1
|
Wen Q, Huang X, Ma W, Chen Y, Wang L, Ma Y, Chen X. Characterization of a phage endolysin LysLFP01 and its antibacterial activity. Int J Food Microbiol 2025; 432:111110. [PMID: 39951925 DOI: 10.1016/j.ijfoodmicro.2025.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/26/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Lyase, a peptidoglycan hydrolase derived from phage, has been considered as a promising alternative antimicrobial agent. To date, adequate information regarding the characteristics of the Lactobacillus phage lyase is lacking. In this study, a lyase from Lactobacillus phage LFP01 was cloned and heterologously expressed in Escherichia coli (E. coli) for subsequent characterization of the antibacterial activity. The removal efficacy of bacterial biofilm and antimicrobial activity in raw milk were also evaluated. The results showed that LysLFP01 demonstrated broad-spectrum antibacterial activity, surpassing its phage counterpart, with particular efficacy against gram-positive bacteria. It exhibited strong thermostability (4-72 °C) and retained activity across a pH range of 3.0-9.0, although its activity decreased with higher NaCl concentrations. LysLFP01 effectively inhibited and removed Staphylococcus aureus (S. aureus) biofilms, as observed through scanning electron microscopy. Additionally, it exhibited significant antibacterial activity in raw milk at 4 °C, reducing bacterial counts effectively over time. Taken together, these findings indicated the potential of LysLFP01 as a novel and robust antimicrobial agent for food safety applications, particularly in combating S. aureus contamination in low-salt, non-acidic environments.
Collapse
Affiliation(s)
- Qiannan Wen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Academy of Science and Technology, Hohhot, Inner Mongolia 010000, China
| | - Xuecheng Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenxin Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yingtong Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Luyao Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yang Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
2
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
3
|
Liu B, Li Z, Guo Q, Guo X, Liu R, Liu X. Integration of Lysin into Chitosan Nanoparticles for Improving Bacterial Biofilm Inhibition. Appl Biochem Biotechnol 2024; 196:1592-1611. [PMID: 37436548 DOI: 10.1007/s12010-023-04627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Bacterial biofilms (BBFs) exhibit high drug resistance, antiphagocytosis, and extremely strong adhesion, and therefore can cause various diseases. They are also one of the important causes of bacterial infections. Thus, the effective removal of BBFs has attracted considerable research interest. Endolysins, which are efficient antibacterial bioactive macromolecules, have recently been receiving increasing attention. In this study, we overcame the deficiencies of endolysins via immobilization on chitosan nanoparticles (CS-NPs) by preparing LysST-3-CS-NPs using the ionic cross-linking reaction between CS-NPs and LysST-3, an endolysin purified using phage ST-3 expression. The obtained LysST-3-CS-NPs were verified and thoroughly characterized, their antimicrobial activity was investigated using microscopy, and their antibacterial efficacy on polystyrene surfaces was studied. The results obtained suggested that LysST-3-CS-NPs exhibit enhanced bactericidal properties and increased stability and can serve as reliable biocontrol agents for the prevention and treatment of Salmonella biofilm infections.
Collapse
Affiliation(s)
- Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qiucui Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Dorosky RJ, Lola SL, Brown HA, Schreier JE, Dreher-Lesnick SM, Stibitz S. Characterization of Lactobacilli Phage Endolysins and Their Functional Domains-Potential Live Biotherapeutic Testing Reagents. Viruses 2023; 15:1986. [PMID: 37896764 PMCID: PMC10610939 DOI: 10.3390/v15101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Phage endolysin-specific binding characteristics and killing activity support their potential use in biotechnological applications, including potency and purity testing of live biotherapeutic products (LBPs). LBPs contain live organisms, such as lactic acid bacteria (LAB), and are intended for use as drugs. Our approach uses the endolysin cell wall binding domains (CBD) for LBP potency assays and the endolysin killing activity for purity assays. CBDs of the following five lactobacilli phage lysins were characterized: CL1, Jlb1, Lj965, LL-H, and ΦJB. They exhibited different bindings to 27 LAB strains and were found to bind peptidoglycan or surface polymers. Flow cytometry based on CBD binding was used to enumerate viable counts of two strains in the mixture. CL1-lys, jlb1-lys, and ΦJB-lys and their enzymatic domains (EADs) exhibited cell wall digestive activity and lytic activity against LAB. Jlb1-EAD and ΦJB-EAD were more sensitive than their respective hololysins to buffer pH and NaCl changes. The ΦJB-EAD exhibited stronger lytic activity than ΦJB-lys, possibly due to ΦJB-CBD-mediated sequestration of ΦJB-lys by cell debris. CBD multiplex assays indicate that these proteins may be useful LBP potency reagents, and the lytic activity suggests that CL1-lys, jlb1-lys, and ΦJB-lys and their EADs are good candidates for LBP purity reagent development.
