall, unlike other previously characterized MCOs, we thus evidence a clear involvement of ABR1 protein in fungal development.
Collapse
Affiliation(s)
- Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Gwenaël Ruprich-Robert
- Univ Paris Descartes, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Philippe Silar
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Eric Herbert
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Roselyne Ferrari
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France
| | - Florence Chapeland-Leclerc
- Univ Paris Descartes, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, 75205 Paris, France.
| |
Collapse
|
19
|
Whole-Genome De Novo Sequencing of the Lignin-Degrading Wood Rot Fungus Phanerochaete chrysosporium (ATCC 20696). GENOME ANNOUNCEMENTS 2017; 5:5/32/e00731-17. [PMID: 28798174 PMCID: PMC5552983 DOI: 10.1128/genomea.00731-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phanerochaete chrysosporium (ATCC 20696) has a catabolic ability to degrade lignin. Here, we report whole-genome sequencing used to identify genes related to lignin modification. We determined the 39-Mb draft genome sequence of this fungus, comprising 13,560 predicted gene models. Gene annotation provided crucial information about the location and function of protein-encoding genes.
Collapse
|
20
|
Hong CY, Ryu SH, Jeong H, Lee SS, Kim M, Choi IG. Phanerochaete chrysosporium Multienzyme Catabolic System for in Vivo Modification of Synthetic Lignin to Succinic Acid. ACS Chem Biol 2017; 12:1749-1759. [PMID: 28463479 DOI: 10.1021/acschembio.7b00046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole cells of the basidiomycete fungus Phanerochaete chrysosporium (ATCC 20696) were applied to induce the biomodification of lignin in an in vivo system. Our results indicated that P. chrysosporium has a catabolic system that induces characteristic biomodifications of synthetic lignin through a series of redox reactions, leading not only to the degradation of lignin but also to its polymerization. The reducing agents ascorbic acid and α-tocopherol were used to stabilize the free radicals generated from the ligninolytic process. The application of P. chrysosporium in combination with reducing agents produced aromatic compounds and succinic acid as well as degraded lignin polymers. P. chrysosporium selectively catalyzed the conversion of lignin to succinic acid, which has an economic value. A transcriptomic analysis of P. chrysosporium suggested that the bond cleavage of synthetic lignin was caused by numerous enzymes, including extracellular enzymes such as lignin peroxidase and manganese peroxidase, and that the aromatic compounds released were metabolized in both the short-cut and classical tricarboxylic acid cycles of P. chrysosporium. In conclusion, P. chrysosporium is suitable as a biocatalyst for lignin degradation to produce a value-added product.
Collapse
Affiliation(s)
- Chang-Young Hong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sun-Hwa Ryu
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Hanseob Jeong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sung-Suk Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Myungkil Kim
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - In-Gyu Choi
- Department
of Forest Sciences, Seoul National University, Seoul, Republic of Korea
- Research
Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes
of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
21
|
High yield production in seven days of Coriolopsis gallica 1184 laccase at 50 L scale; enzyme purification and molecular characterization. Fungal Biol 2016; 120:481-488. [DOI: 10.1016/j.funbio.2016.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/19/2022]
|
22
|
Cázares-García SV, Arredondo-Santoyo M, Vázquez-Marrufo G, Soledad Vázquez-Garcidueñas M, Robinson-Fuentes VA, Gómez-Reyes VM. Typing and selection of wild strains ofTrichodermaspp. producers of extracellular laccase. Biotechnol Prog 2016; 32:787-98. [DOI: 10.1002/btpr.2237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/25/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Saila Viridiana Cázares-García
- Centro Multidisciplinario de Estudios en Biotecnología; Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | - Marina Arredondo-Santoyo
- Centro Multidisciplinario de Estudios en Biotecnología; Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología; Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | - Ma. Soledad Vázquez-Garcidueñas
- Div. de Estudios de Posgrado; Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | - Virginia A. Robinson-Fuentes
- Div. de Estudios de Posgrado; Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | | |
Collapse
|
23
|
Sitarz AK, Mikkelsen JD, Meyer AS. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Crit Rev Biotechnol 2015; 36:70-86. [DOI: 10.3109/07388551.2014.949617] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Regulation of Gene Expression during the Onset of Ligninolytic Oxidation by Phanerochaete chrysosporium on Spruce Wood. Appl Environ Microbiol 2015; 81:7802-12. [PMID: 26341198 DOI: 10.1128/aem.02064-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022] Open
