1
|
Abedi MH, Yao MS, Mittelstein DR, Bar-Zion A, Swift MB, Lee-Gosselin A, Barturen-Larrea P, Buss MT, Shapiro MG. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat Commun 2022; 13:1585. [PMID: 35332124 PMCID: PMC8948203 DOI: 10.1038/s41467-022-29065-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022] Open
Abstract
Rapid advances in synthetic biology are driving the development of genetically engineered microbes as therapeutic agents for a multitude of human diseases, including cancer. The immunosuppressive microenvironment of solid tumors, in particular, creates a favorable niche for systemically administered bacteria to engraft and release therapeutic payloads. However, such payloads can be harmful if released outside the tumor in healthy tissues where the bacteria also engraft in smaller numbers. To address this limitation, we engineer therapeutic bacteria to be controlled by focused ultrasound, a form of energy that can be applied noninvasively to specific anatomical sites such as solid tumors. This control is provided by a temperature-actuated genetic state switch that produces lasting therapeutic output in response to briefly applied focused ultrasound hyperthermia. Using a combination of rational design and high-throughput screening we optimize the switching circuits of engineered cells and connect their activity to the release of immune checkpoint inhibitors. In a clinically relevant cancer model, ultrasound-activated therapeutic microbes successfully turn on in situ and induce a marked suppression of tumor growth. This technology provides a critical tool for the spatiotemporal targeting of potent bacterial therapeutics in a variety of biological and clinical scenarios.
Collapse
Affiliation(s)
- Mohamad H Abedi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Biochemistry, Institute for Protein Design and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Michael S Yao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David R Mittelstein
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Margaret B Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Pierina Barturen-Larrea
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Marjorie T Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Yang LH, Qiao B, Xu QM, Liu S, Yuan Y, Cheng JS. Biodegradation of sulfonamide antibiotics through the heterologous expression of laccases from bacteria and investigation of their potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125815. [PMID: 34492781 DOI: 10.1016/j.jhazmat.2021.125815] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, seven laccase genes from different bacteria were linked with the signal peptides PelB, Lpp or Ompa for heterologous expression in E. coli. The recombinant strains were applied for the removal of sulfadiazine (SDZ), sulfamethazine (SMZ), and sulfamethoxazole (SMX). The results obtained for different signal peptides did not provide insights into the removal mechanism. The removal ratios of SDZ, SMZ, and SMX obtained with the recombinant strain 6#P at 60 h were around 92.0%, 89.0%, and 88.0%, respectively. The degradation pathways of sulfonamides have been proposed, including SO2 elimination, hydroxylation, oxidation, pyrimidine ring cleavage, and N-S bond cleavage. Different mediators participate in the degradation of antibiotics through different mechanisms, and different antibiotics have different responses to the same mediator. The addition of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) slightly promoted the removal of sulfonamides by most recombinant strains with different signal peptides, especially for the recombinant strain 2#O. The removal of sulfonamides by 1-hydroxybenzotriazole (HBT) varied with the recombinant strains. Syringaldehyde (SA) had a slight inhibitory effect on the removal of sulfonamides, with the most significant effect on strains 7#L and 7#O.
Collapse
Affiliation(s)
- Li-Hua Yang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, PR China.
| | - Song Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Ye Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
3
|
Zhang W, Lu J, Zhang S, Liu L, Pang X, Lv J. Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: Expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microb Cell Fact 2018; 17:50. [PMID: 29592803 PMCID: PMC5872382 DOI: 10.1186/s12934-018-0894-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thermostable lipases from microbial sources have been substantially overexpressed in E. coli, however, these enzymes are often produced with low-level enzymatic activity and mainly in the form of inclusion bodies. Several studies have reported that the secretory production of recombinant proteins fused their N-terminus to a signal peptide has been employed to resolve the problem. In general, the feasibility of this approach largely depends on the secretory pathway of signal peptide and the type of target protein to be secreted. This study was performed to compare and optimize signal peptides for efficient secretion of thermostable lipase lipBJ10 from Pseudomonas fluorescens BJ-10. Meanwhile, a comparative study between this method and cytoplasmic secretion was implemented in secreting soluble and active lipases. RESULTS Fusion expression using six signal peptides, i.e., PelB and five native E. coli signal peptides, as fusion partners produced more soluble and functional recombinant lipBJ10 than non-fusion expression. Recombinant lipBJ10, fused to these six diverse signal peptides, was secreted into the periplasm in E. coli. The total lipase activity in all cases of fusion expression was higher than those in non-fusion expression. The relative activity peaked when lipBJ10 was fused to DsbA, yielding a value 73.3 times greater than that of the non-fusion protein. When DsbA was used as the fusion partner, the highest activity (265.41 U/ml) was achieved with the least formation of inclusion bodies; the other four E. coli signal peptides, to some extent, led to low activity and insoluble inclusion bodies. Therefore, DsbA is the optimal signal peptide partner to fuse with lipBJ10 to efficiently produce soluble and functional protein. CONCLUSION We found that fusing to these signal peptides, especially that of DsbA, can significantly decrease the formation of inclusion bodies and enhance the function and solubility of lipBJ10 compared to non-fusion lipBJ10. Our results reported here can provide a reference for the high-level expression of other lipases with respect to a possible industrial application.