Collapse
Affiliation(s)
- Robert J. Dorosky
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Stephanie L. Lola
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Haleigh A. Brown
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jeremy E. Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sheila M. Dreher-Lesnick
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Scott Stibitz
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
5
|
Ramos-Vivas J, Elexpuru-Zabaleta M, Samano ML, Barrera AP, Forbes-Hernández TY, Giampieri F, Battino M. Phages and Enzybiotics in Food Biopreservation. Molecules 2021; 26:molecules26175138. [PMID: 34500572 PMCID: PMC8433972 DOI: 10.3390/molecules26175138] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Presently, biopreservation through protective bacterial cultures and their antimicrobial products or using antibacterial compounds derived from plants are proposed as feasible strategies to maintain the long shelf-life of products. Another emerging category of food biopreservatives are bacteriophages or their antibacterial enzymes called "phage lysins" or "enzybiotics", which can be used directly as antibacterial agents due to their ability to act on the membranes of bacteria and destroy them. Bacteriophages are an alternative to antimicrobials in the fight against bacteria, mainly because they have a practically unique host range that gives them great specificity. In addition to their potential ability to specifically control strains of pathogenic bacteria, their use does not generate a negative environmental impact as in the case of antibiotics. Both phages and their enzymes can favor a reduction in antibiotic use, which is desirable given the alarming increase in resistance to antibiotics used not only in human medicine but also in veterinary medicine, agriculture, and in general all processes of manufacturing, preservation, and distribution of food. We present here an overview of the scientific background of phages and enzybiotics in the food industry, as well as food applications of these biopreservatives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
| | - María Luisa Samano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - Alina Pascual Barrera
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | | | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| |
Collapse
|
6
|
Sunthornthummas S, Doi K, Fujino Y, Rangsiruji A, Sarawaneeyaruk S, Insian K, Pringsulaka O. Genomic characterisation of Lacticaseibacillus paracasei phage ΦT25 and preliminary analysis of its derived endolysin. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Binte Muhammad Jai HS, Dam LC, Tay LS, Koh JJW, Loo HL, Kline KA, Goh BC. Engineered Lysins With Customized Lytic Activities Against Enterococci and Staphylococci. Front Microbiol 2020; 11:574739. [PMID: 33324362 PMCID: PMC7724435 DOI: 10.3389/fmicb.2020.574739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of multidrug-resistant bacteria has made minor bacterial infections incurable with many existing antibiotics. Lysins are phage-encoded peptidoglycan hydrolases that have demonstrated therapeutic potential as a novel class of antimicrobials. The modular architecture of lysins enables the functional domains – catalytic domain (CD) and cell wall binding domain (CBD) – to be shuffled to create novel lysins. The CD is classically thought to be only involved in peptidoglycan hydrolysis whereas the CBD dictates the lytic spectrum of a lysin. While there are many studies that extended the lytic spectrum of a lysin by domain swapping, few have managed to introduce species specificity in a chimeric lysin. In this work, we constructed two chimeric lysins by swapping the CBDs of two parent lysins with different lytic spectra against enterococci and staphylococci. We showed that these chimeric lysins exhibited customized lytic spectra distinct from the parent lysins. Notably, the chimeric lysin P10N-V12C, which comprises a narrow-spectrum CD fused with a broad-spectrum CBD, displayed species specificity not lysing Enterococcus faecium while targeting Enterococcus faecalis and staphylococci. Such species specificity can be attributed to the narrow-spectrum CD of the chimeric lysin. Using flow cytometry and confocal microscopy, we found that the E. faecium cells that were treated with P10N-V12C are less viable with compromised membranes yet remained morphologically intact. Our results suggest that while the CBD is a major determinant of the lytic spectrum of a lysin, the CD is also responsible in the composition of the final lytic spectrum, especially when it pertains to species-specificity.