Abstract
Since uncertainty remains about how white rot fungi oxidize and degrade lignin in wood, it would be useful to monitor changes in fungal gene expression during the onset of ligninolysis on a natural substrate. We grew Phanerochaete chrysosporium on solid spruce wood and included oxidant-sensing beads bearing the fluorometric dye BODIPY 581/591 in the cultures. Confocal fluorescence microscopy of the beads showed that extracellular oxidation commenced 2 to 3 days after inoculation, coincident with cessation of fungal growth. Whole transcriptome shotgun sequencing (RNA-seq) analyses based on the v.2.2 P. chrysosporium genome identified 356 genes whose transcripts accumulated to relatively high levels at 96 h and were at least four times the levels found at 40 h. Transcripts encoding some lignin peroxidases, manganese peroxidases, and auxiliary enzymes thought to support their activity showed marked apparent upregulation. The data were also consistent with the production of ligninolytic extracellular reactive oxygen species by the action of manganese peroxidase-catalyzed lipid peroxidation, cellobiose dehydrogenase-catalyzed Fe(3+) reduction, and oxidase-catalyzed H2O2 production, but the data do not support a role for iron-chelating glycopeptides. In addition, transcripts encoding a variety of proteins with possible roles in lignin fragment uptake and processing, including 27 likely transporters and 18 cytochrome P450s, became more abundant after the onset of extracellular oxidation. Genes encoding cellulases showed little apparent upregulation and thus may be expressed constitutively. Transcripts corresponding to 165 genes of unknown function accumulated more than 4-fold after oxidation commenced, and some of them may merit investigation as possible contributors to ligninolysis.
Collapse
|
25
|
Identification and characterization of laccase-type multicopper oxidases involved in dye-decolorization by the fungus Leptosphaerulina sp. BMC Biotechnol 2015; 15:74. [PMID: 26268358 PMCID: PMC4535763 DOI: 10.1186/s12896-015-0192-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/29/2015] [Indexed: 11/23/2022] Open
Abstract
Background Fungal laccases are multicopper oxidases (MCOs) with high biotechnological potential due to their capability to oxidize a wide range of aromatic contaminants using oxygen from the air. Albeit the numerous laccase-like genes described in ascomycete fungi, ascomycete laccases have been less thoroughly studied than white-rot basidiomycetous laccases. A variety of MCO genes has recently been discovered in plant pathogenic ascomycete fungi, however little is known about the presence and function of laccases in these fungi or their potential use as biocatalysts. We aim here to identify the laccase-type oxidoreductases that might be involved in the decolorization of dyes by Leptosphaerulina sp. and to characterize them as potential biotechnological tools. Results A Leptosphaerulina fungal strain, isolated from lignocellulosic material in Colombia, produces laccase as the main ligninolytic oxidoreductase activity during decolorization of synthetic organic dyes. Four laccase-type MCO genes were partially amplified from the genomic DNA using degenerate primers based on laccase-specific signature sequences. The phylogenetic analysis showed the clustering of Lac1, Lac4 and Lac3 with ascomycete laccases, whereas Lac2 grouped with fungal ferroxidases (together with other hypothetical laccases). Lac3, the main laccase produced by Leptosphaerulina sp. in dye decolorizing and laccase-induced cultures (according to the shotgun analysis of both secretomes) was purified and characterized in this study. It is a sensu-stricto laccase able to decolorize synthetic organic dyes with high efficiency particularly in the presence of natural mediator compounds. Conclusions The searching for laccase-type MCOs in ascomycetous families where their presence is poorly known, might provide a source of biocatalysts with potential biotechnological interest and shed light on their role in the fungus. The information provided by the use of genomic and proteomic tools must be combined with the biochemical evaluation of the enzyme to prove its catalytic activity and applicability potential. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0192-2) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Bohu T, Santelli CM, Akob DM, Neu TR, Ciobota V, Rösch P, Popp J, Nietzsche S, Küsel K. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1. Front Microbiol 2015; 6:734. [PMID: 26236307 PMCID: PMC4505141 DOI: 10.3389/fmicb.2015.00734] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/03/2015] [Indexed: 01/09/2023] Open
Abstract
Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.
