1
|
Graziosi S, Deloche L, Januario M, Selosse MA, Deveau A, Bach C, Chen Z, Murat C, Iotti M, Rech P, Zambonelli A. Newly Designed Fluorescence In Situ Hybridization Probes Reveal Previously Unknown Endophytic Abilities of Tuber magnatum in Herbaceous Plants. MICROBIAL ECOLOGY 2025; 88:42. [PMID: 40338317 PMCID: PMC12062114 DOI: 10.1007/s00248-025-02542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Tuber magnatum Picco (the Italian white truffle) is the most valuable and widely appreciated truffle. It is an ectomycorrhizal fungus known to associate with many broadleaf tree species. However, its mycorrhizae are rarely observed in the field, suggesting possible alternative symbiotic strategies, such as endophytism with non-ectomycorrhizal plants. In order to test potential endophytic interactions of T. magnatum with wild plants, a combination of polymerase chain reaction (PCR) and Fluorescence In Situ Hybridization (FISH) approaches were used. Specific FISH probes for T. magnatum were designed, tested in vitro on hyphae and/or ectomycorrhizae, and selected for their specificity. These probes were then used on a wide variety root samples of wild plants collected from three T. magnatum production areas in Italy and previously tested for the presence of T. magnatum mycelium using PCR-specific primers. Molecular analyses detected the presence of T. magnatum in 21 of 100 plant samples analyzed. FISH analysis confirmed the extracellular presence of active T. magnatum hyphae inside the root system of Carex pendula Huds plant. This study provides the first evidence of T. magnatum acting as an endophyte in an herbaceous plant. The newly designed, highly specific T. magnatum FISH probes can be used for further investigations to confirm the endophytic tendencies of T. magnatum and to understand their influence on the life cycle and biology of this fungus.
Collapse
Grants
- K272X8 - CUP J53D23010090006 European Union - NextGenerationEU under the National Recovery and Resilience Plan (PNRR) - Mission 4 Education and research - Component 2 From research to business - Investment 1.1 Notice Prin 2022 - DD N. 104 del 2/2/2022, from title "Interactions of the white truffle Tuber magnatum with soil microbiome and plants"
- K272X8 - CUP J53D23010090006 European Union - NextGenerationEU under the National Recovery and Resilience Plan (PNRR) - Mission 4 Education and research - Component 2 From research to business - Investment 1.1 Notice Prin 2022 - DD N. 104 del 2/2/2022, from title "Interactions of the white truffle Tuber magnatum with soil microbiome and plants"
- ANR-11-LABX-0002-01 The French National Research Agency (ANR), 'Investissements d'Avenir' program, Lab of Excellence ARBRE, UMR IaM.
- ANR-11-LABX-0002-01 The French National Research Agency (ANR), 'Investissements d'Avenir' program, Lab of Excellence ARBRE, UMR IaM.
- ANR-11-LABX-0002-01 The French National Research Agency (ANR), 'Investissements d'Avenir' program, Lab of Excellence ARBRE, UMR IaM.
- ANR-11-LABX-0002-01 The French National Research Agency (ANR), 'Investissements d'Avenir' program, Lab of Excellence ARBRE, UMR IaM.
- European Union - NextGenerationEU under the National Recovery and Resilience Plan (PNRR) - Mission 4 Education and research - Component 2 From research to business - Investment 1.1 Notice Prin 2022 - DD N. 104 del 2/2/2022, from title “Interactions of the white truffle Tuber magnatum with soil microbiome and plants”
- PON call “Research and Innovation 2014–2020”
- Institut Universitaire de France
- The French National Research Agency (ANR), ‘Investissements d’Avenir’ program, Lab of Excellence ARBRE, UMR IaM.
- Alma Mater Studiorum - Università di Bologna
Collapse
Affiliation(s)
- Simone Graziosi
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy.
| | - Lara Deloche
- ISYEB, Muséum National d'Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 Rue Cuvier, CP39, 75005, Paris, France
| | - Mélanie Januario
- ISYEB, Muséum National d'Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 Rue Cuvier, CP39, 75005, Paris, France
| | - Marc-André Selosse
- ISYEB, Muséum National d'Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 Rue Cuvier, CP39, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Institut Universitaire de France, Paris, France
| | - Aurélie Deveau
- Université de Lorraine, INRAE, 54000, Nancy, IAM, France
| | - Cyrille Bach
- Université de Lorraine, INRAE, 54000, Nancy, IAM, France
| | - Zhixiao Chen
- Université de Lorraine, INRAE, 54000, Nancy, IAM, France
| | - Claude Murat
- Université de Lorraine, INRAE, 54000, Nancy, IAM, France
| | - Mirco Iotti
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy
| | - Philippe Rech
- ISYEB, Muséum National d'Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 Rue Cuvier, CP39, 75005, Paris, France.
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
2
|
Wei C, Liu M, Meng G, Wang M, Zhou X, Xu J, Hu J, Zhang L, Dong C. Characterization of Endofungal Bacteria and Their Role in the Ectomycorrhizal Fungus Helvella bachu. J Fungi (Basel) 2024; 10:889. [PMID: 39728385 DOI: 10.3390/jof10120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Helvella bachu, an ectomycorrhizal fungus, forms a symbiotic relationship with Populus euphratica, a rare and endangered species crucial to desert riparian ecosystems. In this study, endofungal bacteria (EFBs) within the fruiting bodies of H. bachu were confirmed by a polyphasic approach, including genomic sequencing, real-time quantitative PCR targeting the 16S rRNA gene, full-length and next-generation sequencing (NGS) of the 16S rRNA gene, and culture methods. The genera Stenotrophomonas, Variovorax, Acidovorax, and Pedobacter were abundant in the EFBs of fruiting bodies associated with three Populus hosts and were consistently present across different developmental stages. Notably, S. maltophilia and V. paradoxus were detected in high abundance, as revealed by full-length 16S rRNA sequencing, with S. maltophilia also isolated by culture methods. KO-pathway analysis indicated that pathways related to primary, secondary, and energy metabolism were predominantly enriched, suggesting these bacteria may promote H. bachu growth by producing essential compounds, including sugars, proteins, and vitamins, and secondary metabolites. This study confirmed the presence of EFBs in H. bachu and provided the first comprehensive overview of their structure, functional potential, and dynamic changes throughout fruiting body maturation, offering valuable insights for advancing the artificial domestication of this species.
Collapse
Affiliation(s)
- Caihong Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianping Xu
- Department of Biology, Institute of Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianwei Hu
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Lili Zhang
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Zhang P, Huguet-Tapia J, Peng Z, Liu S, Obasa K, Block AK, White FF. Genome analysis and hyphal movement characterization of the hitchhiker endohyphal Enterobacter sp. from Rhizoctonia solani. Appl Environ Microbiol 2024; 90:e0224523. [PMID: 38319098 PMCID: PMC10952491 DOI: 10.1128/aem.02245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.
Collapse
Affiliation(s)
- Peiqi Zhang
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jose Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Ken Obasa
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- High Plains Plant Disease Diagnostic Lab, Texas A&M AgriLife Extension Service, Amarillo, Texas, USA
| | - Anna K. Block
- Chemistry Research Unit, US Department of Agriculture-Agricultural Research Service, Gainesville, Florida, USA
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Zheng H, Chen T, Li W, Hong J, Xu J, Yu Z. Endosymbiotic bacteria within the nematode-trapping fungus Arthrobotrys musiformis and their potential roles in nitrogen cycling. Front Microbiol 2024; 15:1349447. [PMID: 38348183 PMCID: PMC10860758 DOI: 10.3389/fmicb.2024.1349447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Endosymbiotic bacteria (ESB) have important effects on their hosts, contributing to its growth, reproduction and biological functions. Although the effects of exogenous bacteria on the trap formation of nematode-trapping fungi (NTF) have been revealed, the effects of ESB on NTF remain unknown. In this study, we investigated the species diversity of ESB in the NTF Arthrobotrys musiformis using high-throughput sequencing and culture-dependent approaches, and compared bacterial profiles to assess the effects of strain source and culture media on A. musiformis. PICRUSt2 and FAPROTAX were used to predict bacterial function. Our study revealed that bacterial communities in A. musiformis displayed high diversity and heterogeneity, with Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria as the dominant phyla. The ESB between A. musiformis groups isolated from different habitats and cultured in the same medium were more similar to each other than the other groups isolated from the same habitat but cultured in different media. Function analysis predicted a broad and diverse functional repertoire of ESB in A. musiformis, and unveiled that ESB have the potential to function in five modules of the nitrogen metabolism. We isolated nitrogen-fixing and denitrifying bacteria from the ESB and demonstrated their effects on trap formation of A. musiformis. Among seven bacteria that we tested, three bacterial species Bacillus licheniformis, Achromobacter xylosoxidans and Stenotrophomonas maltophilia were found to be efficient in inducing trap formation. In conclusion, this study revealed extensive ESB diversity within NTF and demonstrated that these bacteria likely play important roles in nitrogen cycling, including nematode trap formation.