Collapse
Affiliation(s)
- Hana Sakina Binte Muhammad Jai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Linh Chi Dam
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Lowella Servito Tay
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Jodi Jia Wei Koh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Hooi Linn Loo
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Kimberly A Kline
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Boon Chong Goh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| |
Collapse
|
8
|
Shadrin VS, Machulin AV, Dorofeeva LV, Chernyshov SV, Mikoulinskaia GV. Lysis of cells of diverse bacteria by l,d-peptidases of Escherichia coli bacteriophages RB43, RB49 and T5. J Appl Microbiol 2020; 130:1902-1912. [PMID: 33107183 DOI: 10.1111/jam.14910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 01/03/2023]
Abstract
AIMS The objective of this work was to study the antibacterial specificity and antibacterial effect of endolysins isolated from colibacteriophages RB43, RB49 and T5-as manifested on the exponential and stationary cell cultures of diverse bacteria depending on the growth stage, structure of peptidoglycan (PG) and antibiotic resistance. METHODS AND RESULTS Enzyme activity was assayed by the spectrophotometric method. Antimicrobial activity was estimated by the number of colony forming units (CFUs), with the results represented as logarithmic units. Morphological examination of bacterial cells was conducted using phase-contrast and scanning electron microscopy. The enzymes EndoT5, endolysin of bacteriophage T5, EndoRB43, endolysin of bacteriophage RB43 and EndoRB49, endolysin of bacteriophage RB49 turned out to be much less bacteriospecific than the corresponding Escherichia coli phages; they lysed bacteria of the genera Bacillus, Cellulomonas and Sporosarcina, whose PGs had different structures (A1γ, A4α and A4β) and chemical modifications (amidation). The specific lytic activity of phage enzymes was independent of the antibiotic resistance of bacterial cells and was higher when the cells were in the exponential, rather than stationary, growth phase. The analysis of morphological changes showed that the intermediate stage of the endolysin-induced lysis of bacterial cells was the formation of spheroplasts and protoplasts. CONCLUSIONS Endolysins of colibacteriophages RB49, RB43 and T5 have a wide spectrum of antibacterial action, which includes a number of diverse micro-organisms with different PG structures. SIGNIFICANCE AND IMPACT OF THE STUDY This is a study of the bacterial selectivity of enzymes degrading bacterial cell wall in relation to the chemical structure of PG. It is shown that endolysins of bacteriophages RB49 and RB43 efficiently lyse cell wall of Gram-positive bacteria of the genus Bacillus and Gram-negative bacteria of the genus Pseudomonas (including an antibiotic-resistant strain). The number of bacterial cells is reduced by 3-6 orders of magnitude, which indicates good prospects for using these enzymes in biotechnology.