Collapse
Affiliation(s)
- Tsing Bohu
- Department of Aquatic Geomicrobiology, Friedrich Schiller University JenaJena, Germany
| | - Cara M. Santelli
- Department of Mineral Sciences, Smithsonian InstitutionWashington, DC, USA
| | - Denise M. Akob
- National Research Program, United States Geological SurveyReston, VA, USA
| | - Thomas R. Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZMagdeburg, Germany
| | - Valerian Ciobota
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University JenaJena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University JenaJena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University JenaJena, Germany
- Leibniz Institute of Photonic TechnologiesJena, Germany
| | - Sándor Nietzsche
- Centre of Electron Microscopy, University Hospital Jena, Friedrich Schiller University JenaJena, Germany
| | - Kirsten Küsel
- Department of Aquatic Geomicrobiology, Friedrich Schiller University JenaJena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| |
Collapse
|
27
|
Jaiswal N, Pandey VP, Dwivedi UN. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography. Int J Biol Macromol 2015; 72:326-32. [DOI: 10.1016/j.ijbiomac.2014.08.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 01/17/2023]
|
28
|
Hori C, Ishida T, Igarashi K, Samejima M, Suzuki H, Master E, Ferreira P, Ruiz-Dueñas FJ, Held B, Canessa P, Larrondo LF, Schmoll M, Druzhinina IS, Kubicek CP, Gaskell JA, Kersten P, St. John F, Glasner J, Sabat G, Splinter BonDurant S, Syed K, Yadav J, Mgbeahuruike AC, Kovalchuk A, Asiegbu FO, Lackner G, Hoffmeister D, Rencoret J, Gutiérrez A, Sun H, Lindquist E, Barry K, Riley R, Grigoriev IV, Henrissat B, Kües U, Berka RM, Martínez AT, Covert SF, Blanchette RA, Cullen D. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood. PLoS Genet 2014; 10:e1004759. [PMID: 25474575 PMCID: PMC4256170 DOI: 10.1371/journal.pgen.1004759] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes. The wood decay fungus Phlebiopsis gigantea degrades all components of plant cell walls and is uniquely able to rapidly colonize freshly exposed conifer sapwood. However, mechanisms underlying its conversion of lignocellulose and resinous extractives have not been explored. We report here analyses of the genetic repertoire, transcriptome and secretome of P. gigantea. Numerous highly expressed hydrolases, together with lytic polysaccharide monooxygenases were implicated in P. gigantea's attack on cellulose, and an array of ligninolytic peroxidases and auxiliary enzymes were also identified. Comparisons of woody substrates with and without extractives revealed differentially expressed genes predicted to be involved in the transformation of resin. These expression patterns are likely key to the pioneer colonization of conifers by P. gigantea.
Collapse
Affiliation(s)
- Chiaki Hori
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Takuya Ishida
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Masahiro Samejima
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Hitoshi Suzuki
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Emma Master
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Francisco J. Ruiz-Dueñas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Benjamin Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Paulo Canessa
- Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F. Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Monika Schmoll
- Health and Environment Department, Austrian Institute of Technology GmbH, Tulin, Austria
| | - Irina S. Druzhinina
- Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Christian P. Kubicek
- Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Jill A. Gaskell
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
| | - Phil Kersten
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
| | - Franz St. John
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
| | - Jeremy Glasner
- University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America
| | - Grzegorz Sabat
- University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America
| | | | - Khajamohiddin Syed
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jagjit Yadav
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Gerald Lackner
- Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain
| | - Hui Sun
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August University Göttingen, Göttingen, Germany
| | - Randy M. Berka
- Novozymes, Inc., Davis, California, United States of America
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Sarah F. Covert
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Daniel Cullen
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
29
|
LacSubPred: predicting subtypes of Laccases, an important lignin metabolism-related enzyme class, using in silico approaches. BMC Bioinformatics 2014; 15 Suppl 11:S15. [PMID: 25350584 PMCID: PMC4251044 DOI: 10.1186/1471-2105-15-s11-s15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Laccases (E.C. 1.10.3.2) are multi-copper oxidases that have gained importance in many industries such as biofuels, pulp production, textile dye bleaching, bioremediation, and food production. Their usefulness stems from the ability to act on a diverse range of phenolic compounds such as o-/p-quinols, aminophenols, polyphenols, polyamines, aryl diamines, and aromatic thiols. Despite acting on a wide range of compounds as a family, individual Laccases often exhibit distinctive and varied substrate ranges. This is likely due to Laccases involvement in many metabolic roles across diverse taxa. Classification systems for multi-copper oxidases have been developed using multiple sequence alignments, however, these systems seem to largely follow species taxonomy rather than substrate ranges, enzyme properties, or specific function. It has been suggested that the roles and substrates of various Laccases are related to their optimal pH. This is consistent with the observation that fungal Laccases usually prefer acidic conditions, whereas plant and bacterial Laccases prefer basic conditions. Based on these observations, we hypothesize that a descriptor-based unsupervised learning system could generate homology independent classification system for better describing the functional properties of Laccases. Results In this study, we first utilized unsupervised learning approach to develop a novel homology independent Laccase classification system. From the descriptors considered, physicochemical properties showed the best performance. Physicochemical properties divided the Laccases into twelve subtypes. Analysis of the clusters using a t-test revealed that the majority of the physicochemical descriptors had statistically significant differences between the classes. Feature selection identified the most important features as negatively charges residues, the peptide isoelectric point, and acidic or amidic residues. Secondly, to allow for classification of new Laccases, a supervised learning system was developed from the clusters. The models showed high performance with an overall accuracy of 99.03%, error of 0.49%, MCC of 0.9367, precision of 94.20%, sensitivity of 94.20%, and specificity of 99.47% in a 5-fold cross-validation test. In an independent test, our models still provide a high accuracy of 97.98%, error rate of 1.02%, MCC of 0.8678, precision of 87.88%, sensitivity of 87.88% and specificity of 98.90%. Conclusion This study provides a useful classification system for better understanding of Laccases from their physicochemical properties perspective. We also developed a publically available web tool for the characterization of Laccase protein sequences (http://lacsubpred.bioinfo.ucr.edu/). Finally, the programs used in the study are made available for researchers interested in applying the system to other enzyme classes (https://github.com/tweirick/SubClPred).