Collapse
Affiliation(s)
- Hua Zheng
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Tong Chen
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Wenjie Li
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jianan Hong
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Chen KH, Liao HL, Arnold AE, Korotkin HB, Wu SH, Matheny PB, Lutzoni F. Comparative transcriptomics of fungal endophytes in co-culture with their moss host Dicranum scoparium reveals fungal trophic lability and moss unchanged to slightly increased growth rates. THE NEW PHYTOLOGIST 2022; 234:1832-1847. [PMID: 35263447 DOI: 10.1111/nph.18078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Mosses harbor fungi whose interactions within their hosts remain largely unexplored. Trophic ranges of fungal endophytes from the moss Dicranum scoparium were hypothesized to encompass saprotrophism. This moss is an ideal host to study fungal trophic lability because of its natural senescence gradient, and because it can be grown axenically. Dicranum scoparium was co-cultured with each of eight endophytic fungi isolated from naturally occurring D. scoparium. Moss growth rates, and gene expression levels (RNA sequencing) of fungi and D. scoparium, were compared between axenic and co-culture treatments. Functional lability of two fungal endophytes was tested by comparing their RNA expression levels when colonizing living vs dead gametophytes. Growth rates of D. scoparium were unchanged, or increased, when in co-culture. One fungal isolate (Hyaloscyphaceae sp.) that promoted moss growth was associated with differential expression of auxin-related genes. When grown with living vs dead gametophytes, Coniochaeta sp. switched from having upregulated carbohydrate transporter activity to upregulated oxidation-based degradation, suggesting an endophytism to saprotrophism transition. However, no such transition was detected for Hyaloscyphaceae sp. Individually, fungal endophytes did not negatively impact growth rates of D. scoparium. Our results support the long-standing hypothesis that some fungal endophytes can switch to saprotrophism.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Department of Biology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Soil and Water Sciences Department, University of Florida, 1692 McCarty Drive, Gainesville, FL, 32611, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ, 85721, USA
| | - Hailee B Korotkin
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996, USA
| | - Steven H Wu
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996, USA
| | - François Lutzoni
- Department of Biology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
| |
Collapse
|
6
|
Meroterpenoids Possibly Produced by a Bacterial Endosymbiont of the Tropical Basidiomycete Echinochaete brachypora. Biomolecules 2022; 12:biom12060755. [PMID: 35740880 PMCID: PMC9221130 DOI: 10.3390/biom12060755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
A mycelial culture of the African basidiomycete Echinochaete cf. brachypora was studied for biologically active secondary metabolites, and four compounds were isolated from its crude extract derived from shake flask fermentations, using preparative high-performance liquid chromatography (HPLC). The pure metabolites were identified using extensive nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). Aside from the new metabolites 1-methoxyneomarinone (1) and (E)-3-methyl-5-(-12,13,14-trimethylcyclohex-10-en-6-yl)pent-2-enoic acid (4), the known metabolites neomarinone (2) and fumaquinone (4) were obtained. Such compounds had previously only been reported from Actinobacteria but were never isolated from the cultures of a fungus. This observation prompted us to evaluate whether the above metabolites may actually have been produced by an endosymbiontic bacterium that is associated with the basidiomycete. We have indeed been able to characterize bacterial 16S rDNA in the fungal mycelia, and the production of the metabolites stopped when the fungus was sub-cultured on a medium containing antibacterial antibiotics. Therefore, we have found strong evidence that compounds 1–4 are not of fungal origin. However, the endofungal bacterium was shown to belong to the genus Ralstonia, which has never been reported to produce similar metabolites to 1–4. Moreover, we failed to obtain the bacterial strain in pure culture to provide final proof for its identity. In any case, the current report is the first to document that polyporoid Basidiomycota are associated with endosymbionts and constitutes the first report on secondary metabolites from the genus Echinochaete.
Collapse
|
7
|
Morales DP, Robinson AJ, Pawlowski AC, Ark C, Kelliher JM, Junier P, Werner JH, Chain PSG. Advances and Challenges in Fluorescence in situ Hybridization for Visualizing Fungal Endobacteria. Front Microbiol 2022; 13:892227. [PMID: 35722318 PMCID: PMC9199388 DOI: 10.3389/fmicb.2022.892227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Several bacteria have long been known to interact intimately with fungi, but molecular approaches have only recently uncovered how cosmopolitan these interactions are in nature. Currently, bacterial–fungal interactions (BFI) are inferred based on patterns of co-occurrence in amplicon sequencing investigations. However, determining the nature of these interactions, whether the bacteria are internally or externally associated, remains a grand challenge in BFI research. Fluorescence in situ hybridization (FISH) is a robust method that targets unique sequences of interest which can be employed for visualizing intra-hyphal targets, such as mitochondrial organelles or, as in this study, bacteria. We evaluate the challenges and employable strategies to resolve intra-hyphal BFI to address pertinent criteria in BFI research, such as culturing media, spatial distribution of bacteria, and abundance of bacterial 16S rRNA copies for fluorescent labeling. While these experimental factors influence labeling and detection of endobacteria, we demonstrate how to overcome these challenges thorough permeabilization, appropriate media choice, and targeted amplification using hybridization chain reaction FISH. Such microscopy imaging approaches can now be utilized by the broader research community to complement sequence-based investigations and provide more conclusive evidence on the nature of specific bacterial–fungal relationships.
Collapse
Affiliation(s)
- Demosthenes P. Morales
- Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
- *Correspondence: Demosthenes P. Morales,
| | - Aaron J. Robinson
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Andrew C. Pawlowski
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Caitlyn Ark
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Julia M. Kelliher
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Pilar Junier
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - James H. Werner
- Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Patrick S. G. Chain
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
8
|
Cheng S, Jiang JW, Tan LT, Deng JX, Liang PY, Su H, Sun ZX, Zhou Y. Plant Growth-Promoting Ability of Mycorrhizal Fusarium Strain KB-3 Enhanced by Its IAA Producing Endohyphal Bacterium, Klebsiella aerogenes. Front Microbiol 2022; 13:855399. [PMID: 35495715 PMCID: PMC9051524 DOI: 10.3389/fmicb.2022.855399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Fusarium oxysporum KB-3 had been reported as a mycorrhizal fungus of Bletilla striata, which can promote the seed germination and vegetative growth. Endohyphal bacteria were demonstrated in the hyphae of the KB-3 by 16S rDNA PCR amplification and SYTO-9 fluorescent nucleic acid staining. A strain Klebsiella aerogenes KE-1 was isolated and identified based on the multilocus sequence analysis. The endohyphal bacterium was successfully removed from the wild strain KB-3 (KB-3−), and GFP-labeled KE-1 was also transferred to the cured strain KB-3− (KB-3+). The production of indole-3-acetic acid (IAA) in the culturing broths of strains of KE-1, KB-3, KB-3−, and KB-3+ was examined by HPLC. Their IAA productions were estimated using Salkowski colorimetric technique. The highest concentrations of IAA were 76.9 (at 48 h after inoculation), 31.4, 9.6, and 19.4 μg/ml (at 60 h after inoculation), respectively. Similarly, the three fungal cultural broths exhibited plant promoting abilities on the tomato root and stem growth. The results indicated that the ability of mycorrhizal Fusarium strain KB-3 to promote plant growth was enhanced because its endohyphal bacterium, Klebsiella aerogenes KE-1, produced a certain amount of IAA.
Collapse
|
9
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
10
|
Santoyo G, Gamalero E, Glick BR. Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.672881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population.