Collapse
Affiliation(s)
- Weiqing Zhang
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Jing Lu
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Shuwen Zhang
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Lu Liu
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xiaoyang Pang
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Jiaping Lv
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
4
|
Thomson NM, Shirai T, Chiapello M, Kondo A, Mukherjee KJ, Sivaniah E, Numata K, Summers DK. Efficient 3-Hydroxybutyrate Production by QuiescentEscherichia coliMicrobial Cell Factories is Facilitated by Indole-Induced Proteomic and Metabolomic Changes. Biotechnol J 2018; 13:e1700571. [DOI: 10.1002/biot.201700571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/09/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Nicholas M. Thomson
- Enzyme Research Team; RIKEN Centre for Sustainable Resource Science; Wako-shi 351-0198 Japan
- Department of Genetics; University of Cambridge; Cambridge CB2 3EH UK
| | - Tomokazu Shirai
- Cell Factory Research Team; RIKEN Centre for Sustainable Resource Science; Yokohama 230-0045 Japan
| | - Marco Chiapello
- Cambridge Centre for Proteomics; University of Cambridge; Cambridge CB2 1QR UK
| | - Akihiko Kondo
- Cell Factory Research Team; RIKEN Centre for Sustainable Resource Science; Yokohama 230-0045 Japan
| | | | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Kyoto 606-8501 Japan
| | - Keiji Numata
- Enzyme Research Team; RIKEN Centre for Sustainable Resource Science; Wako-shi 351-0198 Japan
| | - David K. Summers
- Department of Genetics; University of Cambridge; Cambridge CB2 3EH UK
| |
Collapse
|
5
|
Mesgari-Shadi A, Sarrafzadeh MH. Osmotic conditions could promote scFv antibody production in the Escherichia coli HB2151. BIOIMPACTS : BI 2017; 7:199-206. [PMID: 29159147 PMCID: PMC5684511 DOI: 10.15171/bi.2017.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 01/21/2023]
Abstract
Introduction: Single chain variable fragment (scFv) antibodies are reduced forms of the whole antibodies that could be regarded as an alternative tool for diagnostic and therapeutic purposes. The optimization of processes and environmental conditions is necessary to increase the production yields and enhance the productivity. This can result in a cost-effective process and respond to the high demand for these antibodies. Methods: In this research, physical and chemical factors influencing the batch fermentation was investigated in 50 mL batch tubes using minimum media to find the optimum conditions for production of a single chain variable fragment antibody in the Escherichia coli HB2151. Experimental designs were used to screen the effective parameters and to optimize the main factors. Results: Arabinose was used instead of IPTG as a cheaper and nontoxic inducer and its optimum concentration was determined 0.1% (w/w). Induction duration time and filling volume fraction were set on the relatively better states 24 hours and 1/10 respectively. Regarding our previous study, stationary phase of the cell growth was selected as induction start time that showed higher specific scFv production yields (YP/X) in the minimum media. Finally, a statistical experimental design was extended to a central composite design (CCD) and analysis was performed based on sucrose and sorbitol concentrations producing osmotic condition for induction. The optimum region in the contour plot for the periplasmic scFv production was an osmotic circle area with total sugar molarity 0.8 to 0.9. Conclusion: Sugars such as sucrose and sorbitol producing osmotic conditions could lead to periplasmic scFv concentrations up to 2.85 mg/L of culture media improving scFv concentration near to five times of the average of the screening step (0.59 mg/L).