Collapse
|
30
|
Madhavan S, Krause K, Jung EM, Kothe E. Differential regulation of multi-copper oxidases in Schizophyllum commune during sexual development. Mycol Prog 2014. [DOI: 10.1007/s11557-014-1009-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Boonen F, Vandamme AM, Etoundi E, Pigneur LM, Housen I. Identification and characterization of a novel multicopper oxidase from Acidomyces acidophilus with ferroxidase activity. Biochimie 2014; 102:37-46. [DOI: 10.1016/j.biochi.2014.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/10/2014] [Indexed: 11/28/2022]
|
32
|
Fan X, Zhou Y, Xiao Y, Xu Z, Bian Y. Cloning, expression and phylogenetic analysis of a divergent laccase multigene family in Auricularia auricula-judae. Microbiol Res 2014; 169:453-62. [DOI: 10.1016/j.micres.2013.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/17/2013] [Accepted: 08/24/2013] [Indexed: 11/28/2022]
|
33
|
Feng BZ, Li P. Cloning, characterization and expression of a novel laccase gene Pclac2 from Phytophthora capsici. Braz J Microbiol 2014; 45:351-7. [PMID: 24948955 PMCID: PMC4059322 DOI: 10.1590/s1517-83822014005000021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/04/2013] [Indexed: 11/26/2022] Open
Abstract
Laccases are blue copper oxidases (E.C. 1.10.3.2) that catalyze the one-electron oxidation of phenolics, aromatic amines, and other electron-rich substrates with the concomitant reduction of O2 to H2O. A novel laccase gene pclac2 and its corresponding full-length cDNA were cloned and characterized from Phytophthora capsici for the first time. The 1683 bp full-length cDNA of pclac2 encoded a mature laccase protein containing 560 amino acids preceded by a signal peptide of 23 amino acids. The deduced protein sequence of PCLAC2 showed high similarity with other known fungal laccases and contained four copper-binding conserved domains of typical laccase protein. In order to achieve a high level secretion and full activity expression of PCLAC2, expression vector pPIC9K with the Pichia pastoris expression system was used. The recombinant PCLAC2 protein was purified and showed on SDS-PAGE as a single band with an apparent molecular weight ca. 68 kDa. The high activity of purified PCLAC2, 84 U/mL, at the seventh day induced with methanol, was observed with 2,2'-azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) as substrate. The optimum pH and temperature for ABTS were 4.0 and 30 °C, respectively. The reported data add a new piece to the knowledge about P. Capsici laccase multigene family and shed light on potential function about biotechnological and industrial applications of the individual laccase isoforms in oomycetes.