Collapse
Affiliation(s)
- V S Shadrin
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - A V Machulin
- Skryabin's Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the, Russian Academy of Sciences', Pushchino, Russia
| | - L V Dorofeeva
- Skryabin's Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the, Russian Academy of Sciences', Pushchino, Russia
| | - S V Chernyshov
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - G V Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| |
Collapse
|
9
|
Love MJ, Bhandari D, Dobson RCJ, Billington C. Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care. Antibiotics (Basel) 2018; 7:E17. [PMID: 29495476 PMCID: PMC5872128 DOI: 10.3390/antibiotics7010017] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/06/2018] [Accepted: 02/23/2018] [Indexed: 01/21/2023] Open
Abstract
There is growing concern about the emergence of bacterial strains showing resistance to all classes of antibiotics commonly used in human medicine. Despite the broad range of available antibiotics, bacterial resistance has been identified for every antimicrobial drug developed to date. Alarmingly, there is also an increasing prevalence of multidrug-resistant bacterial strains, rendering some patients effectively untreatable. Therefore, there is an urgent need to develop alternatives to conventional antibiotics for use in the treatment of both humans and food-producing animals. Bacteriophage-encoded lytic enzymes (endolysins), which degrade the cell wall of the bacterial host to release progeny virions, are potential alternatives to antibiotics. Preliminary studies show that endolysins can disrupt the cell wall when applied exogenously, though this has so far proven more effective in Gram-positive bacteria compared with Gram-negative bacteria. Their potential for development is furthered by the prospect of bioengineering, and aided by the modular domain structure of many endolysins, which separates the binding and catalytic activities into distinct subunits. These subunits can be rearranged to create novel, chimeric enzymes with optimized functionality. Furthermore, there is evidence that the development of resistance to these enzymes may be more difficult compared with conventional antibiotics due to their targeting of highly conserved bonds.
Collapse
Affiliation(s)
- Michael J Love
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Dinesh Bhandari
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3052, Australia.
| | - Craig Billington
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand.
| |
Collapse
|
10
|
Borysowski J, Weber-Dabrowska B, Górski A. Bacteriophage Endolysins as a Novel Class of Antibacterial Agents. Exp Biol Med (Maywood) 2016; 231:366-77. [PMID: 16565432 DOI: 10.1177/153537020623100402] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Endolysins are double-stranded DNA bacteriophage-encoded peptidoglycan hydrolases produced in phage-infected bacterial cells toward the end of the lytic cycle. They reach the peptidoglycan through membrane lesions formed by holins and cleave it, thus, inducing lysis of the bacterial cell and enabling progeny virions to be released. Endolysins are also capable of degrading peptidoglycan when applied externally (as purified recombinant proteins) to the bacterial cell wall, which also results in a rapid lysis of the bacterial cell. The unique ability of endolysins to rapidly cleave peptidoglycan in a generally species-specific manner renders them promising potential antibacterial agents. Originally developed with a view to killing bacteria colonizing mucous membranes (with the first report published in 2001), endolysins also hold promise for the treatment of systemic infections. As potential antibacterials, endolysins possess several important features, for instance, a novel mode of action, a narrow antibacterial spectrum, activity against bacteria regardless of their antibiotic sensitivity, and a low probability of developing resistance. However, there is only one report directly comparing the activity of an endolysin with that of an antibiotic, and no general conclusions can be drawn regarding whether lysins are more effective than traditional antibiotics. The results of the first preclinical studies indicate that the most apparent potential problems associated with endolysin therapy (e.g., their immunogenicity, the release of proinflammatory components during bacteriolysis, or the development of resistance), in fact, may not seriously hinder their use. However, all data regarding the safety and therapeutic effectiveness of endolysins obtained from preclinical studies must be ultimately verified by clinical trials. This review discusses the prophylactic and therapeutic applications of endolysins, especially with respect to their potential use in human medicine. Additionally, we outline current knowledge regarding the structure and natural function of the enzymes in phage biology, including the most recent findings.
Collapse
Affiliation(s)
- Jan Borysowski
- Department of Clinical Immunology, Institute of Transplantology, the Medical University of Warsaw, 02-006 Warsaw, Poland.