Collapse
|
11
|
Heydari S, Siavoshi F, Sarrafnejad A, Malekzadeh R. Coniochaeta fungus benefits from its intracellular bacteria to form biofilm and defend against other fungi. Arch Microbiol 2021; 203:1357-1366. [PMID: 33386870 DOI: 10.1007/s00203-020-02122-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
During cultivation of a gastric fungus, Coniochaeta polymorpha, growth of Nocardia colonies on top of the fungal culture raised the question whether bacteria originated from inside of fungus. In this study, the likelihood of intracellular origin of bacteria as well as interaction of two microorganisms was assessed. Fluorescence and electron microscopy showed occurrence of several bacterial cells in fungal cytoplasm. A thick biofilm was observed on the surface of co-culture compared with thin one on bacterial and none on fungal monocultures. Field emission scanning electron microscopy (FESEM) micrographs of co-culture showed a dense network of fungal and bacterial cells embedded in a slime-like layer. Dual cultures revealed antagonistic activity of both fungus and bacteria against three Candida species. These findings indicate that Nocardia isolate identified in this study originated from the inside of fungus C. polymorpha. Intracellular bacteria could benefit the fungal host by producing a rigid biofilm and an antifungal compound.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Fracchia F, Mangeot-Peter L, Jacquot L, Martin F, Veneault-Fourrey C, Deveau A. Colonization of Naive Roots from Populus tremula × alba Involves Successive Waves of Fungi and Bacteria with Different Trophic Abilities. Appl Environ Microbiol 2021; 87:e02541-20. [PMID: 33452025 PMCID: PMC8105020 DOI: 10.1128/aem.02541-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
Through their roots, trees interact with a highly complex community of microorganisms belonging to various trophic guilds and contributing to tree nutrition, development, and protection against stresses. Tree roots select for specific microbial species from the bulk soil communities. The root microbiome formation is a dynamic process, but little is known on how the different microorganisms colonize the roots and how the selection occurs. To decipher whether the final composition of the root microbiome is the product of several waves of colonization by different guilds of microorganisms, we planted sterile rooted cuttings of gray poplar obtained from plantlets propagated in axenic conditions in natural poplar stand soil. We analyzed the root microbiome at different time points between 2 and 50 days of culture by combining high-throughput Illumina MiSeq sequencing of the fungal ribosomal DNA internal transcribed spacer and bacterial 16S rRNA amplicons with confocal laser scanning microscopy observations. The microbial colonization of poplar roots took place in three stages, but bacteria and fungi had different dynamics. Root bacterial communities were clearly different from those in the soil after 2 days of culture. In contrast, if fungi were also already colonizing roots after 2 days, the initial communities were very close to that in the soil and were dominated by saprotrophs. They were slowly replaced by endophytes and ectomycorhizal fungi. The replacement of the most abundant fungal and bacterial community members observed in poplar roots over time suggest potential competition effect between microorganisms and/or a selection by the host.IMPORTANCE The tree root microbiome is composed of a very diverse set of bacterial and fungal communities. These microorganisms have a profound impact on tree growth, development, and protection against different types of stress. They mainly originate from the bulk soil and colonize the root system, which provides a unique nutrient-rich environment for a diverse assemblage of microbial communities. In order to better understand how the tree root microbiome is shaped over time, we observed the composition of root-associated microbial communities of naive plantlets of poplar transferred in natural soil. The composition of the final root microbiome relies on a series of colonization stages characterized by the dominance of different fungal guilds and bacterial community members over time. Our observations suggest an early stabilization of bacterial communities, whereas fungal communities are established following a more gradual pattern.
Collapse
Affiliation(s)
- F Fracchia
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | - L Jacquot
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - F Martin
- Université de Lorraine, INRAE, IAM, Nancy, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, China
| | | | - A Deveau
- Université de Lorraine, INRAE, IAM, Nancy, France
| |
Collapse
|
13
|
Muszewska A, Okrasińska A, Steczkiewicz K, Drgas O, Orłowska M, Perlińska-Lenart U, Aleksandrzak-Piekarczyk T, Szatraj K, Zielenkiewicz U, Piłsyk S, Malc E, Mieczkowski P, Kruszewska JS, Bernat P, Pawłowska J. Metabolic Potential, Ecology and Presence of Associated Bacteria Is Reflected in Genomic Diversity of Mucoromycotina. Front Microbiol 2021; 12:636986. [PMID: 33679672 PMCID: PMC7928374 DOI: 10.3389/fmicb.2021.636986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mucoromycotina are often considered mainly in pathogenic context but their biology remains understudied. We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e., Umbelopsidales and Mucorales). We selected two Umbelopsis isolates from soil (i.e., U. isabellina, U. vinacea), two soil-derived Mucor isolates (i.e., M. circinatus, M. plumbeus), and two Mucorales representatives with extended proteolytic activity (i.e., Thamnidium elegans and Mucor saturninus). We complement computational genome annotation with experimental characteristics of their digestive capabilities, cell wall carbohydrate composition, and extensive total lipid profiles. These traits inferred from genome composition, e.g., in terms of identified encoded enzymes, are in accordance with experimental results. Finally, we link the presence of associated bacteria with observed characteristics. Thamnidium elegans genome harbors an additional, complete genome of an associated bacterium classified to Paenibacillus sp. This fungus displays multiple altered traits compared to the remaining isolates, regardless of their evolutionary distance. For instance, it has expanded carbon assimilation capabilities, e.g., efficiently degrades carboxylic acids, and has a higher diacylglycerol:triacylglycerol ratio and skewed phospholipid composition which suggests a more rigid cellular membrane. The bacterium can complement the host enzymatic capabilities, alter the fungal metabolism, cell membrane composition but does not change the composition of the cell wall of the fungus. Comparison of early-diverging Umbelopsidales with evolutionary younger Mucorales points at several subtle differences particularly in their carbon source preferences and encoded carbohydrate repertoire. Nevertheless, all tested Mucoromycotina share features including the ability to produce 18:3 gamma-linoleic acid, use TAG as the storage lipid and have fucose as a cell wall component.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Drgas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Katarzyna Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Malc
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Piotr Mieczkowski
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Joanna S. Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Bastías DA, Johnson LJ, Card SD. Symbiotic bacteria of plant-associated fungi: friends or foes? CURRENT OPINION IN PLANT BIOLOGY 2020; 56:1-8. [PMID: 31786411 DOI: 10.1016/j.pbi.2019.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Many bacteria form symbiotic associations with plant-associated fungi. The effects of these symbionts on host fitness usually depend on symbiont or host genotypes and environmental conditions. However, bacterial endosymbionts, that is those living within fungal cells, may positively regulate host performance as their survival is often heavily dependent on host fitness. Contrary to this, bacteria that establish ectosymbiotic associations with fungi, that is those located on the hyphal surface or in close vicinity to fungal mycelia, may not have an apparent net effect on fungal performance due to the low level of fitness dependency on their host. Our analysis supports the hypothesis that endosymbiotic bacteria of fungi are beneficial symbionts, and that effects of ectosymbiotic bacteria on fungal performance depends on the bacterial type involved in the interaction (e.g. helper versus pathogen of fungi). Ecological scenarios, where the presence of beneficial bacterial endosymbionts of fungi could be compromised, are also discussed.
Collapse
Affiliation(s)
- Daniel A Bastías
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.
| | - Linda J Johnson
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Stuart D Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
15
|
Dellagi A, Quillere I, Hirel B. Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4469-4479. [PMID: 32157312 PMCID: PMC7475097 DOI: 10.1093/jxb/eraa112] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is an essential element for plant productivity, thus, it is abundantly applied to the soil in the form of organic or chemical fertilizers that have negative impacts on the environment. Exploiting the potential of beneficial microbes and identifying crop genotypes that can capitalize on symbiotic associations may be possible ways to significantly reduce the use of N fertilizers. The best-known example of symbiotic association that can reduce the use of N fertilizers is the N2-fixing rhizobial bacteria and legumes. Bacterial taxa other than rhizobial species can develop associative symbiotic interactions with plants and also fix N. These include bacteria of the genera Azospirillum, Azotobacter, and Bacillus, some of which are commercialized as bio-inoculants. Arbuscular mycorrhizal fungi are other microorganisms that can develop symbiotic associations with most terrestrial plants, favoring access to nutrients in a larger soil volume through their extraradical mycelium. Using combinations of different beneficial microbial species is a promising strategy to boost plant N acquisition and foster a synergistic beneficial effect between symbiotic microorganisms. Complex biological mechanisms including molecular, metabolic, and physiological processes dictate the establishment and efficiency of such multipartite symbiotic associations. In this review, we present an overview of the current knowledge and future prospects regarding plant N nutrition improvement through the use of beneficial bacteria and fungi associated with plants, individually or in combination.
Collapse
Affiliation(s)
- Alia Dellagi
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Quillere
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
16
|
From field sampling to pneumatic bioreactor mycelia production of the ectomycorrhizal mushroom Laccaria trichodermophora. Fungal Biol 2020; 124:205-218. [PMID: 32220381 DOI: 10.1016/j.funbio.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 11/23/2022]
Abstract
In order to increase survival rates of greenhouse seedlings destined for restoration and conservation programs, successful mycorrhization of the seedlings is necessary. To reforest forest ecosystems, host trees must be inoculated with ectomycorrhizal fungi and, in order to guarantee a sufficient supply of ectomycorrhizal inoculum, it is necessary to develop technologies for the mass production of ectomycorrhizal fungi mycelia. We selected the ectomycorrhizal fungus Laccaria trichodermophora, due to its ecological traits and feasible mycelia production in asymbiotic conditions. Here, we report the field sampling of genetic resources, as well as the highly productive nutritional media and cultivation parameters in solid cultures. Furthermore, in order to achieve high mycelial production, we used strain screening and evaluated pH, carbon source concentration, and culture conditions of submerged cultures in normal and baffled shake flasks. The higher productivity culture conditions in shake flasks were selected for evaluation in a pneumatic bioreactor, using modified BAF media with a 10 g/L glucose, pH 5.5, 25 °C, and a volumetric oxygen transfer coefficient (KLa) of 36 h-1. Under those conditions less biomass (12-37 %) was produced in the pneumatic bioreactor compared with the baffled shake flasks. This approach shows that L. trichodermophora can generate a large biomass concentration and constitute the biotechnological foundation of its mycelia mass production.