Collapse
Affiliation(s)
- Ali Mesgari-Shadi
- Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
6
|
Mahalik S, Sharma AK, Jain P, Mukherjee KJ. Identifying genomic targets for protein over-expression by "omics" analysis of Quiescent Escherichia coli cultures. Microb Cell Fact 2017; 16:133. [PMID: 28754100 PMCID: PMC5534100 DOI: 10.1186/s12934-017-0744-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background A cellular stress response is triggered upon induction of recombinant protein expression which feedback inhibits both growth as well as protein synthesis. In order to separate these two effects, it was decided to study “quiescent cultures” which continue to be metabolically active and express recombinant proteins even after growth cessation. The idea was to identify and up-regulate genes which are responsible for protein synthesis in the absence of growth. This would ensure that, even if growth were adversely affected post induction, there would be no attendant reduction in the protein expression capability of the cells. This strategy allowed us to design host strains, which did not grow better post induction but had significantly higher levels of protein expression. Results A quiescent Escherichia coli culture, which is able to sustain recombinant protein expression in the absence of growth, was analyzed by transcriptomic and proteomic profiling. Many genes involved in carbon utilization, biosynthesis of building blocks and stress protection were found to be up-regulated in the quiescent phase. Analysis of the global regulators showed that fis, which tends to get down-regulated as the cells enter stationary phase, remained up-regulated throughout the non-growing quiescent phase. The downstream genes regulated by fis like carB, fadB, nrfA, narH and queA were also up-regulated in the quiescent phase which could be the reason behind the higher metabolic activity and protein expression ability of these non-growing cells. To test this hypothesis, we co-expressed fis in a control culture expressing recombinant l-asparaginase and observed a significantly higher buildup of l-asparaginase in the culture medium. Conclusions This work represents an important breakthrough in the design of a superior host platform where a gene not directly associated with protein synthesis was used to generate a phenotype having higher protein expression capability. Many alternative gene targets were also identified which may have beneficial effects on expression ability. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0744-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shubhashree Mahalik
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashish Kumar Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Jain
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
7
|
Production of Ca2+-Independent and Acidstable Recombinant α-Amylase of Bacillus acidicola Extracellularly and its Applicability in Generating Maltooligosaccharides. Mol Biotechnol 2016; 58:707-717. [DOI: 10.1007/s12033-016-9970-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Liu HL, Lin WF, Hu WC, Lee YA, Chang YC. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses. Appl Environ Microbiol 2015; 81:6839-49. [PMID: 26209665 PMCID: PMC4561679 DOI: 10.1128/aem.01198-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/19/2015] [Indexed: 11/20/2022] Open
Abstract
Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli.
Collapse
Affiliation(s)
- Han-Lin Liu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Wei-Fang Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Hu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Yung-An Lee
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ya-Chun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Chen CC, Walia R, Mukherjee KJ, Mahalik S, Summers DK. Indole generates quiescent and metabolically active Escherichia coli cultures. Biotechnol J 2015; 10:636-46. [PMID: 25594833 DOI: 10.1002/biot.201400381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 12/12/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022]
Abstract
An inherent problem with bacterial cell factories used to produce recombinant proteins or metabolites is that resources are channeled into unwanted biomass as well as product. Over several years, attempts have been made to increase efficiency by unlinking biomass and product generation. One example was the quiescent cell (Q-Cell) expression system that generated non-growing but metabolically active Escherichia coli by over-expressing a regulatory RNA (Rcd) in a defined genetic background. Although effective at increasing the efficiency with which resources are converted to product, the technical complexity of the Rcd-based Q-Cell system limited its use. We describe here an alternative method for generating Q-Cells by the direct addition of indole, or related indole derivatives, to the culture medium of an E. coli strain carrying defined mutations in the hns gene. This simple and effective approach is shown to be functional in both shake-flask and fermenter culture. The cells remain metabolically active and analysis of their performance in the fermenter suggests that they may be particularly suitable for the production of cellular metabolites.