| | | | | |
Collapse
|
11
|
Pérez Pulido R, Grande Burgos MJ, Gálvez A, Lucas López R. Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria. Crit Rev Biotechnol 2015; 36:851-61. [DOI: 10.3109/07388551.2015.1049935] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rubén Pérez Pulido
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Maria José Grande Burgos
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Rosario Lucas López
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
12
|
Dong Q, Wang J, Yang H, Wei C, Yu J, Zhang Y, Huang Y, Zhang XE, Wei H. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci. Microb Biotechnol 2014; 8:210-20. [PMID: 25219798 PMCID: PMC4353335 DOI: 10.1111/1751-7915.12166] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/02/2014] [Accepted: 08/13/2014] [Indexed: 01/20/2023] Open
Abstract
Developing chimeric lysins with a wide lytic spectrum would be important for treating some infections caused by multiple pathogenic bacteria. In the present work, a novel chimeric lysin (Ply187N-V12C) was constructed by fusing the catalytic domain (Ply187N) of the bacteriophage lysin Ply187 with the cell binding domain (146-314aa, V12C) of the lysin PlyV12. The results showed that the chimeric lysin Ply187N-V12C had not only lytic activity similar to Ply187N against staphylococcal strains but also extended its lytic activity to streptococci and enterococci, such as Streptococcus dysgalactiae, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis, which Ply187N could not lyse. Our work demonstrated that generating novel chimeric lysins with an extended lytic spectrum was feasible through fusing a catalytic domain with a cell-binding domain from lysins with lytic spectra across multiple genera.
Collapse
Affiliation(s)
- Qiuhua Dong
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Center for Emerging Infectious Diseases, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Characterization of AmiBA2446, a novel bacteriolytic enzyme active against Bacillus species. Appl Environ Microbiol 2013; 79:5899-906. [PMID: 23872558 DOI: 10.1128/aem.02235-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There continues to be a need for developing efficient and environmentally friendly treatments for Bacillus anthracis, the causative agent of anthrax. One emerging approach for inactivation of vegetative B. anthracis is the use of bacteriophage endolysins or lytic enzymes encoded by bacterial genomes (autolysins) with highly evolved specificity toward bacterium-specific peptidoglycan cell walls. In this work, we performed in silico analysis of the genome of Bacillus anthracis strain Ames, using a consensus binding domain amino acid sequence as a probe, and identified a novel lytic enzyme that we termed AmiBA2446. This enzyme exists as a homodimer, as determined by size exclusion studies. It possesses N-acetylmuramoyl-l-alanine amidase activity, as determined from liquid chromatography-mass spectrometry (LC-MS) analysis of muropeptides released due to the enzymatic digestion of peptidoglycan. Phylogenetic analysis suggested that AmiBA2446 was an autolysin of bacterial origin. We characterized the effects of enzyme concentration and phase of bacterial growth on bactericidal activity and observed close to a 5-log reduction in the viability of cells of Bacillus cereus 4342, a surrogate for B. anthracis. We further tested the bactericidal activity of AmiBA2446 against various Bacillus species and demonstrated significant activity against B. anthracis and B. cereus strains. We also demonstrated activity against B. anthracis spores after pretreatment with germinants. AmiBA2446 enzyme was also stable in solution, retaining its activity after 4 months of storage at room temperature.
Collapse
|
14
|
Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage {Phi}AQ113. Appl Environ Microbiol 2013; 79:4712-8. [PMID: 23728811 DOI: 10.1128/aem.00620-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism.
Collapse
|
15
|
Roach DR, Khatibi PA, Bischoff KM, Hughes SR, Donovan DM. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:20. [PMID: 23390890 PMCID: PMC3646710 DOI: 10.1186/1754-6834-6-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/11/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Reduced yields of ethanol due to bacterial contamination in fermentation cultures weaken the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predominant. Bacteriophage lytic enzymes are peptidoglycan hydrolases that can degrade the Gram positive cell wall when exposed externally and provide a novel source of antimicrobials that are highly refractory to resistance development. RESULTS The streptococcal phage LambdaSa2 (λSa2) endolysin demonstrated strong lytic activity towards 17 of 22 strains of lactobacilli, staphylococci or streptococci and maintained an optimal specific activity at pH 5.5 and in the presence of ≤ 5% ethanol (fermentation conditions) toward L. fermentum. Lactobacillus bacteriophage endolysins LysA, LysA2 and LysgaY showed exolytic activity towards 60% of the lactobacilli tested including four L. fermentum isolates from fuel ethanol fermentations. In turbidity reduction assays LysA was able to reduce optical density >75% for 50% of the sensitive strains and >50% for the remaining strains. LysA2 and LysgaY were only able to decrease cellular turbidity by <50%. Optimal specific activities were achieved for LysA, LysA2, and LysgaY at pH 5.5. The presence of ethanol (≤5%) did not reduce the lytic activity. Lysins were able to reduce both L. fermentum (BR0315-1) (λSa2 endolysin) and L. reuteri (B-14171) (LysA) contaminants in mock fermentations of corn fiber hydrolysates. CONCLUSION Bacteriophage lytic enzymes are strong candidates for application as antimicrobials to control lactic acid bacterial contamination in fuel ethanol fermentations.