Collapse
|
17
|
Schneider-Maunoury L, Deveau A, Moreno M, Todesco F, Belmondo S, Murat C, Courty PE, Jąkalski M, Selosse MA. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. THE NEW PHYTOLOGIST 2020; 225:2542-2556. [PMID: 31733103 DOI: 10.1111/nph.16321] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/30/2019] [Indexed: 05/27/2023]
Abstract
Serendipitous findings and studies on Tuber species suggest that some ectomycorrhizal fungi, beyond their complex interaction with ectomycorrhizal hosts, also colonise roots of nonectomycorrhizal plants in a loose way called endophytism. Here, we investigate endophytism of T. melanosporum and T. aestivum. We visualised endophytic T. melanosporum hyphae by fluorescent in situ hybridisation on nonectomycorrhizal plants. For the two Tuber species, microsatellite genotyping investigated the endophytic presence of the individuals whose mating produced nearby ascocarps. We quantified the expression of four T. aestivum genes in roots of endophyted, non-ectomycorrhizal plants. Tuber melanosporum hyphae colonised the apoplast of healthy roots, confirming endophytism. Endophytic Tuber melanosporum and T. aestivum contributed to nearby ascocarps, but only as maternal parents (forming the flesh). Paternal individuals (giving only genes found in meiotic spores of ascocarps) were not detected. Gene expression of T. aestivum in non-ectomycorrhizal plants confirmed a living status. Tuber species, and likely other ectomycorrhizal fungi found in nonectomycorrhizal plant roots in this study, can be root endophytes. This is relevant for the ecology (brûlé formation) and commercial production of truffles. Evolutionarily speaking, endophytism may be an ancestral trait in some ectomycorrhizal fungi that evolved from root endophytes.
Collapse
Affiliation(s)
- Laure Schneider-Maunoury
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005, Paris, France
| | - Aurélie Deveau
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Myriam Moreno
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005, Paris, France
| | - Flora Todesco
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Simone Belmondo
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Claude Murat
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 17 rue Sully, 21000, Dijon, France
| | - Marcin Jąkalski
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
18
|
Fungal Epigenetic Engineering. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Heydari S, Siavoshi F, Ebrahimi H, Sarrafnejad A, Sharifi AH. Excision of endosymbiotic bacteria from yeast under aging and starvation stresses. INFECTION GENETICS AND EVOLUTION 2019; 78:104141. [PMID: 31839588 DOI: 10.1016/j.meegid.2019.104141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Although infrequent in our laboratory, growth of bacterial colonies has been observed on top of the purified cultures of yeasts. In this study, the likelihood of bacterial excision from yeast under aging and starvation stresses was assessed using 10 gastric and 10 food-borne yeasts. Yeasts were identified as members of Candida or Saccharomyces genus by amplification and sequencing of D1/D2 region of 26S rDNA. For aging stress, yeasts were cultured on brain heart infusion agar supplemented with sheep blood and incubated at 30 °C for 3-4 weeks. For starvation stress, yeasts were inoculated into distilled water and incubated similarly. After seven days, starved yeasts were cultured on yeast extract glucose agar, incubated similarly and examined daily for appearance of bacterial colonies on top of the yeast's growth. Outgrowth of excised bacteria was observed on top of the cultures of 4 yeasts (Y1, Y3, Y13 and Y18) after 3-7 days. The excised bacteria (B1, B3, B13 and B18) were isolated and identified at the genus level according to their biochemical characteristics as well as amplification and sequencing of 16S rDNA. B1 (Arthrobacter) were excised from Y1 (Candida albicans) upon aging and B3 (Staphylococcus), B13 (Cellulomonas) and B18 (Staphylococcus) were excised from their respective yeasts; Y3 (Candida tropicalis), Y13 (Saccharomyces cerevisiae) and Y18 (Candida glabrata) upon starvation. DNA from yeasts was used for detection of 16S rDNA of their intracellular bacteria and sequencing. Amplified products from yeasts showed sequence similarity to those of excised bacteria. Under normal conditions, yeast exerts tight control on multiplication of its intracellular bacteria. However, upon aging and starvation the control is no longer effective and bacterial outgrowth occurs. Unlimited multiplication of excised bacteria might provide yeast with plenty of food in close vicinity. This could be an evolutionary dialogue between yeast and bacteria that ensures the survival of both partners.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Hoda Ebrahimi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Houshang Sharifi
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Tavakolian A, Heydari S, Siavoshi F, Brojeni GN, Sarrafnejad A, Eftekhar F, Khormali M. Localization of Staphylococcus inside the vacuole of Candida albicans by immunodetection and FISH. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 75:104014. [PMID: 31446135 DOI: 10.1016/j.meegid.2019.104014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
In our previous study, two bacteria B1 and B2 were excised from two amphotericin B-treated Candida albicans Y1 and Y2, respectively. Bacteria were identified as B1: Staphylococcus hominis and B2: Staphylococcus haemolyticus according to their biochemical characteristics and detection and sequencing of Staphylococcus-specific genes. In this study the intracellular origin of staphylococci inside the vacuole of yeast was examined. Polyclonal antibodies against S. hominis and S. haemolyticus were raised in rabbit and used for detection of staphylococcal proteins in protein pool of yeasts by western blotting (WB). Fluorescein-isothiocyanate (FITC)-conjugated antibodies were used for bacterial localization inside yeast's vacuole by direct immunofluorescence (DIF). Fluorescent in situ hybridization (FISH) with Staphylococcaceae -specific probe was performed for validation of immunodetection results. WB results showed occurrence of several proteins in protein pool of yeasts that were similar to staphylococcal proteins such as those with molecular weight of 57.5 and 66 kDa. Fluorescent microscopy showed interactions of FITC-antibodies with intracellular staphylococci which appeared as green spots. Hybridization of staphylococcal- specific probe with bacteria inside yeasts' vacuole confirmed immunodetection results. Detection of staphylococcal proteins and genes inside Candida albicans yeast indicates existence of intracellular bacteria inside the vacuole of yeast. These results suggest C. albicans as the potential reservoir of medically important bacteria.
Collapse
Affiliation(s)
- Atefeh Tavakolian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Gholamreza Nikbakht Brojeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abdolfatah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Eftekhar
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Khormali
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Bradshaw RE, Sim AD, Chettri P, Dupont P, Guo Y, Hunziker L, McDougal RL, Van der Nest A, Fourie A, Wheeler D, Cox MP, Barnes I. Global population genomics of the forest pathogen Dothistroma septosporum reveal chromosome duplications in high dothistromin-producing strains. MOLECULAR PLANT PATHOLOGY 2019; 20:784-799. [PMID: 30938073 PMCID: PMC6637865 DOI: 10.1111/mpp.12791] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Dothistroma needle blight is one of the most devastating pine tree diseases worldwide. New and emerging epidemics have been frequent over the last 25 years, particularly in the Northern Hemisphere, where they are in part associated with changing weather patterns. One of the main Dothistroma needle blight pathogens, Dothistroma septosporum, has a global distribution but most molecular plant pathology research has been confined to Southern Hemisphere populations that have limited genetic diversity. Extensive genomic and transcriptomic data are available for a D. septosporum reference strain from New Zealand, where an introduced clonal population of the pathogen predominates. Due to the global importance of this pathogen, we determined whether the genome of this reference strain is representative of the species worldwide by sequencing the genomes of 18 strains sampled globally from different pine hosts. Genomic polymorphism shows substantial variation within the species, clustered into two distinct groups of strains with centres of diversity in Central and South America. A reciprocal chromosome translocation uniquely identifies the New Zealand strains. Globally, strains differ in their production of the virulence factor dothistromin, with extremely high production levels in strain ALP3 from Germany. Comparisons with the New Zealand reference revealed that several strains are aneuploids; for example, ALP3 has duplications of three chromosomes. Increased gene copy numbers therefore appear to contribute to increased production of dothistromin, emphasizing that studies of population structure are a necessary adjunct to functional analyses of genetic polymorphisms to identify the molecular basis of virulence in this important forest pathogen.