Collapse
Affiliation(s)
- Chih-Chin Chen
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Mahalik S, Sharma AK, Mukherjee KJ. Genome engineering for improved recombinant protein expression in Escherichia coli. Microb Cell Fact 2014; 13:177. [PMID: 25523647 PMCID: PMC4300154 DOI: 10.1186/s12934-014-0177-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
A metabolic engineering perspective which views recombinant protein
expression as a multistep pathway allows us to move beyond vector design and
identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level
and the supply of precursors in the form of energy, amino acids and nucleotides.
Further recombinant protein production triggers a global cellular stress response
which feedback inhibits both growth and product formation. Countering this requires
a system level analysis followed by a rational host cell engineering to sustain
expression for longer time periods. Another strategy to increase protein yields
could be to divert the metabolic flux away from biomass formation and towards
recombinant protein production. This would require a growth stoppage mechanism which
does not affect the metabolic activity of the cell or the transcriptional or
translational efficiencies. Finally cells have to be designed for efficient export
to prevent buildup of proteins inside the cytoplasm and also simplify downstream
processing. The rational and the high throughput strategies that can be used for the
construction of such improved host cell platforms for recombinant protein expression
is the focus of this review.
Collapse
Affiliation(s)
- Shubhashree Mahalik
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ashish K Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Krishna J Mukherjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Kumada Y. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1960-1969. [PMID: 25119345 DOI: 10.1016/j.bbapap.2014.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/26/2022]
Abstract
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
12
|
Million-Weaver S, Camps M. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked? Plasmid 2014; 75:27-36. [PMID: 25107339 DOI: 10.1016/j.plasmid.2014.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022]
Abstract
Plasmids are self-replicating pieces of DNA typically bearing non-essential genes. Given that plasmids represent a metabolic burden to the host, mechanisms ensuring plasmid transmission to daughter cells are critical for their stable maintenance in the population. Here we review these mechanisms, focusing on two active partition strategies common to low-copy plasmids: par systems type I and type II. Both involve three components: an adaptor protein, a motor protein, and a centromere, which is a sequence area in the plasmid that is recognized by the adaptor protein. The centromere-bound adaptor nucleates polymerization of the motor, leading to filament formation, which can pull plasmids apart (par I) or push them towards opposite poles of the cell (par II). No such active partition mechanisms are known to occur in high copy number plasmids. In this case, vertical transmission is generally considered stochastic, due to the random distribution of plasmids in the cytoplasm. We discuss conceptual and experimental lines of evidence questioning the random distribution model and posit the existence of a mechanism for segregation in high copy number plasmids that moves plasmids to cell poles to facilitate transmission to daughter cells. This mechanism would involve chromosomally-encoded proteins and the plasmid origin of replication. Modulation of this proposed mechanism of segregation could provide new ways to enhance plasmid stability in the context of recombinant gene expression, which is limiting for large-scale protein production and for bioremediation.
Collapse
Affiliation(s)
- Samuel Million-Weaver
- Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-77352, United States
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| |
Collapse
|
13
|
Kurasawa JH, Shestopal SA, Jha NK, Ovanesov MV, Lee TK, Sarafanov AG. Insect cell-based expression and characterization of a single-chain variable antibody fragment directed against blood coagulation factor VIII. Protein Expr Purif 2013; 88:201-6. [PMID: 23306063 DOI: 10.1016/j.pep.2012.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/20/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
Abstract
A recombinant single-chain variable antibody fragment (scFv) KM33 was previously described as a ligand that can inhibit the function of blood coagulation factor VIII (FVIII). This scFv was previously derived from an individual with anti-FVIII antibodies manifested in FVIII functional deficiency (Hemophilia A) and expressed in bacteria. In the present work, we describe an alternative approach for fast and easy production of KM33 in insect cells (Spodoptera frugiperda). The KM33 gene was codon-optimized and expressed in secreted form using a baculovirus system. The protein was isolated using metal-affinity and size-exclusion chromatography to purity of about 96% and yield of 0.4-1.2 mg per 120 mL of culture, based on several independent expression experiments. In a binding assay using surface plasmon resonance, the insect cell-derived KM33 (iKM33) was qualified as a high-affinity ligand for FVIII. Epitope specificity of iKM33 on FVIII (C1 domain) was confirmed by testing the binding with a relevant mutant of FVIII. In several FVIII functional tests (factor Xa generation, APTT clotting, thrombin generation and video microscopy clot growth assays), iKM33 strongly inhibited FVIII activity in accordance with the clinical effect of the parental antibody. Therefore, the expressed protein was concluded to be fully functional and applicable in various assays with FVIII.