Collapse
Affiliation(s)
- Dwayne R Roach
- US Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Animal & Natural Resources Institute, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Piyum A Khatibi
- US Department of Agriculture, National Center for Agricultural Utilization Research, Agricultural Research Service, Peoria, IL, 61604, USA
| | - Kenneth M Bischoff
- US Department of Agriculture, National Center for Agricultural Utilization Research, Agricultural Research Service, Peoria, IL, 61604, USA
| | - Stephen R Hughes
- US Department of Agriculture, National Center for Agricultural Utilization Research, Agricultural Research Service, Peoria, IL, 61604, USA
| | - David M Donovan
- US Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Animal & Natural Resources Institute, Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
16
|
|
17
|
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 2012; 13:699-722. [PMID: 23305359 PMCID: PMC3594737 DOI: 10.2174/138920312804871193] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/12/2012] [Accepted: 09/20/2012] [Indexed: 12/18/2022]
Abstract
The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.
Collapse
Affiliation(s)
- Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Peptidoglycan (PG) is the major structural component of the bacterial cell wall. Bacteria have autolytic PG hydrolases that allow the cell to grow and divide. A well-studied group of PG hydrolase enzymes are the bacteriophage endolysins. Endolysins are PG-degrading proteins that allow the phage to escape from the bacterial cell during the phage lytic cycle. The endolysins, when purified and exposed to PG externally, can cause "lysis from without." Numerous publications have described how this phenomenon can be used therapeutically as an effective antimicrobial against certain pathogens. Endolysins have a characteristic modular structure, often with multiple lytic and/or cell wall-binding domains (CBDs). They degrade the PG with glycosidase, amidase, endopeptidase, or lytic transglycosylase activities and have been shown to be synergistic with fellow PG hydrolases or a range of other antimicrobials. Due to the coevolution of phage and host, it is thought they are much less likely to invoke resistance. Endolysin engineering has opened a range of new applications for these proteins from food safety to environmental decontamination to more effective antimicrobials that are believed refractory to resistance development. To put phage endolysin work in a broader context, this chapter includes relevant studies of other well-characterized PG hydrolase antimicrobials.
Collapse
|
19
|
Characterization of two virulent phages of Lactobacillus plantarum. Appl Environ Microbiol 2012; 78:8719-34. [PMID: 23042172 DOI: 10.1128/aem.02565-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.
