1
|
Liu X, Tian C, Xiong D. A putative elicitor CcHE1 from Cytospora chrysosperma enhances plant resistance to phytopathogenic fungi. PEST MANAGEMENT SCIENCE 2025. [PMID: 40357689 DOI: 10.1002/ps.8900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Plant pathogens secrete a large number of effectors to host cells during the infection processes, which will manipulate plant immunity and promote fungal infection. Contrarily, some of the effectors can be recognized by the host plants, and then activate the immunity reactions. Therefore, unveiling the critical roles of effectors during the pathogen-plant interactions will benefit disease control. RESULTS In this study, we screened and identified a candidate effector, CcHE1, from Cytospora chrysosperma, the main agent of wood canker disease and causes serious loss annually in China. Transient expression of CcHE1 in N. benthamiana leaves showed that it triggered plant cell death in a dose-dependent manner. Subsequently, we found that infiltration injection of 5 μM CcHE1 into N. benthamiana and poplar leaves could not cause cell necrosis but triggered strong defense responses, including reactive oxygen species accumulation, callose deposition, and up-regulated expression of defense-related genes, and NbBAK1 and NbSOBIR1 are needed for plant defense response induced by CcHE1. Importantly, the CcHE1 could enhance the plant resistance to several tested pathogenic fungal species such as Botrytis cinerea, Colletotrichum gloeosporioides, C. chrysosperma, Botryosphaeria dothidea and Cryphonectria parasitica, but had no antifungal activity. Remarkably, deletion of CcHE1 did not affect the growth and pathogenicity of C. chrysosperma. CONCLUSION Our results found a putative elicitor CcHE1 which can induce plant immunity, and therefore improve plant broad-spectrum disease resistance. These results provide a new insight into disease control. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinru Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Snoj T, Lukan T, Gruden K, Anderluh G. Interaction of an Oomycete Nep1-like Cytolysin with Natural and Plant Cell-Mimicking Membranes. J Membr Biol 2024:10.1007/s00232-024-00330-3. [PMID: 39692881 DOI: 10.1007/s00232-024-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Plants are attacked by various pathogens that secrete a variety of effectors to damage host cells and facilitate infection. One of the largest and so far understudied microbial protein families of effectors is necrosis- and ethylene-inducing peptide-1-like proteins (NLPs), which are involved in important plant diseases. Many NLPs act as cytolytic toxins that cause cell death and tissue necrosis by disrupting the plant's plasma membrane. Their mechanism of action is unique and leads to the formation of small, transient membrane ruptures. Here, we capture the interaction of the cytotoxic model NLP from the oomycete Pythium aphanidermatum, NLPPya, with plant cell-mimicking membranes of giant unilamellar vesicles (GUVs) and tobacco protoplasts using confocal fluorescence microscopy. We show that the permeabilization of GUVs by NLPPya is concentration- and time-dependent, confirm the small size of the pores by observing the inability of NLPPya monomers to pass through them, image the morphological changes of GUVs at higher concentrations of NLPPya and confirm its oligomerization on the membrane of GUVs. In addition, NLPPya bound to plasma membranes of protoplasts, which showed varying responses. Our results provide new insights into the interaction of NLPPya with model lipid membranes containing plant-derived sphingolipids.
Collapse
Affiliation(s)
- Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Graduate School of Biosciences, Biotehnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Qiu P, Li J, Zhang L, Chen K, Shao J, Zheng B, Yuan H, Qi J, Yue L, Hu Q, Ming Y, Liu S, Long L, Gu J, Zhang X, Lindsey K, Gao W, Wu H, Zhu L. Polyethyleneimine-coated MXene quantum dots improve cotton tolerance to Verticillium dahliae by maintaining ROS homeostasis. Nat Commun 2023; 14:7392. [PMID: 37968319 PMCID: PMC10651998 DOI: 10.1038/s41467-023-43192-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production.
Collapse
Affiliation(s)
- Ping Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiayue Li
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jianmin Shao
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Baoxin Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hang Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jie Qi
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Yue
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jiangjiang Gu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- School of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China.
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Zhang G, Meng Z, Ge H, Yuan J, Qiang S, Jiang P, Ma D. Investigating Verticillium wilt occurrence in cotton and its risk management by the direct return of cotton plants infected with Verticillium dahliae to the field. FRONTIERS IN PLANT SCIENCE 2023; 14:1220921. [PMID: 38023919 PMCID: PMC10654977 DOI: 10.3389/fpls.2023.1220921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Verticillium wilt is one of the most crucial diseases caused by Verticillium dahliae that threatens the cotton industry. Statistical results showed that the return of cotton plants infected with V. dahliae to the field might be an essential cause of the continuous aggravation of cotton Verticillium wilt. The correlation among the cotton plants infected with V. dahliae returning to the field, the occurrence of Verticillium wilt, and the number of microsclerotia in rhizosphere soil need further investigation. A potted experiment was carried out to explore the effects of the direct return of cotton plants infected with Verticillium dahliae to the field on the subsequent growth and Verticillium wilt occurrence in cotton. As a risk response plan, we investigated the feasibility of returning dung-sand (i.e., insect excreta) to the field, the dung-sand was from the larvae of Protaetia brevitarsis (Coleoptera: Cetoniidea) that were fed with the V. dahliae-infected cotton plants. The results demonstrated that the return of the entire cotton plants to the field presented a promotional effect on the growth and development of cotton, whereas the return of a single root stubble or cotton stalks had an inhibitive effect. The return of cotton stalks and root stubble infected with V. dahliae increased the risk and degree of Verticillium wilt occurrence. The disease index of Verticillium wilt occurrence in cotton was positively correlated with the number of microsclerotia in the rhizosphere soil. The disease index increased by 20.00%, and the number of soil microsclerotia increased by 8.37 fold in the treatment of returning root stubble infected with V. dahliae to the field. No Verticillium wilt microsclerotia were detected in the feed prepared from cotton stalks and root stubble fermented for more than 5 days or in the transformed dung-sand. There was no risk of inoculation with Verticillium wilt microsclerotia when the dung-sand was returned to the field. The indirect return of cotton plants infected with V. dahliae to the field by microorganism-insect systems is worthy of further exploration plan of the green prevention and control for Verticillium wilt and the sustainable development of the cotton industry.