Collapse
Affiliation(s)
- Rosie E. Bradshaw
- School of Fundamental Sciences and Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| | - Andre D. Sim
- School of Fundamental Sciences and Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| | - Pranav Chettri
- School of Fundamental Sciences and Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| | - Pierre‐Yves Dupont
- School of Fundamental Sciences and Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
- Institute of Environmental Science and ResearchChristchurch8041New Zealand
| | - Yanan Guo
- School of Fundamental Sciences and Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| | - Lukas Hunziker
- School of Fundamental Sciences and Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| | | | - Ariska Van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Arista Fourie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - David Wheeler
- School of Fundamental Sciences and Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
- NSW Department of Primary IndustriesOrange Agricultural InstituteAustralia
| | - Murray P. Cox
- School of Fundamental Sciences and Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| |
Collapse
|
22
|
Adamski M, Pietr SJ. Biodiversity of Bacteria Associated with Eight Pleurotus ostreatus (Fr.) P. Kumm. Strains from Poland, Japan and the USA. Pol J Microbiol 2019; 68:71-81. [PMID: 31050255 PMCID: PMC7256699 DOI: 10.21307/pjm-2019-009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 11/11/2022] Open
Abstract
Few publications report the occurrence of bacteria associated with fungal cells. The presence of bacteria associated with one strain of Pleurotus ostreatus (Fr.) P. Kumm. was described in the literature. We describe the biodiversity of bacteria associated with eight oyster mushroom strains from Japan, Poland, and the USA. The presence of microorganisms associated with all tested P. ostreatus strains was confirmed using fluorescent microscopy. Among 307 sequences, 233 of clones representing 34 genera and 74 sequences were identified as Bacteria. Most of the bacteria associated with the strain PUSAS were related to E. coli and two clones were related to Cupriavidus genus. The biodiversity of clones isolated from fungal strains originating from Japan and Poland ranged from 15 to 32 different bacterial clones. The most often the bacteria related to genus Curvibacter, Pseudomonas, Bacillus, Cupriavidus, Pelomonas, and Propionibacterium were associated with the strains of fungi mentioned above. Laccase-like (LMCO) genes were identified in whole bacterial DNA isolated from the associated bacteria but β-glucosidase and β-xylanase genes were not detected. Few publications report the occurrence of bacteria associated with fungal cells. The presence of bacteria associated with one strain of Pleurotus ostreatus (Fr.) P. Kumm. was described in the literature. We describe the biodiversity of bacteria associated with eight oyster mushroom strains from Japan, Poland, and the USA. The presence of microorganisms associated with all tested P. ostreatus strains was confirmed using fluorescent microscopy. Among 307 sequences, 233 of clones representing 34 genera and 74 sequences were identified as Bacteria. Most of the bacteria associated with the strain PUSAS were related to E. coli and two clones were related to Cupriavidus genus. The biodiversity of clones isolated from fungal strains originating from Japan and Poland ranged from 15 to 32 different bacterial clones. The most often the bacteria related to genus Curvibacter, Pseudomonas, Bacillus, Cupriavidus, Pelomonas, and Propionibacterium were associated with the strains of fungi mentioned above. Laccase-like (LMCO) genes were identified in whole bacterial DNA isolated from the associated bacteria but β-glucosidase and β-xylanase genes were not detected.
Collapse
Affiliation(s)
- Mariusz Adamski
- Agricultural Microbiology Lab , Department of Plant Protection , The Faculty of Life Sciences and Technology , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| | - Stanislaw J Pietr
- Agricultural Microbiology Lab , Department of Plant Protection , The Faculty of Life Sciences and Technology , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| |
Collapse
|
23
|
Miquel Guennoc C, Rose C, Labbé J, Deveau A. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls? FEMS Microbiol Ecol 2019; 94:4998851. [PMID: 29788056 DOI: 10.1093/femsec/fiy093] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi establish symbiosis with roots of most trees of boreal and temperate ecosystems and are major drivers of nutrient fluxes between trees and the soil. ECM fungi constantly interact with bacteria all along their life cycle and the extended networks of hyphae provide a habitat for complex bacterial communities. Despite the important effects these bacteria can have on the growth and activities of ECM fungi, little is known about the mechanisms by which these microorganisms interact. Here we investigated the ability of bacteria to form biofilm on the hyphae of the ECM fungus Laccaria bicolor. We showed that the ability to form biofilms on the hyphae of the ECM fungus is widely shared among soil bacteria. Conversely, some fungi, belonging to the Ascomycete class, did not allow for the formation of bacterial biofilms on their surfaces. The formation of biofilms was also modulated by the presence of tree roots and ectomycorrhizae, suggesting that biofilm formation does not occur randomly in soil but that it is regulated by several biotic factors. In addition, our study demonstrated that the formation of bacterial biofilm on fungal hyphae relies on the production of networks of filaments made of extracellular DNA.
Collapse
Affiliation(s)
- Cora Miquel Guennoc
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christophe Rose
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| |
Collapse
|
24
|
Uribe‐Alvarez C, Chiquete‐Félix N, Morales‐García L, Bohórquez‐Hernández A, Delgado‐Buenrostro NL, Vaca L, Peña A, Uribe‐Carvajal S. Wolbachia pipientis grows in Saccharomyces cerevisiae evoking early death of the host and deregulation of mitochondrial metabolism. Microbiologyopen 2019; 8:e00675. [PMID: 29897678 PMCID: PMC6460262 DOI: 10.1002/mbo3.675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Wolbachia sp. has colonized over 70% of insect species, successfully manipulating host fertility, protein expression, lifespan, and metabolism. Understanding and engineering the biochemistry and physiology of Wolbachia holds great promise for insect vector-borne disease eradication. Wolbachia is cultured in cell lines, which have long duplication times and are difficult to manipulate and study. The yeast strain Saccharomyces cerevisiae W303 was used successfully as an artificial host for Wolbachia wAlbB. As compared to controls, infected yeast lost viability early, probably as a result of an abnormally high mitochondrial oxidative phosphorylation activity observed at late stages of growth. No respiratory chain proteins from Wolbachia were detected, while several Wolbachia F1 F0 -ATPase subunits were revealed. After 5 days outside the cell, Wolbachia remained fully infective against insect cells.
Collapse
Affiliation(s)
- Cristina Uribe‐Alvarez
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Natalia Chiquete‐Félix
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Lilia Morales‐García
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Arlette Bohórquez‐Hernández
- Depto. de Biología Celular y del DesarrolloInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Laura Delgado‐Buenrostro
- Unidad de Biomedicina UBIMEDFacultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlanepantlaEdo. de MéxicoMéxico
| | - Luis Vaca
- Depto. de Biología Celular y del DesarrolloInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Antonio Peña
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Salvador Uribe‐Carvajal
- Depto. de Genética MolecularInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
25
|
Siavoshi F, Heydari S, Shafiee M, Ahmadi S, Saniee P, Sarrafnejad A, Kolahdoozan S. Sequestration inside the yeast vacuole may enhance Helicobacter pylori survival against stressful condition. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:127-133. [PMID: 30682548 DOI: 10.1016/j.meegid.2019.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
Vacuole of eukaryotic cells, beyond intracellular digestion plays additional roles such as storage of nutrients that provide favorable conditions for bacterial survival. In this study, occurrence of H. pylori inside the vacuole of Candida yeast was studied and the role of vacuolating cytotoxin A (VacA) in constructing the vacuole was discussed. One gastric Candida yeast was used for Live/Dead stain and fluorescence in situ hybridization (FISH) with universal bacterial probe. Yeast total DNA was used for amplification of full-length bacterial 16S rDNA as well as H. pylori-specific 16S rDNA and vacA alleles. Vacuoles were isolated from yeast cells and stained with fluorescent yeast vacuole membrane marker MDY-64. DNA extracted from vacuoles was used for amplification of H. pylori-specific 16S rDNA. Fluorescent microscopy showed occurrence of viable bacteria inside the vacuole of intact Candida yeast cells. FISH showed intracellular bacteria as fluorescent spots inside the vacuole of mother and daughter yeast cells, suggesting bacterial transmission to next generations of yeast. Sequencing of amplified products of bacterial 16S rDNA and amplification of H. pylori 16S rDNA and vacA confirmed the identity of intracellular bacteria as H. pylori. Isolated vacuoles were stained with membrane-specific marker and H. pylori 16S rDNA was amplified from their DNA content. Results of this study suggest yeast vacuole as a specialized niche for H. pylori. It appears that sequestration inside the vacuole may enhance bacterial survival.
Collapse
Affiliation(s)
- Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, Tehran University, Tehran, Iran.
| | - Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, Tehran University, Tehran, Iran
| | - Mahsa Shafiee
- Department of Microbiology, School of Biology, University College of Sciences, Tehran University, Tehran, Iran
| | - Somayeh Ahmadi
- Department of Microbiology, School of Biology, University College of Sciences, Tehran University, Tehran, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Kolahdoozan
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Arora P, Riyaz-Ul-Hassan S. Endohyphal bacteria; the prokaryotic modulators of host fungal biology. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
28
|
Unveiling Concealed Functions of Endosymbiotic Bacteria Harbored in the Ascomycete Stachylidium bicolor. Appl Environ Microbiol 2018; 84:AEM.00660-18. [PMID: 29858203 DOI: 10.1128/aem.00660-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Among the plethora of unusual secondary metabolites isolated from Stachylidium bicolor are the tetrapeptidic endolides A and B. Both tetrapeptides contain 3-(3-furyl)-alanine residues, previously proposed to originate from bacterial metabolism. Inspired by this observation, we aimed to identify the presence of endosymbiotic bacteria in S. bicolor and to discover the true producer of the endolides. The endobacterium Burkholderia contaminans was initially detected by 16S rRNA gene amplicon sequencing from the fungal metagenome and was subsequently isolated. It was confirmed that the tetrapeptides were produced by the axenic B. contaminans only when in latency. Fungal colonies unable to produce conidia and the tetrapeptides were isolated and confirmed to be free of B. contaminans A second endosymbiont identified as related to Sphingomonas leidyi was also isolated. In situ imaging of the mycelium supported an endosymbiotic relationship between S. bicolor and the two endobacteria. Besides the technical novelty, our in situ analyses revealed that the two endobacteria are compartmentalized in defined fungal cells, prevailing mostly in latency when in symbiosis. Within the emerging field of intracellular bacterial symbioses, fungi are the least studied eukaryotic hosts. Our study further supports the Fungi as a valuable model for understanding endobacterial symbioses in eukaryotes.IMPORTANCE The discovery of two bacterial endosymbionts harbored in Stachylidium bicolor mycelium, Burkholderia contaminans and Sphingomonas leidyi, is described here. Production of tetrapeptides inside the mycelium is ensured by B. contaminans, and fungal sporulation is influenced by the endosymbionts. Here, we illustrate the bacterial endosymbiotic origin of secondary metabolites in an Ascomycota host.