Collapse
Affiliation(s)
- Bao Zhen Feng
- Department of Life Sciences Yuncheng University Yuncheng China
| | - Peiqian Li
- Department of Life Sciences Yuncheng University Yuncheng China
| |
Collapse
|
34
|
Xie N, Chapeland-Leclerc F, Silar P, Ruprich-Robert G. Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungusPodospora anserina. Environ Microbiol 2013; 16:141-61. [DOI: 10.1111/1462-2920.12253] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/22/2013] [Accepted: 08/11/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Ning Xie
- Univ Paris Diderot, Sorbonne Paris Cité; Institut des Energies de Demain (IED); 75205 Paris France
- Univ Paris Sud; Institut de Génétique et Microbiologie; UMR8621 91405 Orsay France
| | - Florence Chapeland-Leclerc
- Univ Paris Sud; Institut de Génétique et Microbiologie; UMR8621 91405 Orsay France
- Univ Paris Descartes; Sorbonne Paris Cité; Institut des Energies de Demain (IED); 75205 Paris France
| | - Philippe Silar
- Univ Paris Diderot, Sorbonne Paris Cité; Institut des Energies de Demain (IED); 75205 Paris France
- Univ Paris Sud; Institut de Génétique et Microbiologie; UMR8621 91405 Orsay France
| | - Gwenaël Ruprich-Robert
- Univ Paris Sud; Institut de Génétique et Microbiologie; UMR8621 91405 Orsay France
- Univ Paris Descartes; Sorbonne Paris Cité; Institut des Energies de Demain (IED); 75205 Paris France
| |
Collapse
|
35
|
Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol 2012; 97:939-55. [DOI: 10.1007/s00253-012-4615-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
36
|
Canessa P, Muñoz-Guzmán F, Vicuña R, Larrondo LF. Characterization of PIR1, a GATA family transcription factor involved in iron responses in the white-rot fungus Phanerochaete chrysosporium. Fungal Genet Biol 2012; 49:626-34. [DOI: 10.1016/j.fgb.2012.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 01/19/2023]
|
37
|
Paliwal R, Rawat AP, Rawat M, Rai JPN. Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 2012; 167:1865-89. [PMID: 22639362 DOI: 10.1007/s12010-012-9735-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
Bioligninolysis involves living organisms and/or their products in degradation of lignin, which is highly resistant, plant-originated polymer having three-dimensional network of dimethoxylated (syringyl), monomethoxylated (guaiacyl), and non-methoxylated (p-hydroxyphenyl) phenylpropanoid and acetylated units. As a major repository of aromatic chemical structures on earth, lignin bears paramount significance for its removal owing to potential application of bioligninolytic systems in industrial production. Early reports illustrating the discovery and cloning of ligninolytic biocatalysts in fungi was truly a landmark in the field of enzymatic delignification. However, the enzymology for bacterial delignification is hitherto poorly understood. Moreover, the lignin-degrading bacterial genes are still unknown and need further exploration. This review deals with the current knowledge about ligninolytic enzyme families produced by fungi and bacteria, their mechanisms of action, and genetic regulation and reservations, which render them attractive candidates in biotechnological applications.
Collapse
Affiliation(s)
- Rashmi Paliwal
- Ecotechnology Laboratory, Department of Environmental Science, G.B.Pant. University of Agriculture and Technology, Pantnagar 263145, India
| | | | | | | |
Collapse
|
38
|
Heterologous expression and structural characterization of two low pH laccases from a biopulping white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 2012; 97:1589-99. [DOI: 10.1007/s00253-012-4011-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/25/2022]
|
39
|
Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. J Proteomics 2012; 75:1493-504. [DOI: 10.1016/j.jprot.2011.11.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/29/2011] [Accepted: 11/17/2011] [Indexed: 11/23/2022]
|
40
|
Kües U, Rühl M. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Curr Genomics 2011; 12:72-94. [PMID: 21966246 PMCID: PMC3129051 DOI: 10.2174/138920211795564377] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Genome analyses revealed in various basidiomycetes the existence of multiple genes for blue multi-copper oxidases (MCOs). Whole genomes are now available from saprotrophs, white rot and brown rot species, plant and animal pathogens and ectomycorrhizal species. Total numbers (from 1 to 17) and types of mco genes differ between analyzed species with no easy to recognize connection of gene distribution to fungal life styles. Types of mco genes might be present in one and absent in another fungus. Distinct types of genes have been multiplied at speciation in different organisms. Phylogenetic analysis defined different subfamilies of laccases sensu stricto (specific to Agaricomycetes), classical Fe2+-oxidizing Fet3-like ferroxidases, potential ferroxidases/laccases exhibiting either one or both of these enzymatic functions, enzymes clustering with pigment MCOs and putative ascorbate oxidases. Biochemically best described are laccases sensu stricto due to their proposed roles in degradation of wood, straw and plant litter and due to the large interest in these enzymes in biotechnology. However, biological functions of laccases and other MCOs are generally little addressed. Functions in substrate degradation, symbiontic and pathogenic intercations, development, pigmentation and copper homeostasis have been put forward. Evidences for biological functions are in most instances rather circumstantial by correlations of expression. Multiple factors impede research on biological functions such as difficulties of defining suitable biological systems for molecular research, the broad and overlapping substrate spectrum multi-copper oxidases usually possess, the low existent knowledge on their natural substrates, difficulties imposed by low expression or expression of multiple enzymes, and difficulties in expressing enzymes heterologously.