Collapse
Affiliation(s)
- Guangjie Zhang
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of the Pest Monitoring and Safety Control on Crop and Forest, Xinjiang Agricultural University, Urumqi, China
| | - Zhuo Meng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of the Pest Monitoring and Safety Control on Crop and Forest, Xinjiang Agricultural University, Urumqi, China
| | - Hao Ge
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of the Pest Monitoring and Safety Control on Crop and Forest, Xinjiang Agricultural University, Urumqi, China
| | - Jiali Yuan
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of the Pest Monitoring and Safety Control on Crop and Forest, Xinjiang Agricultural University, Urumqi, China
| | - Song Qiang
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of the Pest Monitoring and Safety Control on Crop and Forest, Xinjiang Agricultural University, Urumqi, China
| | - Ping’an Jiang
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
| | - Deying Ma
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of the Pest Monitoring and Safety Control on Crop and Forest, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
5
|
Wang D, Zhao Z, Long Y, Fan R. Protein Kinase C Is Involved in Vegetative Development, Stress Response and Pathogenicity in Verticillium dahliae. Int J Mol Sci 2023; 24:14266. [PMID: 37762573 PMCID: PMC10531995 DOI: 10.3390/ijms241814266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Potato Verticillium wilt, caused by Verticillium dahliae, is a serious soil-borne vascular disease, which restricts the sustainable development of the potato industry, and the pathogenic mechanism of the fungus is complex. Therefore, it is of great significance to explore the important pathogenic factors of V. dahliae to expand the understanding of its pathology. Protein kinase C (PKC) gene is located in the Ca2+ signaling pathway, which is highly conserved in filamentous fungi and involved in the regulation of a variety of biological processes. In the current study, the PKC gene in V. dahliae (VdPKC) was characterized, and its effects on the fungal pathogenicity and tolerance to fungicide stress were further studied. The results showed that the VdPKC positively regulated the growth and development, conidial germination, and production of V. dahliae, which was necessary for the fungus to achieve pathogenicity. It also affected the formation of melanin and microsclerotia and changed the adaptability of V. dahliae to different environmental stresses. In addition, VdPKC altered the tolerance of V. dahliae to different fungicides, which may be a potential target for polyoxin. Therefore, our results strongly suggest that VdPKC gene is necessary for the vegetative growth, stress response, and pathogenicity of V. dahliae.
Collapse
Affiliation(s)
| | | | | | - Rong Fan
- College of Agriculture, Guizhou University, Guiyang 550025, China; (D.W.); (Z.Z.); (Y.L.)
| |
Collapse
|
6
|
Liu T, Deng S, Zhang C, Yang X, Shi L, Xu F, Wang S, Wang C. Brassinosteroid signaling regulates phosphate starvation-induced malate secretion in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 64:836-842. [PMID: 36579777 DOI: 10.1111/jipb.13241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/01/2022] [Indexed: 05/26/2023]
Abstract
Inorganic phosphate (Pi) is often limited in soils due to precipitation with iron (Fe) and aluminum (Al). To scavenge heterogeneously distributed phosphorus (P) resources, plants have evolved a local Pi signaling pathway that induces malate secretion to solubilize the occluded Fe-P or Al-P oxides. In this study, we show that Pi limitation impaired brassinosteroid signaling and downregulated BRASSINAZOLE-RESISTANT 1 (BZR1) expression in Arabidopsis thaliana. Exogenous 2,4-epibrassinolide treatment or constitutive activation of BZR1 (in the bzr1-D mutant) significantly reduced primary root growth inhibition under Pi-starvation conditions by downregulating ALUMINUM-ACTIVATED MALATE TRANSPORTER 1 (ALMT1) expression and malate secretion. Furthermore, AtBZR1 competitively suppressed the activator effect of SENSITIVITY TO PROTON RHIZOTOXICITY 1 (STOP1) on ALMT1 expression and malate secretion in Nicotiana benthamiana leaves and Arabidopsis. The ratio of nuclear-localized STOP1 and BZR1 determined ALMT1 expression and malate secretion in Arabidopsis. In addition, BZR1-inhibited malate secretion is conserved in rice (Oryza sativa). Our findings provide insight into plant mechanisms for optimizing the secretion of malate, an important carbon resource, to adapt to Pi-deficiency stress.