Collapse
|
29
|
Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. MICROBIOME 2018; 6:58. [PMID: 29587885 PMCID: PMC5870681 DOI: 10.1186/s40168-018-0445-0] [Citation(s) in RCA: 587] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/13/2018] [Indexed: 05/09/2023]
Abstract
Since the colonization of land by ancestral plant lineages 450 million years ago, plants and their associated microbes have been interacting with each other, forming an assemblage of species that is often referred to as a "holobiont." Selective pressure acting on holobiont components has likely shaped plant-associated microbial communities and selected for host-adapted microorganisms that impact plant fitness. However, the high microbial densities detected on plant tissues, together with the fast generation time of microbes and their more ancient origin compared to their host, suggest that microbe-microbe interactions are also important selective forces sculpting complex microbial assemblages in the phyllosphere, rhizosphere, and plant endosphere compartments. Reductionist approaches conducted under laboratory conditions have been critical to decipher the strategies used by specific microbes to cooperate and compete within or outside plant tissues. Nonetheless, our understanding of these microbial interactions in shaping more complex plant-associated microbial communities, along with their relevance for host health in a more natural context, remains sparse. Using examples obtained from reductionist and community-level approaches, we discuss the fundamental role of microbe-microbe interactions (prokaryotes and micro-eukaryotes) for microbial community structure and plant health. We provide a conceptual framework illustrating that interactions among microbiota members are critical for the establishment and the maintenance of host-microbial homeostasis.
Collapse
Affiliation(s)
- M Amine Hassani
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Paloma Durán
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
30
|
Medrano EG, Grauke LJ, Stanford RL, Thompson TE. Evidence for the presence of a bacterial endosymbiont in the pecan scab pathogen Venturia effusa (basyonym: Fusicladium effusum). J Appl Microbiol 2017; 123:491-497. [PMID: 28561954 DOI: 10.1111/jam.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 11/29/2022]
Abstract
AIMS To determine whether Venturia effusa, the causative fungal agent of pecan scab, harbours a bacterial symbiont. METHODS AND RESULTS Venturia effusa isolates were maintained on potato dextrose agar amended with antibiotics (chloramphenicol (100 μg ml-1 ) and tetracycline 100 (μg ml-1 )). Genomic DNA extracted from mycelia was used to target eubacterial 16S rDNA. A 1·4-kbp PCR amplified product using 16S rDNA degenerate primers was cloned, sequenced and found to have 99% identities with Actinobacteria representatives. Attempts to culture the detected bacteria apart from the fungus following agitation and fungal cell lysis were unsuccessful using standard bacteriological media under either aerobic or anaerobic conditions. Fungal structures were visualized using scanning electron microscopy and putative bacterial formations associated with the fungal mycelia were observed. Fluorescence in situ hybridization using 16S rDNA oligonucleotides illuminated spores and portions of the hyphae. CONCLUSIONS This is the first report to provide both molecular microbiological and microscopic evidence in support of the hypothesis that V. effusa harbours endosymbiotic bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY Findings from this research contribute fundamental information regarding the biology of the fungus that may ultimately lead to identifying a target of the pathogen for use in management and/or avoidance strategies.
Collapse
Affiliation(s)
- E G Medrano
- Insect Control and Cotton Disease Research Unit, College Station, TX, USA
| | - L J Grauke
- Crop Germplasm Research Unit, College Station, TX, USA
| | - R L Stanford
- Crop Germplasm Research Unit, College Station, TX, USA
| | - T E Thompson
- Crop Germplasm Research Unit, College Station, TX, USA
| |
Collapse
|
31
|
Marupakula S, Mahmood S, Jernberg J, Nallanchakravarthula S, Fahad ZA, Finlay RD. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition. Environ Microbiol 2017; 19:4736-4753. [PMID: 28967195 DOI: 10.1111/1462-2920.13939] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns.
Collapse
Affiliation(s)
- Srisailam Marupakula
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Shahid Mahmood
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Johanna Jernberg
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Srivathsa Nallanchakravarthula
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Zaenab A Fahad
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Roger D Finlay
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| |
Collapse
|
32
|
Wang R, Dong L, Chen Y, Qu L, Wang Q, Zhang Y. Esteya Vermicola, a Nematophagous Fungus Attacking the Pine Wood Nematode, Harbors a Bacterial Endosymbiont Affiliated with Gammaproteobacteria. Microbes Environ 2017; 32:201-209. [PMID: 28824050 PMCID: PMC5606689 DOI: 10.1264/jsme2.me16167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/19/2017] [Indexed: 11/12/2022] Open
Abstract
Symbioses have played pivotal roles in biological, ecological, and evolutionary diversification. Symbiotic bacteria affect the biology of hosts in a number of ways. Esteya vermicola, an endoparasitic nematophagous fungus, has high infectivity in the pine wood nematode (PWN), which causes devastating ecological damage and economic losses in Asia and Europe. An integration of molecular, phylogenetic, and morphological analyses revealed that surface-sterilized E. vermicola with septate hyphae from different geographic locations harbor bacterial endosymbionts. 16S rRNA gene sequences from four fungal strains all clustered in a well-supported monophyletic clade that was the most closely related to Pseudomonas stutzeri and affiliated with Gammaproteobacteria. The existence and intracellular location of endobacteria was revealed by fluorescent in situ hybridization (FISH). Our results showed that endobacteria were coccoid, vertically inherited, as yet uncultured, and essential symbionts. Ultrastructural observations indicated that young and old endobacteria differed in cell size, cell wall thickness, and the degree of reproduction. The results of the present study provide a fundamental understanding of the endobacteria inside E. vermicola and raise questions regarding the impact of endobacteria on the biology, ecology, and evolution of their fungal host.
Collapse
Affiliation(s)
- Ruizhen Wang
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of ForestryChina
| | - Leiming Dong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryChina
| | - Yuequ Chen
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of ForestryChina
- Forestry Resources Protection Institute, Jilin Provincial Academy of Forestry SciencesChina
| | - Liangjian Qu
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of ForestryChina
| | - Qinghua Wang
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of ForestryChina
| | - Yongan Zhang
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of ForestryChina
| |
Collapse
|
33
|
Araldi-Brondolo SJ, Spraker J, Shaffer JP, Woytenko EH, Baltrus DA, Gallery RE, Arnold AE. Bacterial Endosymbionts: Master Modulators of Fungal Phenotypes. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0056-2016. [PMID: 28936944 PMCID: PMC11687546 DOI: 10.1128/microbiolspec.funk-0056-2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 01/26/2023] Open
Abstract
The ecological modes of fungi are shaped not only by their intrinsic features and the environment in which they occur, but also by their interactions with diverse microbes. Here we explore the ecological and genomic features of diverse bacterial endosymbionts-endohyphal bacteria-that together are emerging as major determinants of fungal phenotypes and plant-fungi interactions. We first provide a historical perspective on the study of endohyphal bacteria. We then propose a functional classification of three main groups, providing an overview of their genomic, phylogenetic, and ecological traits. Last, we explore frontiers in the study of endohyphal bacteria, with special attention to those facultative and horizontally transmitted bacteria that associate with some of the most diverse lineages of fungi. Overall, our aim is to synthesize the rich literature from nearly 50 years of studies on endohyphal bacteria as a means to highlight potential applications and new research directions.
Collapse
Affiliation(s)
| | | | | | - Emma H Woytenko
- School of Plant Sciences
- Graduate Interdisciplinary Program in Genetics
| | | | | | - A Elizabeth Arnold
- School of Plant Sciences
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
34
|
Guo H, Glaeser SP, Alabid I, Imani J, Haghighi H, Kämpfer P, Kogel KH. The Abundance of Endofungal Bacterium Rhizobium radiobacter (syn. Agrobacterium tumefaciens) Increases in Its Fungal Host Piriformospora indica during the Tripartite Sebacinalean Symbiosis with Higher Plants. Front Microbiol 2017; 8:629. [PMID: 28450855 PMCID: PMC5390018 DOI: 10.3389/fmicb.2017.00629] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
Rhizobium radiobacter (syn. Agrobacterium tumefaciens, syn. "Agrobacterium fabrum") is an endofungal bacterium of the fungal mutualist Piriformospora (syn. Serendipita) indica (Basidiomycota), which together form a tripartite Sebacinalean symbiosis with a broad range of plants. R. radiobacter strain F4 (RrF4), isolated from P. indica DSM 11827, induces growth promotion and systemic resistance in cereal crops, including barley and wheat, suggesting that R. radiobacter contributes to a successful symbiosis. Here, we studied the impact of endobacteria on the morphology and the beneficial activity of P. indica during interactions with plants. Low numbers of endobacteria were detected in the axenically grown P. indica (long term lab-cultured, lcPiri) whereas mycelia colonizing the plant root contained increased numbers of bacteria. Higher numbers of endobacteria were also found in axenic cultures of P. indica that was freshly re-isolated (riPiri) from plant roots, though numbers dropped during repeated axenic re-cultivation. Prolonged treatments of P. indica cultures with various antibiotics could not completely eliminate the bacterium, though the number of detectable endobacteria decreased significantly, resulting in partial-cured P. indica (pcPiri). pcPiri showed reduced growth in axenic cultures and poor sporulation. Consistent with this, pcPiri also showed reduced plant growth promotion and reduced systemic resistance against powdery mildew infection as compared with riPiri and lcPiri. These results are consistent with the assumption that the endobacterium R. radiobacter improves P. indica's fitness and thus contributes to the success of the tripartite Sebacinalean symbiosis.