Collapse
Affiliation(s)
- Ursula Kües
- University of Goettingen, Büsgen-Institute, Division of Molecular Wood Biotechnology and Technical Mycology, Büsgenweg 2, 37077 Goettingen, Germany
| | | |
Collapse
|
41
|
Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study. BMC BIOCHEMISTRY 2010; 11:32. [PMID: 20735824 PMCID: PMC2939539 DOI: 10.1186/1471-2091-11-32] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 08/24/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The diversity and function of ligninolytic genes in soil-inhabiting ascomycetes has not yet been elucidated, despite their possible role in plant litter decay processes. Among ascomycetes, Trichoderma reesei is a model organism of cellulose and hemicellulose degradation, used for its unique secretion ability especially for cellulase production. T. reesei has only been reported as a cellulolytic and hemicellulolytic organism although genome annotation revealed 6 laccase-like multicopper oxidase (LMCO) genes. The purpose of this work was i) to validate the function of a candidate LMCO gene from T. reesei, and ii) to reconstruct LMCO phylogeny and perform evolutionary analysis testing for positive selection. RESULTS After homologous overproduction of a candidate LMCO gene, extracellular laccase activity was detected when ABTS or SRG were used as substrates, and the recombinant protein was purified to homogeneity followed by biochemical characterization. The recombinant protein, called TrLAC1, has a molecular mass of 104 kDa. Optimal temperature and pH were respectively 40-45°C and 4, by using ABTS as substrate. TrLAC1 showed broad pH stability range of 3 to 7. Temperature stability revealed that TrLAC1 is not a thermostable enzyme, which was also confirmed by unfolding studies monitored by circular dichroism. Evolutionary studies were performed to shed light on the LMCO family, and the phylogenetic tree was reconstructed using maximum-likelihood method. LMCO and classical laccases were clearly divided into two distinct groups. Finally, Darwinian selection was tested, and the results showed that positive selection drove the evolution of sequences leading to well-known laccases involved in ligninolysis. Positively-selected sites were observed that could be used as targets for mutagenesis and functional studies between classical laccases and LMCO from T. reesei. CONCLUSIONS Homologous production and evolutionary studies of the first LMCO from the biomass-degrading fungus T. reesei gives new insights into the physicochemical parameters and biodiversity in this family.
Collapse
|
42
|
Molecular and structural modeling of the Phanerochaete flavido-alba extracellular laccase reveals its ferroxidase structure. Arch Microbiol 2010; 192:883-92. [DOI: 10.1007/s00203-010-0616-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/31/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
43
|
Lundell TK, Mäkelä MR, Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review. J Basic Microbiol 2010; 50:5-20. [PMID: 20175122 DOI: 10.1002/jobm.200900338] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Filamentous fungi owe powerful abilities for decomposition of the extensive plant material, lignocellulose, and thereby are indispensable for the Earth's carbon cycle, generation of soil humic matter and formation of soil fine structure. The filamentous wood-decaying fungi belong to the phyla Basidiomycota and Ascomycota, and are unique organisms specified to degradation of the xylem cell wall components (cellulose, hemicelluloses, lignins and extractives). The basidiomycetous wood-decaying fungi form brackets, caps or resupinaceous (corticioid) fruiting bodies when growing on wood for dissemination of their sexual basidiospores. In particular, the ability to decompose the aromatic lignin polymers in wood is mostly restricted to the white rot basidiomycetes. The white-rot decay of wood is possible due to secretion of organic acids, secondary metabolites, and oxidoreductive metalloenzymes, heme peroxidases and laccases, encoded by divergent gene families in these fungi. The brown rot basidiomycetes obviously depend more on a non-enzymatic strategy for decomposition of wood cellulose and modification of lignin. This review gives a current ecological, genomic, and protein functional and phylogenetic perspective of the wood and lignocellulose-decaying basidiomycetous fungi.
Collapse
Affiliation(s)
- Taina K Lundell
- Fungal Biotechnology Group, Department of Applied Chemistry and Microbiology, Division of Microbiology, Viikki Biocenter, University of Helsinki, Finland.
| | | | | |
Collapse
|
44
|
Mahajan S, Master ER. Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. Appl Microbiol Biotechnol 2010; 86:1903-14. [PMID: 20306191 DOI: 10.1007/s00253-010-2516-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/19/2010] [Accepted: 02/20/2010] [Indexed: 11/29/2022]
Abstract
Proteins secreted by the white-rot, softwood-degrading fungus Phanerochaete carnosa during growth on cellulose and spruce were analyzed using tandem mass spectrometry and de novo sequencing. Homology-driven proteomics was applied to compare P. carnosa peptide sequences to proteins in Phanerochaete chrysosporium using MS BLAST and non-gapped alignment. In this way, 665 and 365 peptides from cellulose and spruce cultivations, respectively, were annotated. Predicted activities included endoglucanases from glycoside hydrolase (GH) families 5, 16, and 61, cellobiohydrolases from GH6 and GH7, GH3 beta-glucosidases, xylanases from GH10 and GH11, GH2 beta-mannosidases, and debranching hemicellulases from GH43 and CE15. Peptides corresponding to glyoxal oxidases, peroxidases, and glycopeptides that could participate in lignin degradation were also detected. Overall, predicted activities detected in extracellular filtrates of cellulose and spruce cultures were similar, suggesting that the adaptation of P. carnosa to growth on lignocellulose might result from fine tuning the expression of similar enzyme families.