Collapse
Affiliation(s)
- Tongtong Liu
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Suren Deng
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Zhang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Yang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Shi
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Wang G, Wang X, Song J, Wang H, Ruan C, Zhang W, Guo Z, Li W, Guo W. Cotton peroxisome-localized lysophospholipase counteracts the toxic effects of Verticillium dahliae NLP1 and confers wilt resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37026387 DOI: 10.1111/tpj.16236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Plasma membrane represents a critical battleground between plants and attacking microbes. Necrosis-and-ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), cytolytic toxins produced by some bacterial, fungal and oomycete species, are able to target on lipid membranes by binding eudicot plant-specific sphingolipids (glycosylinositol phosphorylceramide) and form transient small pores, causing membrane leakage and subsequent cell death. NLP-producing phytopathogens are a big threat to agriculture worldwide. However, whether there are R proteins/enzymes that counteract the toxicity of NLPs in plants remains largely unknown. Here we show that cotton produces a peroxisome-localized enzyme lysophospholipase, GhLPL2. Upon Verticillium dahliae attack, GhLPL2 accumulates on the membrane and binds to V. dahliae secreted NLP, VdNLP1, to block its contribution to virulence. A higher level of lysophospholipase in cells is required to neutralize VdNLP1 toxicity and induce immunity-related genes expression, meanwhile maintaining normal growth of cotton plants, revealing the role of GhLPL2 protein in balancing resistance to V. dahliae and growth. Intriguingly, GhLPL2 silencing cotton plants also display high resistance to V. dahliae, but show severe dwarfing phenotype and developmental defects, suggesting GhLPL2 is an essential gene in cotton. GhLPL2 silencing results in lysophosphatidylinositol over-accumulation and decreased glycometabolism, leading to a lack of carbon sources required for plants and pathogens to survive. Furthermore, lysophospholipases from several other crops also interact with VdNLP1, implying that blocking NLP virulence by lysophospholipase may be a common strategy in plants. Our work demonstrates that overexpressing lysophospholipase encoding genes have great potential for breeding crops with high resistance against NLP-producing microbial pathogens.
Collapse
Affiliation(s)
- Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Wang
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaofeng Ruan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenshu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Lin JL, Fang X, Li JX, Chen ZW, Wu WK, Guo XX, Liu NJ, Huang JF, Chen FY, Wang LJ, Xu B, Martin C, Chen XY, Huang JQ. Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds. NATURE PLANTS 2023; 9:605-615. [PMID: 36928775 DOI: 10.1038/s41477-023-01376-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Axial chirality of biaryls can generate varied bioactivities. Gossypol is a binaphthyl compound made by cotton plants. Of its two axially chiral isomers, (-)-gossypol is the bioactive form in mammals and has antispermatogenic activity, and its accumulation in cotton seeds poses health concerns. Here we identified two extracellular dirigent proteins (DIRs) from Gossypium hirsutum, GhDIR5 and GhDIR6, which impart the hemigossypol oxidative coupling into (-)- and (+)-gossypol, respectively. To reduce cotton seed toxicity, we disrupted GhDIR5 by genome editing, which eliminated (-)-gossypol but had no effects on other phytoalexins, including (+)-gossypol, that provide pest resistance. Reciprocal mutagenesis identified three residues responsible for enantioselectivity. The (-)-gossypol-forming DIRs emerged later than their enantiocomplementary counterparts, from tandem gene duplications that occurred shortly after the cotton genus diverged. Our study offers insight into how plants control enantiomeric ratios and how to selectively modify the chemical spectra of cotton plants and thereby improve crop quality.
Collapse
Affiliation(s)
- Jia-Ling Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Wen-Kai Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xiang Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning-Jing Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jia-Fa Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Yan Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Zhang Q, Lin R, Yang J, Zhao J, Li H, Liu K, Xue X, Zhao H, Han S, Zhao H. Transcriptome Analysis Reveals That C17 Mycosubtilin Antagonizes Verticillium dahliae by Interfering with Multiple Functional Pathways of Fungi. BIOLOGY 2023; 12:biology12040513. [PMID: 37106714 PMCID: PMC10136297 DOI: 10.3390/biology12040513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Verticillium wilt is a kind of soil-borne plant fungal disease caused by Verticillium dahliae (Vd). Vd 991 is a strong pathogen causing cotton Verticillium wilt. Previously, we isolated a compound from the secondary metabolites of Bacillus subtilis J15 (BS J15), which showed a significant control effect on cotton Verticillium wilt and was identified as C17 mycosubtilin. However, the specific fungistatic mechanism by which C17 mycosubtilin antagonizes Vd 991 is not clear. Here, we first showed that C17 mycosubtilin inhibits the growth of Vd 991 and affects germination of spores at the minimum inhibitory concentration (MIC). Morphological observation showed that C17 mycosubtilin treatment caused shrinking, sinking, and even damage to spores; the hyphae became twisted and rough, the surface was sunken, and the contents were unevenly distributed, resulting in thinning and damage to the cell membrane and cell wall and swelling of mitochondria of fungi. Flow cytometry analysis with ANNEXINV-FITC/PI staining showed that C17 mycosubtilin induces necrosis of Vd 991 cells in a time-dependent manner. Differential transcription analysis showed that C17 mycosubtilin at a semi-inhibitory concentration (IC50) treated Vd 991 for 2 and 6 h and inhibited fungal growth mainly by destroying synthesis of the fungal cell membrane and cell wall, inhibiting its DNA replication and transcriptional translation process, blocking its cell cycle, destroying fungal energy and substance metabolism, and disrupting the redox process of fungi. These results directly showed the mechanism by which C17 mycosubtilin antagonizes Vd 991, providing clues for the mechanism of action of lipopeptides and useful information for development of more effective antimicrobials.