Collapse
Affiliation(s)
- Huijuan Guo
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Ibrahim Alabid
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Hossein Haghighi
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| |
Collapse
|
35
|
Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK, Wu S, Desirò A, Vande Pol N, Du Z, Zienkiewicz A, Zienkiewicz K, Morin E, Tisserant E, Splivallo R, Hainaut M, Henrissat B, Ohm R, Kuo A, Yan J, Lipzen A, Nolan M, LaButti K, Barry K, Goldstein AH, Labbé J, Schadt C, Tuskan G, Grigoriev I, Martin F, Vilgalys R, Bonito G. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ Microbiol 2017; 19:2964-2983. [PMID: 28076891 DOI: 10.1111/1462-2920.13669] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. We sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primary metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/absence of M. cysteinexigens. Independent comparative phylogenomic analyses of fungal and bacterial genomes are consistent with an ancient origin for M. elongata - M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.
Collapse
Affiliation(s)
- J Uehling
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - A Gryganskyi
- LF Lambert Spawn Company Coatesville, PA, 19320, USA
| | - K Hameed
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - T Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - P K Misztal
- University of California Berkeley, Berkeley, CA, 94720, USA
| | - S Wu
- Arizona State University Tempe, AZ, 85281, USA
| | - A Desirò
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - N Vande Pol
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Z Du
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - A Zienkiewicz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - K Zienkiewicz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Plant Biochemistry, Georg-August University, Göttingen, 37073, Germany
| | - E Morin
- Institut National de la Recherche Agronomique, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - E Tisserant
- Institut National de la Recherche Agronomique, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - R Splivallo
- Goethe University Frankfurt, Institute for Molecular Biosciences, 60438 Frankfurt, Germany Integrative Fungal Research Cluster (IPF), Frankfurt, 60325, Germany
| | - M Hainaut
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
| | - B Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
| | - R Ohm
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - A Kuo
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - J Yan
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - A Lipzen
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - M Nolan
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - K LaButti
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - K Barry
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - A H Goldstein
- University of California Berkeley, Berkeley, CA, 94720, USA
| | - J Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - C Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - G Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - I Grigoriev
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - F Martin
- Institut National de la Recherche Agronomique, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - R Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - G Bonito
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
36
|
Glaeser SP, Imani J, Alabid I, Guo H, Kumar N, Kämpfer P, Hardt M, Blom J, Goesmann A, Rothballer M, Hartmann A, Kogel KH. Non-pathogenic Rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica. THE ISME JOURNAL 2016; 10:871-84. [PMID: 26495996 PMCID: PMC4796927 DOI: 10.1038/ismej.2015.163] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 12/23/2022]
Abstract
The Alphaproteobacterium Rhizobium radiobacter F4 (RrF4) was originally characterized as an endofungal bacterium in the beneficial endophytic Sebacinalean fungus Piriformospora indica. Although attempts to cure P. indica from RrF4 repeatedly failed, the bacterium can easily be grown in pure culture. Here, we report on RrF4's genome and the beneficial impact the free-living bacterium has on plants. In contrast to other endofungal bacteria, the genome size of RrF4 is not reduced. Instead, it shows a high degree of similarity to the plant pathogenic R. radiobacter (formerly: Agrobacterium tumefaciens) C58, except vibrant differences in both the tumor-inducing (pTi) and the accessor (pAt) plasmids, which can explain the loss of RrF4's pathogenicity. Similar to its fungal host, RrF4 colonizes plant roots without host preference and forms aggregates of attached cells and dense biofilms at the root surface of maturation zones. RrF4-colonized plants show increased biomass and enhanced resistance against bacterial leaf pathogens. Mutational analysis showed that, similar to P. indica, resistance mediated by RrF4 was dependent on the plant's jasmonate-based induced systemic resistance (ISR) pathway. Consistent with this, RrF4- and P. indica-induced pattern of defense gene expression were similar. In clear contrast to P. indica, but similar to plant growth-promoting rhizobacteria, RrF4 colonized not only the root outer cortex but also spread beyond the endodermis into the stele. On the basis of our findings, RrF4 is an efficient plant growth-promoting bacterium.
Collapse
Affiliation(s)
- Stefanie P Glaeser
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig- University Giessen, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ibrahim Alabid
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - Huijuan Guo
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - Neelendra Kumar
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig- University Giessen, Giessen, Germany
| | - Martin Hardt
- Biomedical Research Centre Seltersberg-Imaging Unit, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michael Rothballer
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
37
|
Diverse bacterial symbionts of insect-pathogentic fungi and possible impact on the maintenance of virulence during infection. Symbiosis 2015. [DOI: 10.1007/s13199-015-0371-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Marupakula S, Mahmood S, Finlay RD. Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environ Microbiol 2015; 18:1470-83. [PMID: 26521936 DOI: 10.1111/1462-2920.13102] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022]
Abstract
Symbiotic ectomycorrhizal tree roots represent an important niche for interaction with bacteria since the fungi colonizing them have a large surface area and receive a direct supply of photosynthetically derived carbon. We examined individual root tips of Pinus sylvestris at defined time points between 5 days and 24 weeks, identified the dominant fungi colonizing each root tip using Sanger sequencing and the bacterial communities colonizing individual root tips by 454 pyrosequencing. Bacterial colonization was extremely dynamic with statistically significant variation in time and increasing species richness until week 16 (3477 operational taxonomic units). Bacterial community structure of roots colonized by Russula sp. 6 GJ-2013b, Piloderma spp., Meliniomyces variabilis and Paxillus involutus differed significantly at weeks 8 and 16 but diversity declined and significant differences were no longer apparent at week 24. The most common genera were Burkholderia, Sphingopyxsis, Dyella, Pseudomonas, Acinetobacter, Actinospica, Aquaspirillum, Acidobacter Gp1, Sphingomonas, Terriglobus, Enhydrobacter, Herbaspirillum and Bradyrhizobium. Many genera had high initial abundance at week 8, declining with time but Dyella and Terriglobus increased in abundance at later time points. In roots colonized by Piloderma spp. several other bacterial genera, such as Actinospica, Bradyrhizobium, Acidobacter Gp1 and Rhizomicrobium appeared to increase in abundance at later sampling points.
Collapse
Affiliation(s)
- Srisailam Marupakula
- Uppsala BioCenter, Department of Forest Mycology & Plant Pathology, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Shahid Mahmood
- Uppsala BioCenter, Department of Forest Mycology & Plant Pathology, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Roger D Finlay
- Uppsala BioCenter, Department of Forest Mycology & Plant Pathology, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| |
Collapse
|
39
|
Lee CK, Haque MA, Choi BR, Lee HY, Hwang CE, Ahn MJ, Cho KM. Molecular diversity of endobacterial communities in edible part of King oyster mushroom (Pleurotus eryngii) based on 16S rRNA. ACTA ACUST UNITED AC 2015. [DOI: 10.7845/kjm.2015.4086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Toomer KH, Chen X, Naito M, Mondo SJ, den Bakker HC, VanKuren NW, Lekberg Y, Morton JB, Pawlowska TE. Molecular evolution patterns reveal life history features of mycoplasma-related endobacteria associated with arbuscular mycorrhizal fungi. Mol Ecol 2015; 24:3485-500. [DOI: 10.1111/mec.13250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 05/01/2015] [Accepted: 05/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin H. Toomer
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Xiuhua Chen
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan 430070 China
| | - Mizue Naito
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Stephen J. Mondo
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Henk C. den Bakker
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Nicholas W. VanKuren
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| | - Ylva Lekberg
- MPG Ranch; Missoula MT 59802 USA
- Department of Ecosystem and Conservation Sciences; University of Montana; Missoula MT 59812 USA
| | - Joseph B. Morton
- Division of Plant & Soil Sciences; West Virginia University; Morgantown WV 26506 USA
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Plant Pathology & Plant Microbe-Biology; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
41
|
Quandt CA, Kohler A, Hesse CN, Sharpton TJ, Martin F, Spatafora JW. Metagenome sequence of Elaphomyces granulatus from sporocarp tissue reveals Ascomycota ectomycorrhizal fingerprints of genome expansion and a Proteobacteria-rich microbiome. Environ Microbiol 2015; 17:2952-68. [PMID: 25753751 DOI: 10.1111/1462-2920.12840] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/13/2015] [Accepted: 02/28/2015] [Indexed: 01/06/2023]
Abstract
Many obligate symbiotic fungi are difficult to maintain in culture, and there is a growing need for alternative approaches to obtaining tissue and subsequent genomic assemblies from such species. In this study, the genome of Elaphomyces granulatus was sequenced from sporocarp tissue. The genome assembly remains on many contigs, but gene space is estimated to be mostly complete. Phylogenetic analyses revealed that the Elaphomyces lineage is most closely related to Talaromyces and Trichocomaceae s.s. The genome of E. granulatus is reduced in carbohydrate-active enzymes, despite a large expansion in genome size, both of which are consistent with what is seen in Tuber melanosporum, the other sequenced ectomycorrhizal ascomycete. A large number of transposable elements are predicted in the E. granulatus genome, especially Gypsy-like long terminal repeats, and there has also been an expansion in helicases. The metagenome is a complex community dominated by bacteria in Bradyrhizobiaceae, and there is evidence to suggest that the community may be reduced in functional capacity as estimated by KEGG pathways. Through the sequencing of sporocarp tissue, this study has provided insights into Elaphomyces phylogenetics, genomics, metagenomics and the evolution of the ectomycorrhizal association.