Collapse
Affiliation(s)
- Sonam Mahajan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | | |
Collapse
|
45
|
MacPherson IS, Rosell FI, Scofield M, Mauk AG, Murphy ME. Directed evolution of copper nitrite reductase to a chromogenic reductant. Protein Eng Des Sel 2010; 23:137-45. [PMID: 20083495 PMCID: PMC2816606 DOI: 10.1093/protein/gzp084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/01/2009] [Accepted: 12/09/2009] [Indexed: 11/14/2022] Open
Abstract
Directed evolution methods were developed for Cu-containing nitrite reductase (NiR) from Alcaligenes faecalis S-6. The PCR cloning strategy allows for the efficient production of libraries of 100 000 clones by a modification of a megaprimer-based whole-plasmid synthesis reaction. The high-throughput screen includes colony lift onto a nylon membrane and subsequent lysis of NiR-expressing colonies in the presence of Cu(2+) ions for copper incorporation into intracellularly expressed NiR. Addition of a chromogenic substrate, 3, 3'-diaminobenzidine (DAB), results in deposition of red, insoluble color at the site of oxidation by functional NiR. Twenty-thousand random variants of NiR were screened for improved function with DAB as a reductant, and five variants were identified. These variants were shuffled and screened, yielding two double variants. An analog of the DAB substrate, o-dianisidine, which is oxidized to a water-soluble product was used for functional characterization. The double variant M150L/F312C was most proficient at o-dianisidine oxidation with dioxygen as the electron acceptor (5.5X wt), and the M150L single variant was most proficient at o-dianisidine oxidation with nitrite as the electron acceptor (8.5X wt). The library generation and screening method can be employed for evolving new reductase functions in NiR and for screening of efficient folding of engineered NiRs.
Collapse
Affiliation(s)
- Iain S. MacPherson
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
- Present address: Department of Biology, Brandeis University, 415 South St, Waltham, MA 02453, USA
| | - Federico I. Rosell
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Melanie Scofield
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - A. Grant Mauk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Michael E.P. Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
46
|
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story. Cell Mol Life Sci 2010; 67:369-85. [PMID: 19844659 PMCID: PMC11115910 DOI: 10.1007/s00018-009-0169-1] [Citation(s) in RCA: 629] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/07/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
Abstract
Laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) are blue multicopper oxidases that catalyze the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. In fungi, laccases carry out a variety of physiological roles during their life cycle. These enzymes are being increasingly evaluated for a variety of biotechnological applications due to their broad substrate range. In this review, the most recent studies on laccase structural features and catalytic mechanisms along with analyses of their expression are reported and examined with the aim of contributing to the discussion on their structure-function relationships. Attention has also been paid to the properties of enzymes endowed with unique characteristics and to fungal laccase multigene families and their organization.
Collapse
Affiliation(s)
- Paola Giardina
- Dipartimento di Chimica Organica e Biochimica, Complesso Universitario Monte S. Angelo, 80126 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Sedighi M, Karimi A, Vahabzadeh F. Involvement of ligninolytic enzymes of Phanerochaete chrysosporium in treating the textile effluent containing Astrazon Red FBL in a packed-bed bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2009; 169:88-93. [PMID: 19395172 DOI: 10.1016/j.jhazmat.2009.03.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/14/2008] [Accepted: 03/17/2009] [Indexed: 05/14/2023]
Abstract
The effect of Tween80, Mn(II) and veratryl alcohol (VA) on the production of ligninolytic enzymes of Phanerochaete chrysosporium in a packed-bed bioreactor using small pieces of Kissiris as carrier, was investigated. The results of the enzyme activities were noticeable in terms of decolorization and COD removal of the textile effluent containing an azo dye (Astrazon Red FBL). No dilution was made on the tested textile effluent and it was not sterilized, also. Maximum decolorization of the dye (87%) and COD removal (42%), both occurred when only Tween80 (0.05%, w/v) was added to the effluent. The maximum activities of lignin peroxidase (LiP) and manganese peroxidase (MnP) were (U/l): 17 and 52, respectively. The role of MnP was pronounced in the dye decolorization process, while the influence of LiP was noticeable on COD removal. The reusability of the original biomass was examined by replacing undiluted textile effluent (i.e., five times). The cellular performance of the original biomass in repeated-batch operations was promising.