Collapse
|
10
|
Verticillium dahliae Effector VdCE11 Contributes to Virulence by Promoting Accumulation and Activity of the Aspartic Protease GhAP1 from Cotton. Microbiol Spectr 2023; 11:e0354722. [PMID: 36656049 PMCID: PMC9927275 DOI: 10.1128/spectrum.03547-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Verticillium dahliae is a soilborne plant fungal pathogen that causes Verticillium wilt, a disease that reduces the yields of many economically important crops. Despite its worldwide distribution and harmful impacts, much remains unknown regarding how the numerous effectors of V. dahliae modulate plant immunity. Here, we identified the intracellular effector VdCE11 that induces cell death and defense responses in Nicotiana benthamiana to counter leaf pathogens such as Sclerotinia sclerotiorum and Botrytis cinerea. VdCE11 also contributes to the virulence of V. dahliae in cotton and Arabidopsis. Yeast two-hybrid library screening and immunoprecipitation revealed that VdCE11 interacts physically with the cotton aspartic protease GhAP1. GhAP1 and its Arabidopsis homolog AtAP1 are negative regulators of plant immunity, since disruption of either increased the resistance of cotton or Arabidopsis to V. dahliae. Further, VdCE11 plays a role in promoting the accumulation of the AP1 proteins and increasing its hydrolase activity. Taken together, these results indicate a novel mechanism regulating virulence whereby the secreted effector VdCE11 increases cotton susceptibility to V. dahliae by promoting the accumulation and activity of GhAP1. IMPORTANCE Verticclium dahliae is a plant fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, we identified a V. dahliae effector VdCE11 that induces cell death and defense responses in Nicotiana benthamiana. Meanwhile, VdCE11 contributes to the virulence of V. dahliae in cotton and Arabidopsis. Yeast two-hybrid library screening and immunoprecipitation revealed that VdCE11 interacts physically with the cotton aspartic protease GhAP1. GhAP1 and its Arabidopsis homolog AtAP1 are negative regulators of plant immunity since disruption of either increased the resistance of cotton or Arabidopsis to V. dahliae. Further research showed that VdCE11 plays a role in promoting the accumulation of the AP1 proteins and increasing its hydrolase activity. These results suggested that a novel mechanism regulating virulence whereby VdCE11 increases susceptibility to V. dahliae by promoting the accumulation and activity of GhAP1 in the host.
Collapse
|
11
|
Zhu Y, Zhao M, Li T, Wang L, Liao C, Liu D, Zhang H, Zhao Y, Liu L, Ge X, Li B. Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt. FRONTIERS IN PLANT SCIENCE 2023; 14:1174281. [PMID: 37152175 PMCID: PMC10161258 DOI: 10.3389/fpls.2023.1174281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Cotton is widely grown in many countries around the world due to the huge economic value of the total natural fiber. Verticillium wilt, caused by the soil-borne pathogen Verticillium dahliae, is the most devastating disease that led to extensive yield losses and fiber quality reduction in cotton crops. Developing resistant cotton varieties through genetic engineering is an effective, economical, and durable strategy to control Verticillium wilt. However, there are few resistance gene resources in the currently planted cotton varieties, which has brought great challenges and difficulties for breeding through genetic engineering. Further revealing the molecular mechanism between V. dahliae and cotton interaction is crucial to discovering genes related to disease resistance. In this review, we elaborated on the pathogenic mechanism of V. dahliae and the resistance mechanism of cotton to Verticillium wilt. V. dahliae has evolved complex mechanisms to achieve pathogenicity in cotton, mainly including five aspects: (1) germination and growth of microsclerotia; (2) infection and successful colonization; (3) adaptation to the nutrient-deficient environment and competition of nutrients; (4) suppression and manipulation of cotton immune responses; (5) rapid reproduction and secretion of toxins. Cotton has evolved multiple physiological and biochemical responses to cope with V. dahliae infection, including modification of tissue structures, accumulation of antifungal substances, homeostasis of reactive oxygen species (ROS), induction of Ca2+ signaling, the mitogen-activated protein kinase (MAPK) cascades, hormone signaling, and PAMPs/effectors-triggered immune response (PTI/ETI). This review will provide an important reference for the breeding of new cotton germplasm resistant to Verticillium wilt through genetic engineering.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| | - Mei Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Dongxiao Liu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Huamin Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Yanpeng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lisen Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| |
Collapse
|
12
|
Lv J, Zhou J, Chang B, Zhang Y, Feng Z, Wei F, Zhao L, Zhang Y, Feng H. Two Metalloproteases VdM35-1 and VdASPF2 from Verticillium dahliae Are Required for Fungal Pathogenicity, Stress Adaptation, and Activating Immune Response of Host. Microbiol Spectr 2022; 10:e0247722. [PMID: 36222688 PMCID: PMC9769895 DOI: 10.1128/spectrum.02477-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 01/06/2023] Open
Abstract