Collapse
Affiliation(s)
- James H Kurasawa
- Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ghosh C, Gupta R, Mukherjee KJ. An inverse metabolic engineering approach for the design of an improved host platform for over-expression of recombinant proteins in Escherichia coli. Microb Cell Fact 2012; 11:93. [PMID: 22759404 PMCID: PMC3537655 DOI: 10.1186/1475-2859-11-93] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A useful goal for metabolic engineering would be to generate non-growing but metabolically active quiescent cells which would divert the metabolic fluxes towards product formation rather than growth. However, for products like recombinant proteins, which are intricately coupled to the growth process it is difficult to identify the genes that need to be knocked-out/knocked-in to get this desired phenotype. To circumvent this we adopted an inverse metabolic engineering strategy which would screen for the desired phenotype and thus help in the identification of genetic targets which need to be modified to get overproducers of recombinant protein. Such quiescent cells would obviate the need for high cell density cultures and increase the operational life span of bioprocesses. RESULTS A novel strategy for generating a library, consisting of randomly down regulated metabolic pathways in E. coli was designed by cloning small genomic DNA fragments in expression vectors. Some of these DNA fragments got inserted in the reverse orientation thereby generating anti-sense RNA upon induction. These anti-sense fragments would hybridize to the sense mRNA of specific genes leading to gene 'silencing'. This library was first screened for slow growth phenotype and subsequently for enhanced over-expression ability. Using Green Fluorescent Protein (GFP) as a reporter protein on second plasmid, we were able to identify metabolic blocks which led to significant increase in expression levels. Thus down-regulating the ribB gene (3, 4 dihydroxy-2-butanone-4-phosphate synthase) led to a 7 fold increase in specific product yields while down regulating the gene kdpD (histidine kinase) led to 3.2 fold increase in specific yields. CONCLUSION We have designed a high throughput screening approach which is a useful tool in the repertoire of reverse metabolic engineering strategies for the generation of improved hosts for recombinant protein expression.
Collapse
Affiliation(s)
- Chaitali Ghosh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
15
|
Huber R, Roth S, Rahmen N, Büchs J. Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation. BMC Biotechnol 2011; 11:22. [PMID: 21414195 PMCID: PMC3068942 DOI: 10.1186/1472-6750-11-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 03/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments. RESULTS We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system E.coli BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the E.coli cells via a phosphate limitation. CONCLUSIONS The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant E.coli-strains.
Collapse
Affiliation(s)
- Robert Huber
- RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany.
| | | | | | | |
Collapse
|
16
|
Valdez-Cruz NA, Caspeta L, Pérez NO, Ramírez OT, Trujillo-Roldán MA. Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb Cell Fact 2010; 9:18. [PMID: 20298615 PMCID: PMC2848208 DOI: 10.1186/1475-2859-9-18] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
The temperature inducible expression system, based on the pL and/or pR phage lambda promoters regulated by the thermolabile cI857 repressor has been widely use to produce recombinant proteins in prokaryotic cells. In this expression system, induction of heterologous protein is achieved by increasing the culture temperature, generally above 37 degrees C. Concomitant to the overexpression of heterologous protein, the increase in temperature also causes a variety of complex stress responses. Many studies have reported the use of such temperature inducible expression system, however only few discuss the simultaneous stress effects caused by recombinant protein production and the up-shift in temperature. Understanding the integral effect of such responses should be useful to develop improved strategies for high yield protein production and recovery. Here, we describe the current status of the heat inducible expression system based on the pL and/or pR lambda phage promoters, focusing on recent developments on expression vehicles, the stress responses at the molecular and physiological level that occur after heat induction, and bioprocessing factors that affect protein overexpression, including culture operation variables and induction strategies.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Unidad de Bioprocesos, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México
| | | | | | | | | |
Collapse
|
17
|
Zhang H, Li Z, Qian Y, Zhang Q, Du P, Gan R, Ye Q. Cultivation of recombinant Escherichia coli for secretory production of human epidermal growth factor under control of PL promoter. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Miller KD, Weaver-Feldhaus J, Gray SA, Siegel RW, Feldhaus MJ. Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Protein Expr Purif 2006; 42:255-67. [PMID: 15946857 DOI: 10.1016/j.pep.2005.04.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/21/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