Collapse
Affiliation(s)
- M Sedighi
- Chemical Engineering Department, Amirkabir University of Technology, Tehran Polytechnic, Tehran, Iran
| | | | | |
Collapse
|
48
|
Miele A, Giardina P, Sannia G, Faraco V. Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation. J Appl Microbiol 2009; 108:998-1006. [PMID: 19735323 DOI: 10.1111/j.1365-2672.2009.04505.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS To select better performing laccase variants among the 2300 randomly mutated variants of Pleurotus ostreatus POXA1b laccase to develop improved laccase-based biocatalysts. METHODS AND RESULTS Screening of collections of 2300 randomly mutated variants of POXA1b was performed by assaying activity towards the phenolic substrate 2,6-dimethoxyphenol. Two new variants endowed with higher enzyme activity than the wild-type laccase were characterized, and their ability to decolourize industrial dyes with complex trisazo-, polyazo- and stilbene-type structures, in the absence of mediators, was demonstrated. One of the mutants (2L4A) was also proved to be highly stable at both acidic and alkaline pH values (displaying a half-life of around 1 month at the pH levels of both 5 and 10). CONCLUSIONS In comparison with the wild-type laccase, the new selected 2L4A mutant shows a significant increase in stability at acidic pH, whilst storing its high stability at alkaline pH. This variant also represents a more versatile enzyme with respect to both the variety of xenobiotics degraded and the operative conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This work represents the first example of improvement of a basidiomycete laccase for industrial effluents bioremediation by directed evolution.
Collapse
Affiliation(s)
- A Miele
- Department of Organic Chemistry and Biochemistry, University of Naples 'Federico II', Complesso Universitario Monte S. Angelo, via Cintia, Naples, Italy., School of Biotechnological Sciences, University of Naples 'Federico II', Naples, Italy
| | - P Giardina
- Department of Organic Chemistry and Biochemistry, University of Naples 'Federico II', Complesso Universitario Monte S. Angelo, via Cintia, Naples, Italy
| | - G Sannia
- Department of Organic Chemistry and Biochemistry, University of Naples 'Federico II', Complesso Universitario Monte S. Angelo, via Cintia, Naples, Italy
| | - V Faraco
- Department of Organic Chemistry and Biochemistry, University of Naples 'Federico II', Complesso Universitario Monte S. Angelo, via Cintia, Naples, Italy., School of Biotechnological Sciences, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
49
|
Ligninolytic Fungal Laccases and Their Biotechnological Applications. Appl Biochem Biotechnol 2009; 160:1760-88. [DOI: 10.1007/s12010-009-8676-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
|
50
|
Harreither W, Sygmund C, Dünhofen E, Vicuña R, Haltrich D, Ludwig R. Cellobiose dehydrogenase from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Appl Environ Microbiol 2009; 75:2750-7. [PMID: 19270118 PMCID: PMC2681716 DOI: 10.1128/aem.02320-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 02/26/2009] [Indexed: 11/20/2022] Open
Abstract
Cellobiose dehydrogenase (CDH), an extracellular flavocytochrome produced by several wood-degrading fungi, was detected in cultures of the selective delignifier Ceriporiopsis subvermispora when grown on a cellulose- and yeast extract-based liquid medium. CDH amounted to up to 2.5% of total extracellular protein during latter phases of the cultivation and thus suggested an important function for the fungus under the given conditions. The enzyme was purified 44-fold to apparent homogeneity. It was found to be present in two glycoforms of 98 kDa and 87 kDa with carbohydrate contents of 16 and 4%, respectively. The isoelectric point of both glycoforms is around 3.0, differing by 0.1 units, which is the most acidic value so far reported for a CDH. By using degenerated primers of known CDH sequences, one cdh gene was found in the genomic DNA, cloned, and sequenced. Alignment of the 774-amino-acid protein sequence revealed a high similarity to CDH from other white rot fungi. One notable difference was found in the longer interdomain peptide linker, which might affect the interdomain electron transfer at higher temperatures. The preferred substrate of C. subvermispora CDH is cellobiose, while glucose conversion is strongly discriminated by a 155,000-fold-lower catalytic efficiency. This is a typical feature of a basidiomycete CDH, as are the acidic pH optima for all tested electron acceptors in the range from 2.5 to 4.5.
Collapse
Affiliation(s)
- Wolfgang Harreither
- Department of Food Sciences and Technology, Division of Food Biotechnology, BOKU University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|