Verticillium dahliae is a soilborne fungus that causes destructive vascular wilt diseases in a wide range of plant hosts. In this study, we identified two M35 family metalloproteinases: VdM35-1 and VdASPF2, and investigated their function in vitro and in vivo. The results showed that VdM35-1 and VdASPF2 were located in the cell membrane, as secreted proteins depended on signal peptide, and two histidine residues (H) induced cell death and activated plant immune response. VdM35-1 depended on membrane receptor proteins NbBAK1 and NbSOBIR1 in the process of inducing cell death, while VdASPF2 did not depend on them. The deletion of VdM35-1 and VdASPF2 led to the decrease of sporulation and the slow shortening of mycelial branch growth, and the spore morphology of VdM35-1-deficient strain became malformed. In addition, ΔVdM35-1 and ΔVdASPF2 showed more sensitive to osmotic stress, SDS, Congo red (CR), and high temperature. In terms of the utilization of carbon sources, the knockout mutants exhibited decreased utilization of carbon sources, and the growth rates on the medium containing sucrose, starch, and pectin were lower than the wild type strain, with significantly limited growth, especially on galactose-containing medium. Furthermore, ΔVdM35-1 and ΔVdASPF2 showed a significant reduction in pathogenicity. Collectively, these results suggested that VdM35-1 and VdASPF2 were important multifunction factors in the pathogenicity of V. dahliae and relative to stress adaptation and activated plant immune response. IMPORTANCE Verticillium wilt, caused by the notorious fungal pathogen V. dahliae, is one of the main limiting factors for agricultural production. Metalloproteases played an important role in the pathogenic mechanism of pathogens. Our research found that M35 family metalloproteases VdM35-1 and VdASPF2 played an important role in the development, adaptability, and pathogenicity of V. dahliae, providing a new perspective for further understanding the molecular mechanism of virulence of fungal pathogens.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - BaiYang Chang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
13
|
Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae. Microbiol Spectr 2022; 10:e0247821. [PMID: 35377232 PMCID: PMC9045179 DOI: 10.1128/spectrum.02478-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Verticillium dahliae could cause destructive vascular wilt disease on hundreds of plant species around the world, including cotton. In this study, we characterized the function of a hydrophobin gene VdHP1 in pathogen development and pathogenicity. Results showed that VdHP1 could induce cell death and activate plant immune responses. The VdHP1 deletion mutants (ΔVdHP1) and the complement mutants (C-ΔVdHP1) were obtained by the homologous recombination method. The VdHP1 deletion mutants exhibited increased hydrophilicity, inhibited microsclerotial formation, and reduced spore smoothness. In addition, the deletion mutants were more sensitive to NaCl, while relatively insensitive to KCl and sorbitol. Mutants also had greater resistance to Congo red, UV radiation, and high temperature, which suggested that ΔVdHP1 strains have stronger resistance to abiotic stress in general. Different carbon source assays showed that the utilization ability of skim milk, cellulose, and starch was greatly enhanced in ΔVdHP1, compared with that of WT and complemented strains. Furthermore, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The pathogenicity test found that the crude toxin content, colonization, and dispersal of ΔVdHP1 was significantly increased compared with the WT and complementary strains. In addition, cotton seedlings showed more severe wilting symptoms after inoculation with ΔVdHP1 strains. These results suggested that the hydrophobin VdHP1 negatively regulated the virulence of V. dahliae, and played an important role in development, adaptability, and pathogenicity in V. dahliae, which maybe provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. IMPORTANCE Verticillium dahliae is a soilborne fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, it was illustrated that the hydrophobin VdHP1 could induce cell death and activate plant immune responses. VdHP1 affected the hydrophobicity of V. dahliae, and negatively regulated the strains resistant to stress, and the utilization ability of different carbon sources. In addition, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The VdHP1 gene negatively regulated the total virulence, colonization, and dispersal of V. dahliae, with enhanced pathogenicity of mutant strains in this gene. These results suggested that the hydrophobin VdHP1 played an importance in development, adaptability, and pathogenicity in V. dahliae, and would provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence.
Collapse
|
14
|
Sun K, Fang H, Chen Y, Zhuang Z, Chen Q, Shan T, Khan MKR, Zhang J, Wang B. Genome-Wide Analysis of the Cytochrome P450 Gene Family Involved in Salt Tolerance in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:685054. [PMID: 34925390 PMCID: PMC8674417 DOI: 10.3389/fpls.2021.685054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Plant cytochrome P450 (P450) participates in a wide range of biosynthetic reactions and targets a variety of biological molecules. These reactions lead to various fatty acid conjugates, plant hormones, secondary metabolites, lignin, and various defensive compounds. In our previous research, transcriptome analysis was performed on the salt-tolerant upland cotton "Tongyan No. 1." Many differentially expressed genes (DEGs) belong to the P450 family, and their domains occur widely in plants. In this current research, P450 genes were identified in Gossypium hirsutum with the aid of bioinformatics methods for investigating phylogenetic relations, gene structure, cis-elements, chromosomal localization, and collinearity within a genome. qRT-PCR was conducted to analyze P450 gene expression patterns under salt stress. The molecular weights of the 156 P450 genes were in the range of 5,949.6-245,576.3 Da, and the length of the encoded amino acids for all the identified P450 genes ranged from 51 to 2,144. P450 proteins are divided into four different subfamilies based on phylogenetic relationship, gene structure, and chromosomal localization of gene replication. The length of P450 genes in upland cotton differs greatly, ranging from 1,500 to 13,000 bp. The number of exons in the P450 family genes ranged from 1 to 9, while the number of introns ranged from 0 to 8, and there were similar trends within clusters. A total of 31 cis-acting elements were identified by analyzing 1,500 bp promoter sequences. Differences were found in cis-acting elements among genes. The consistency between qRT-PCR and previous transcriptome analysis of salt tolerance DEGs indicated that they were likely to be involved in the salt tolerance of cotton seedlings. Our results provide valuable information on the evolutionary relationships of genes and functional characteristics of the gene family, which is beneficial for further study of the cotton P450 gene family.