Collapse
Affiliation(s)
- C Alisha Quandt
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Annegret Kohler
- Institut National de la Recherché Agronomique, Centre de Nancy, Champenoux, France
| | - Cedar N Hesse
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA.,Department of Statistics, Oregon State University, Corvallis, OR, 97331, USA
| | - Francis Martin
- Institut National de la Recherché Agronomique, Centre de Nancy, Champenoux, France
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
42
|
Novel Endosymbioses as a Catalyst of Fast Speciation. INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-16345-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Haq IU, Zhang M, Yang P, van Elsas JD. The interactions of bacteria with fungi in soil: emerging concepts. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:185-215. [PMID: 25131403 DOI: 10.1016/b978-0-12-800259-9.00005-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Pu Yang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
44
|
Abstract
Most ecosystems are populated by a large number of diversified microorganisms, which interact with one another and form complex interaction networks. In addition, some of these microorganisms may colonize the surface or internal parts of plants and animals, thereby providing an additional level of interaction complexity. These microbial relations range from intraspecific to interspecific interactions, and from simple short-term interactions to intricate long-term ones. They have played a key role in the formation of plant and animal kingdoms, often resulting in coevolution; they control the size, activity level, and diversity patterns of microbial communities. Therefore, they modulate trophic networks and biogeochemical cycles, regulate ecosystem productivity, and determine the ecology and health of plant and animal partners. A better understanding of these interactions is needed to develop microbe-based ecological engineering strategies for environmental sustainability and conservation, to improve environment-friendly approaches for feed and food production, and to address health challenges posed by infectious diseases. The main types of biotic interactions are presented: interactions between microorganisms, interactions between microorganisms and plants, and interactions between microorganisms and animals.
Collapse
|
45
|
Antony-Babu S, Deveau A, Van Nostrand JD, Zhou J, Le Tacon F, Robin C, Frey-Klett P, Uroz S. Black truffle-associated bacterial communities during the development and maturation ofTuber melanosporumascocarps and putative functional roles. Environ Microbiol 2013; 16:2831-47. [DOI: 10.1111/1462-2920.12294] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/20/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Sanjay Antony-Babu
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| | - Aurélie Deveau
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| | - Joy D. Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73072 USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73072 USA
- Earth Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control; School of Environment; Tsinghua University; Beijing 100084 China
| | - François Le Tacon
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| | - Christophe Robin
- Agronomie & Environnement; Université de Lorraine; Nancy-Colmar UMR 1121 F-54500 Vandoeuvre-lès-Nancy France
- INRA; Agronomie & Environnement; Centre INRA de Nancy-Lorraine; Nancy-Colmar UMR 1121 F-54500 Vandoeuvre-lès-Nancy France
| | - Pascale Frey-Klett
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| | - Stéphane Uroz
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| |
Collapse
|
46
|
Hoffman MT, Gunatilaka MK, Wijeratne K, Gunatilaka L, Arnold AE. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One 2013; 8:e73132. [PMID: 24086270 PMCID: PMC3782478 DOI: 10.1371/journal.pone.0073132] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.
Collapse
Affiliation(s)
- Michele T. Hoffman
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Malkanthi K. Gunatilaka
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Kithsiri Wijeratne
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, Tucson, Arizona, United States of America
| | - Leslie Gunatilaka
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, Tucson, Arizona, United States of America
| | - A. Elizabeth Arnold
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
47
|
Patel N, Oudemans PV, Hillman BI, Kobayashi DY. Use of the tetrazolium salt MTT to measure cell viability effects of the bacterial antagonist Lysobacter enzymogenes on the filamentous fungus Cryphonectria parasitica. Antonie van Leeuwenhoek 2013; 103:1271-80. [PMID: 23529159 PMCID: PMC3656244 DOI: 10.1007/s10482-013-9907-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/18/2013] [Indexed: 12/29/2022]
Abstract
Despite substantial interest investigating bacterial mechanisms of fungal growth inhibition, there are few methods available that quantify fungal cell death during direct interactions with bacteria. Here we describe an in vitro cell suspension assay using the tetrazolium salt MTT as a viability stain to assess direct effects of the bacterial antagonist Lysobacter enzymogenes on hyphal cells of the filamentous fungus Cryphonectria parasitica. The effects of bacterial cell density, fungal age and the physiological state of fungal mycelia on fungal cell viability were evaluated. As expected, increased bacterial cell density correlated with reduced fungal cell viability over time. Bacterial effects on fungal cell viability were influenced by both age and physiological state of the fungal mycelium. Cells obtained from 1-week-old mycelia lost viability faster compared with those from 2-week-old mycelia. Likewise, hyphal cells obtained from the lower layer of the mycelial pellicle lost viability more quickly compared with cells from the upper layer of the mycelial pellicle. Fungal cell viability was compared between interactions with L. enzymogenes wildtype strain C3 and a mutant strain, DCA, which was previously demonstrated to lack in vitro antifungal activity. Addition of antibiotics eliminated contributions to MTT-formazan production by bacterial cells, but not by fungal cells, demonstrating that mutant strain DCA had lost complete capacity to reduce fungal cell viability. These results indicate this cell suspension assay can be used to quantify bacterial effects on fungal cells, thus providing a reliable method to differentiate strains during bacterial/fungal interactions.
Collapse
Affiliation(s)
- Nrupali Patel
- Department of Plant Biology & Pathology, School of Environmental and Biological Sciences, Foran Hall, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA.
| | | | | | | |
Collapse
|
48
|
Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, Rogel MA, Ormeño-Orrillo E, Martínez-Romero E. Gut and root microbiota commonalities. Appl Environ Microbiol 2013; 79:2-9. [PMID: 23104406 PMCID: PMC3536091 DOI: 10.1128/aem.02553-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.
Collapse
|
49
|
Corsaro D, Müller KD, Wingender J, Michel R. "Candidatus Mesochlamydia elodeae" (Chlamydiae: Parachlamydiaceae), a novel chlamydia parasite of free-living amoebae. Parasitol Res 2012; 112:829-38. [PMID: 23224611 DOI: 10.1007/s00436-012-3213-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Abstract
Vannella sp. isolated from waterweed Elodea sp. was found infected by a chlamydia-like organism. This organism behaves like a parasite, causing the death through burst of its host. Once the vannellae degenerated, the parasite was successfully kept in laboratory within a Saccamoeba sp. isolated from the same waterweed sample, which revealed in fine through electron microscopy to harbor two bacterial endosymbionts: the chlamydial parasite we introduce and another endosymbiont initially and naturally present in the host. Herein, we provide molecular-based identification of both the amoeba host and its two endosymbionts, with special focus on the chlamydia parasite. High sequence similarity values of the 18S rDNA permitted to assign the amoeba to the species Saccamoeba lacustris (Amoebozoa, Tubulinea). The bacterial endosymbiont naturally harbored by the host belonged to Sphingomonas koreensis (Alpha-Proteobacteria). The chlamydial parasite showed a strict specificity for Saccamoeba spp., being unable to infect a variety of other amoebae, including Acanthamoeba, and it was itself infected by a bacteriophage. Sequence similarity values of the 16S rDNA and phylogenetic analysis indicated that this strain is a new member of the family Parachlamydiaceae, for which we propose the name "Candidatus Mesochlamydia elodeae."
Collapse
Affiliation(s)
- Daniele Corsaro
- Chlamydia Research Association, 12 rue du Maconnais, 54500 Vandoeuvre-lès-Nancy, France.
| | | | | | | |
Collapse
|
50
|
|