Single chain (scFv) antibodies are used as affinity reagents for diagnostics, therapeutics, and proteomic analyses. The antibody discovery platform we use to identify novel antigen binders involves discovery, characterization, and production. The discovery and characterization components have previously been characterized but in order to fully utilize the capabilities of affinity reagents from our yeast surface display library, efforts were focused on developing a production component to obtain purified, soluble, and active scFvs. Instead of optimizing conditions to achieve maximum yield, efforts were focused on using a system that could quickly and easily produce and process hundreds of scFv antibodies. Heterologous protein expression in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli were evaluated for their ability to rapidly, efficaciously, and consistently produce scFv antibodies for use in downstream proteomic applications. Following purification, the binding activity of several scFv antibodies were quantified using a novel Biacore assay. All three systems produced soluble scFv antibodies which ranged in activity from 0 to 99%. scFv antibody yields from Saccharomyces, Pichia, and E. coli were 1.5-4.2, 0.4-7.3, and 0.63-16.4 mgL(-1) culture, respectively. For our purposes, expression in E. coli proved to be the quickest and most consistent way to obtain and characterize purified scFv for downstream applications. The E. coli expression system was subsequently used to study three scFv variants engineered to determine structure-function relationships.
Collapse
Affiliation(s)
- Keith D Miller
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
The synthesis of increasingly complex unnatural networks embedded in living matter is an emerging theme in synthetic biology. Synthetic networks have allowed the creation of organisms endowed with toggle switches, logic gates, pattern-forming systems, oscillators, cellular sensors, new modes of gene regulation and expanded genetic codes. A common challenge of this work is the addition of specific new functions to complex living organisms. This requires spatial and temporal control of molecular interactions and fluxes to achieve the desired outcomes. Here we review recent successes in this emerging field and discuss strategies for addressing the challenges of increasing network complexity.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
20
|
Mergulhão FJM, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli. Biotechnol Adv 2005; 23:177-202. [PMID: 15763404 DOI: 10.1016/j.biotechadv.2004.11.003] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/23/2004] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
The secretory production of recombinant proteins by the Gram-negative bacterium Escherichia coli has several advantages over intracellular production as inclusion bodies. In most cases, targeting protein to the periplasmic space or to the culture medium facilitates downstream processing, folding, and in vivo stability, enabling the production of soluble and biologically active proteins at a reduced process cost. This review presents several strategies that can be used for recombinant protein secretion in E. coli and discusses their advantages and limitations depending on the characteristics of the target protein to be produced.
Collapse
Affiliation(s)
- F J M Mergulhão
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
| | | | | |
Collapse
|
21
|
Khushoo A, Pal Y, Mukherjee KJ. Optimization of extracellular production of recombinant asparaginase in Escherichia coli in shake-flask and bioreactor. Appl Microbiol Biotechnol 2005; 68:189-97. [PMID: 15660216 DOI: 10.1007/s00253-004-1867-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 12/03/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
Various host-vector combinations were tested to maximize the extracellular production of recombinant asparaginase in Escherichia coli. Expression of recombinant asparaginase fused to pelB leader sequence under the inducible T7lac promoter in BLR (DE3) host cells resulted in optimum extracellular production in shake-flasks. Fed-batch studies were carried out using this recombinant strain and an exponential feeding strategy was used to maintain a specific growth rate of 0.3 h(-1). To check the effect of the time of induction on expression, cultures were induced with 1 mM isopropyl-beta-D-thiogalactopyranoside at varying cell optical densities (OD(600): 33, 60, 90, 135). Although the specific product formation rates declined with increasing OD of induction, a maximum volumetric activity of 8.7 x 10(5) units l(-1), corresponding to approximately 5.24 g l(-1) of recombinant asparaginase, was obtained when induction was done at an OD(600) of 90. The recombinant protein was purified directly from the culture medium, using a rapid two-step purification strategy, which resulted in a recovery of approximately 70% and a specific activity of approximately 80% of that of the native enzyme.
Collapse
Affiliation(s)
- Amardeep Khushoo
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|