Collapse
Affiliation(s)
- Kangtai Sun
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhimin Zhuang
- School of Life Sciences, Nantong University, Nantong, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Tingyu Shan
- School of Life Sciences, Nantong University, Nantong, China
| | - Muhammad Kashif Riaz Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
15
|
Zhang G, Zhao Z, Ma P, Qu Y, Sun G, Chen Q. Integrative transcriptomic and gene co-expression network analysis of host responses upon Verticillium dahliae infection in Gossypium hirsutum. Sci Rep 2021; 11:20586. [PMID: 34663884 PMCID: PMC8523704 DOI: 10.1038/s41598-021-99063-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Worldwide, Verticillium wilt is among the major harmful diseases in cotton production, causing substantial reduction in yields. While this disease has been extensively researched at the molecular level of the pathogen, the molecular basis of V. dahliae host response association is yet to be thoroughly investigated. In this study, RNA-seq analysis was carried out on V. dahliae infected two Gossypium hirsutum L. cultivars, Xinluzao-36 (susceptible) and Zhongzhimian-2 (disease resistant) for 0 h, 24 h, 72 h and 120 h time intervals. Statistical analysis revealed that V. dahliae infection elicited differentially expressed gene responses in the two cotton varieties, but more intensely in the susceptible cultivar than in the resistant cultivars. Data analysis revealed 4241 differentially expressed genes (DEGs) in the LT variety across the three treatment timepoints whereas 7657 in differentially expressed genes (DEGs) in the Vd592 variety across the three treatment timepoints. Six genes were randomly selected for qPCR validation of the RNA-Seq data. Numerous genes encompassed in disease resistance and defense mechanisms were identified. Further, RNA-Seq dataset was utilized in construction of the weighted gene co-expression network and 11 hub genes were identified, that encode for different proteins associated with lignin and immune response, Auxin response factor, cell wall and vascular development, microtubule, Ascorbate transporter, Serine/threonine kinase and Immunity and drought were identified. This significant research will aid in advancing crucial knowledge on virus-host interactions and identify key genes intricate in G. hirsutum L. resistance to V. dahliae infection.
Collapse
Affiliation(s)
- Guoli Zhang
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.,Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi, Xinjiang, 832000, China
| | - Zengqiang Zhao
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi, Xinjiang, 832000, China
| | - Panpan Ma
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi, Xinjiang, 832000, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Guoqing Sun
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
16
|
Jones DAB, Moolhuijzen PM, Hane JK. Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microb Genom 2021; 7. [PMID: 34468307 PMCID: PMC8715435 DOI: 10.1099/mgen.0.000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between 'effector' molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - Paula M Moolhuijzen
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia.,Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
17
|
Liu L, Wang Z, Li J, Wang Y, Yuan J, Zhan J, Wang P, Lin Y, Li F, Ge X. Verticillium dahliae secreted protein Vd424Y is required for full virulence, targets the nucleus of plant cells, and induces cell death. MOLECULAR PLANT PATHOLOGY 2021; 22:1109-1120. [PMID: 34233072 PMCID: PMC8358993 DOI: 10.1111/mpp.13100] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 05/26/2023]
Abstract
Fungal pathogens secrete effector proteins that regulate host immunity and can suppress basal defence mechanisms against colonization in plants. Verticillium dahliae is a widespread and destructive soilborne fungus that can cause vascular wilt disease and reduces plant yields. However, little is currently known about how the effectors secreted by V. dahliae function. In this study, we analysed and identified 34 candidate effectors in the V. dahliae secretome and found that Vd424Y, a glycoside hydrolase family 11 protein, was highly upregulated during the early stages of V. dahliae infection in cotton plants. This protein was located in the nucleus and its deletion compromised the virulence of the fungus. The transient expression of Vd424Y in Nicotiana benthamiana induced BAK1- and SOBIR1-dependent cell death and activated both salicylic acid and jasmonic acid signalling. This enhanced its resistance to the oomycetes Phytophthora capsici in a way that depended on its nuclear localization signal and signal peptides. Our results demonstrate that Vd424Y is an important effector protein targeting the host nucleus to regulate and activate effector-triggered immunity in plants.
Collapse
Affiliation(s)
- Lisen Liu
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhaohan Wang
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Jianing Li
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Ye Wang
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Jiachen Yuan
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural SciencesZhengzhou UniversityZhengzhouChina
| | - Jingjing Zhan
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Peng Wang
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fuguang Li
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Xiaoyang Ge
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
18
|
Chen JY, Klosterman SJ, Hu XP, Dai XF, Subbarao KV. Key Insights and Research Prospects at the Dawn of the Population Genomics Era for Verticillium dahliae. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:31-51. [PMID: 33891830 DOI: 10.1146/annurev-phyto-020620-121925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The genomics era has ushered in exciting possibilities to examine the genetic bases that undergird the characteristic features of Verticillium dahliae and other plant pathogens. In this review, we provide historical perspectives on some of the salient biological characteristics of V. dahliae, including its morphology, microsclerotia formation, host range, disease symptoms, vascular niche, reproduction, and population structure. The kaleidoscopic population structure of this pathogen is summarized, including different races of the pathogen, defoliating and nondefoliating phenotypes, vegetative compatibility groupings, and clonal populations. Where possible, we place the characteristic differences in the context of comparative and functional genomics analyses that have offered insights into population divergence within V. dahliae and the related species.Current challenges are highlighted along with some suggested future population genomics studies that will contribute to advancing our understanding of the population divergence in V. dahliae.