Collapse
|
20
|
LysA2, the Lactobacillus casei bacteriophage A2 lysin is an endopeptidase active on a wide spectrum of lactic acid bacteria. Appl Microbiol Biotechnol 2011; 94:101-10. [DOI: 10.1007/s00253-011-3588-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/23/2011] [Accepted: 09/15/2011] [Indexed: 01/21/2023]
|
21
|
Lytic enzyme discovery through multigenomic sequence analysis in Clostridium perfringens. Appl Microbiol Biotechnol 2010; 89:1783-95. [PMID: 21085950 DOI: 10.1007/s00253-010-2982-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/23/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
With their ability to lyse Gram-positive bacteria, phage lytic enzymes (or lysins) have received a great deal of attention as novel anti-infective agents. The number of known genes encoding these peptidoglycan hydrolases has increased markedly in recent years, due in large part to advances in DNA sequencing technology. As the genomes of more and more bacterial species/strains are sequenced, lysin-encoding open reading frames (ORFs) can be readily identified in lysogenized prophage regions. In the current study, we sought to assess lysin diversity for the medically relevant pathogen Clostridium perfringens. The sequenced genomes of nine C. perfringens strains were computationally mined for prophage lysins and lysin-like ORFs, revealing several dozen proteins of various enzymatic classes. Of these lysins, a muramidase from strain ATCC 13124 (termed PlyCM) was chosen for recombinant analysis based on its dissimilarity to previously characterized C. perfringens lysins. Following expression and purification, various biochemical properties of PlyCM were determined in vitro, including pH/salt-dependence and temperature stability. The enzyme exhibited activity at low μg/ml concentrations, a typical value for phage lysins. It was active against 23 of 24 strains of C. perfringens tested, with virtually no activity against other clostridial or non-clostridial species. Overall, PlyCM shows potential for development as an enzybiotic agent, demonstrating how expanding genomic databases can serve as rich pools for biotechnologically relevant proteins.
Collapse
|
22
|
Schmitz JE, Schuch R, Fischetti VA. Identifying active phage lysins through functional viral metagenomics. Appl Environ Microbiol 2010; 76:7181-7. [PMID: 20851985 PMCID: PMC2976241 DOI: 10.1128/aem.00732-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 09/07/2010] [Indexed: 11/20/2022] Open
Abstract
Recent metagenomic sequencing studies of uncultured viral populations have provided novel insights into the ecology of environmental bacteriophage. At the same time, viral metagenomes could also represent a potential source of recombinant proteins with biotechnological value. In order to identify such proteins, a novel two-step screening technique was devised for cloning phage lytic enzymes from uncultured viral DNA. This plasmid-based approach first involves a primary screen in which transformed Escherichia coli clones that demonstrate colony lysis following exposure to inducing agent are identified. This effect, which can be due to the expression of membrane-permeabilizing phage holins, is discerned by the development a hemolytic effect in surrounding blood agar. In a secondary step, the clones identified in the primary screen are overlaid with autoclaved Gram-negative bacteria (specifically Pseudomonas aeruginosa) to assay directly for recombinant expression of lytic enzymes, which are often encoded proximally to holins in phage genomes. As proof-of-principle, the method was applied to a viral metagenomic library constructed from mixed animal feces, and 26 actively expressed lytic enzymes were cloned. These proteins include both Gram-positive-like and Gram-negative-like enzymes, as well as several atypical lysins whose predicted structures are less common among known phage. Overall, this study represents one of the first functional screens of a viral metagenomic population, and it provides a general approach for characterizing lysins from uncultured phage.
Collapse
Affiliation(s)
- Jonathan E Schmitz
- Rockefeller University, Laboratory of Bacterial Pathogenesis and Immunology, 1230 York Ave., Box 172, New York, NY 10065, USA.
| | | | | |
Collapse
|
23
|
Slattery L, O’Callaghan J, Fitzgerald G, Beresford T, Ross R. Invited review: Lactobacillus helveticus—A thermophilic dairy starter related to gut bacteria. J Dairy Sci 2010; 93:4435-54. [DOI: 10.3168/jds.2010-3327] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/22/2010] [Indexed: 11/19/2022]
|
24
|
Mikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA, Stepnaya OA. Identification and characterization of the metal ion-dependent l-alanoyl-d-glutamate peptidase encoded by bacteriophage T5. FEBS J 2009; 276:7329-42. [DOI: 10.1111/j.1742-4658.2009.07443.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Yokoi KJ, Sugahara K, Iguchi A, Nishitani G, Ikeda M, Shimada T, Inagaki N, Yamakawa A, Taketo A, Kodaira KI. Molecular properties of the putative autolysin AtlWM encoded by Staphylococcus warneri M: Mutational and biochemical analyses of the amidase and glucosaminidase domains. Gene 2008; 416:66-76. [DOI: 10.1016/j.gene.2008.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/06/2008] [Accepted: 03/08/2008] [Indexed: 10/22/2022]
|
26
|
Abstract
A PCR protocol for detection ofLactobacillus helveticusbacteriophages was optimized. PCR was designed taking into account the sequence of thelysgene of temperate bacteriophage Φ-0303 and optimized to obtain a fragment of 222 bp using differentLb. helveticusphages from our collection. PCR was applied to total phage DNA extracted from 53 natural whey starters used for the production of Grana cheese and all gave the expected fragment. The presence of actively growing phages in the cultures was verified by traditional tests. Several PCR products of thelysgene were sequenced and aligned. The resulting sequences showed variable heterogeneity between the phages.