Collapse
Affiliation(s)
- Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Steven J Klosterman
- Agricultural Research Service, United States Department of Agriculture, Salinas, California 93905, USA;
| | - Xiao-Ping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, California 93905, USA;
| |
Collapse
|
19
|
Zhao Y, Jing H, Zhao P, Chen W, Li X, Sang X, Lu J, Wang H. GhTBL34 Is Associated with Verticillium Wilt Resistance in Cotton. Int J Mol Sci 2021; 22:9115. [PMID: 34502024 PMCID: PMC8431740 DOI: 10.3390/ijms22179115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Verticillium wilt (VW) is a typical fungal disease affecting the yield and quality of cotton. The Trichome Birefringence-Like protein (TBL) is an acetyltransferase involved in the acetylation process of cell wall polysaccharides. Up to now, there are no reports on whether the TBL gene is related to disease resistance in cotton. In this study, we cloned a cotton TBL34 gene located in the confidence interval of a major VW resistance quantitative trait loci and demonstrated its relationship with VW resistance in cotton. Analyzing the sequence variations in resistant and susceptible accessions detected two elite alleles GhTBL34-2 and GhTBL34-3, mainly presented in resistant cotton lines whose disease index was significantly lower than that of susceptible lines carrying the allele GhTBL34-1. Comparing the TBL34 protein sequences showed that two amino acid differences in the TBL (PMR5N) domain changed the susceptible allele GhTBL34-1 into the resistant allele GhTBL34-2 (GhTBL34-3). Expression analysis showed that the TBL34 was obviously up-regulated by infection of Verticillium dahliae and exogenous treatment of ethylene (ET), and salicylic acid (SA) and jasmonate (JA) in cotton. VIGS experiments demonstrated that silencing of TBL34 reduced VW resistance in cotton. We deduced that the TBL34 gene mediating acetylation of cell wall polysaccharides might be involved in the regulation of resistance to VW in cotton.
Collapse
Affiliation(s)
- Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Huijuan Jing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Xuelin Li
- Agricultural College, Henan University of Science and Technology, Luoyang 471000, China;
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
20
|
Gao L, Ma J, Liu Y, Huang Y, Mohamad OAA, Jiang H, Egamberdieva D, Li W, Li L. Diversity and Biocontrol Potential of Cultivable Endophytic Bacteria Associated with Halophytes from the West Aral Sea Basin. Microorganisms 2021; 9:microorganisms9071448. [PMID: 34361884 PMCID: PMC8303770 DOI: 10.3390/microorganisms9071448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Endophytes associated with halophytes may contribute to the host's adaptation to adverse environmental conditions through improving their stress tolerance and protecting them from various soil-borne pathogens. In this study, the diversity and antifungal activity of endophytic bacteria associated with halophytic samples growing on the shore of the western Aral Sea in Uzbekistan were investigated. The endophytic bacteria were isolated from the nine halophytic samples by using the culture-dependent method and identified according to their 16S rRNA gene sequences. The screening of endophytic bacterial isolates with the ability to inhibit pathogenic fungi was completed by the plate confrontation method. A total of 289 endophytic bacterial isolates were isolated from the nine halophytes, and they belong to Firmicutes, Actinobacteria, and Proteobacteria. The predominant genera of the isolated endophytic bacteria were Bacillus, Staphylococcus, and Streptomyces, accounting for 38.5%, 24.7%, and 12.5% of the total number of isolates, respectively. The comparative analysis indicated that the isolation effect was better for the sample S8, with the highest diversity and richness indices. The diversity index of the sample S7 was the lowest, while the richness index of samples S5 and S6 was the lowest. By comparing the isolation effect of 12 different media, it was found that the M7 medium had the best performance for isolating endophytic bacteria associated with halophytes in the western Aral Sea Basin. In addition, the results showed that only a few isolates have the ability to produce ex-enzymes, and eight and four endophytic bacterial isolates exhibited significant inhibition to the growth of Valsa mali and Verticillium dahlia, respectively. The results of this study indicated that halophytes are an important source for the selection of microbes that may protect plant from soil-borne pathogens.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (J.M.); (Y.L.); (Y.H.); (O.A.A.M.); (H.J.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (J.M.); (Y.L.); (Y.H.); (O.A.A.M.); (H.J.)
| | - Yonghong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (J.M.); (Y.L.); (Y.H.); (O.A.A.M.); (H.J.)
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (J.M.); (Y.L.); (Y.H.); (O.A.A.M.); (H.J.)
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (J.M.); (Y.L.); (Y.H.); (O.A.A.M.); (H.J.)
| | - Hongchen Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (J.M.); (Y.L.); (Y.H.); (O.A.A.M.); (H.J.)
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Dilfuza Egamberdieva
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (J.M.); (Y.L.); (Y.H.); (O.A.A.M.); (H.J.)
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (W.L.); (L.L.)
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.G.); (J.M.); (Y.L.); (Y.H.); (O.A.A.M.); (H.J.)