Collapse
|
27
|
Loessner MJ. Bacteriophage endolysins--current state of research and applications. Curr Opin Microbiol 2005; 8:480-7. [PMID: 15979390 DOI: 10.1016/j.mib.2005.06.002] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/09/2005] [Indexed: 11/27/2022]
Abstract
Endolysins are phage-encoded enzymes that break down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle. Their action is tightly regulated by holins, by membrane arrest, and by conversion from their inactive to active state. Recent research has not only revealed the unexpected diversity of these highly specific hydrolases but has also yielded insights into their modular organization and their three-dimensional structures. Their N-terminal catalytic domains are able to target almost every possible bond in the peptidoglycan network, and their corresponding C-terminal cell wall binding domains target the enzymes to their substrate. Owing to their specificity and high activity, endolysins have been employed for various in vitro and in vivo aims, in food science, in microbial diagnostics, and for treatment of experimental infections. Clearly, phage endolysins represent great tools for use in molecular biology, biotechnology and in medicine, and we are just beginning to tap this potential.
Collapse
Affiliation(s)
- Martin J Loessner
- Institute of Food Science and Nutrition, Swiss Federal Institute of Technology (ETH), Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland.
| |
Collapse
|
28
|
|
29
|
Abstract
Bacteriophages are measurable components of the natural microflora in the food production continuum from the farm to the retail outlet. Phages are remarkably stable in these environments and are readily recovered from soil, sewage, water, farm and processing plant effluents, feces, and retail foods. Purified high-titer phage lysates have been used for the species-specific control of bacteria during the pre- and postharvest phases of food production and storage. For example, the inhibition of the phytopathogens Erwinia amylovara and Xanthomonas campestris has reduced the incidence of diseases such as fire blight in apples and bacterial spot of tomato and peaches. Research on preslaughter treatment of food animals has demonstrated phage control of salmonellosis in chickens, enteropathogenic Escherichia coli infections in calves, piglets, and lambs, and E. coli O157:H7 shedding by beef cattle. Phages have also been applied to control the growth of pathogens such as Listeria monocytogenes, Salmonella, and Campylobacter jejuni in a variety of refrigerated foods such as fruit, dairy products, poultry, and red meats. Phage control of spoilage bacteria (e.g., Pseudomonas spp. and Brochothrix thermosphacta) in raw chilled meats can result in a significant extension of storage life. Phage biocontrol strategies for food preservation have the advantages of being self-perpetuating, highly discriminatory, natural, and cost-effective. Some of the drawbacks of biopreservation with phages are a limited host range, the requirement for threshold numbers of the bacterial targets, phage-resistant mutants, and the potential for the transduction of undesirable characteristics from one bacterial strain to another. Most research to date has involved experimentally infected plants and animals or artificially inoculated foods. This technology must be transferred to the field and to commercial environments to assess the possibility of controlling natural contaminants under more realistic production and processing conditions.
Collapse
Affiliation(s)
- G Gordon Greer
- Agriculture and Agri-Food Canada, Lacombe Research Centre, Lacombe, Alberta, Canada T4L 1W1.
| |
Collapse
|
30
|
Turner MS, Hafner LM, Walsh T, Giffard PM. Identification, characterisation and specificity of a cell wall lytic enzyme from Lactobacillus fermentumBR11. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09730.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|