- Correspondence: (W.L.); (L.L.)
| |
Collapse
|
21
|
Yin Z, Wang N, Pi L, Li L, Duan W, Wang X, Dou D. Nicotiana benthamiana LRR-RLP NbEIX2 mediates the perception of an EIX-like protein from Verticillium dahliae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:949-960. [PMID: 33205907 DOI: 10.1111/jipb.13031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/23/2020] [Indexed: 05/23/2023]
Abstract
Verticillium wilt diseases caused by the soil-borne fungus Verticillium dahliae result in devastating yield losses in many economically important crops annually. Here, we identified a novel ethylene-inducing xylanase (EIX)-like protein, VdEIX3, from V. dahliae, which exhibits immunity-inducing activity in Nicotiana benthamiana. In vitro-purified VdEIX3 can induce strong oxidative burst, activate the expression of defense-related genes, and increase resistance against oomycete and fungal pathogens in N. benthamiana. VdEIX3 orthologs of other Verticillium pathogens also induce cell death in N. benthamiana, which form a new type of EIX protein family that is distinct from the known EIX proteins. A leucine-rich repeat receptor-like protein, NbEIX2, regulates the perception of VdEIX3 in N. benthamiana. Our results demonstrate that VdEIX3 is a novel EIX-like protein that can be recognized by N. benthamiana NbEIX2, and also suggest that NbEIX2 is a promising receptor-like protein that is potentially applicable to transgenic breeding for improving resistance to Verticillium wilt diseases.
Collapse
Affiliation(s)
- Zhiyuan Yin
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Nan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lei Pi
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lei Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Weiwei Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
22
|
The Role of a New Compound Micronutrient Multifunctional Fertilizer against Verticillium dahliae on Cotton. Pathogens 2021; 10:pathogens10010081. [PMID: 33477774 PMCID: PMC7832308 DOI: 10.3390/pathogens10010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Verticillium dahliae Kleb., the causal pathogen of vascular wilt, can seriously reduce the yield and quality of many crops, including cotton (Gossypium hirsutum). To control the harm caused by V. dahliae, considering the environmental pollution of chemical fungicides and their residues, the strategy of plant nutrition regulation is becoming increasingly important as an eco-friendly method for disease control. A new compound micronutrient fertilizer (CMF) found in our previous study could reduce the damage of cotton Verticillium wilt and increase yield. However, there is little information about the mode of action of CMF to control this disease. In the present study, we evaluated the role of CMF against V. dahliae and its mechanism of action in vitro and in vivo. In the laboratory tests, we observed that CMF could inhibit hyphal growth, microsclerotia germination, and reduce sporulation of V. dahliae. Further studies revealed that the biomass of V. dahliae in the root and hypocotyl of cotton seedlings treated with CMF were significantly reduced compared with the control, and these results could explain the decline in the disease index of cotton Verticillium wilt. Furthermore, those key genes involved in the phenylpropanoid metabolism pathway, resistance-related genes defense, and nitric oxide signaling pathway were induced in cotton root and hypocotyl tissue when treated with CMF. These results suggest that CMF is a multifaceted micronutrient fertilizer with roles in inhibiting the growth, development, and pathogenicity of V. dahliae and promoting cotton growth.
Collapse
|
23
|
Ingram TW, Oh Y, Adhikari TB, Louws FJ, Dean RA. Comparative Genome Analyses of 18 Verticillium dahliae Tomato Isolates Reveals Phylogenetic and Race Specific Signatures. Front Microbiol 2020; 11:573755. [PMID: 33329432 PMCID: PMC7734093 DOI: 10.3389/fmicb.2020.573755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Host resistance is one of the few strategies available to combat the soil borne pathogenic fungus Verticillium dahliae. Understanding pathogen diversity in populations is key to successfully deploying host resistance. In this study the genomes of 18 V. dahliae isolates of races 1 (n = 2), 2 (n = 4), and 3 (n = 12) from Japan, California, and North Carolina were sequenced and mapped to the reference genome of JR2 (from tomato). The genomes were analyzed for phylogenetic and pathogen specific signatures to classify specific strains or genes for future research. Four highly clonal lineages/groups were discovered, including a lineage unique to North Carolina isolates, which had the rare MAT1-1 mating type. No evidence for recombination between isolates of different mating types was observed, even in isolates of different mating types discovered in the same field. By mapping these 18 isolates genomes to the JR2 reference genome, 193 unique candidate effectors were found using SignalP and EffectorP. Within these effectors, 144 highly conserved effectors, 42 mutable effectors (truncated or present in some isolates but absent in others), and 7 effectors present in highly variable regions of the chromosomes were discovered. Of the 144 core effectors, 21 were highly conserved in V. alfalfae and V. longisporum, 7 of which have no known function. Within the non-core effectors 30 contained large numbers of non-synonymous mutations, while 15 of them contained indels, frameshift mutations, or were present on highly variable regions of the chromosome. Two of these highly variable region effectors (HVREs) were only present in race 2 isolates, but not in race 3 isolates. The race 1 effector Ave1 was also present in a highly variable region. These data may suggest that these highly variable regions are enriched in race determinant genes, consistent with the two-speed genome hypothesis.
Collapse
Affiliation(s)
- Thomas W Ingram
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Yeonyee Oh
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Tika B Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States.,Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Ralph A Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
24
|
Liu NJ, Wang N, Bao JJ, Zhu HX, Wang LJ, Chen XY. Lipidomic Analysis Reveals the Importance of GIPCs in Arabidopsis Leaf Extracellular Vesicles. MOLECULAR PLANT 2020; 13:1523-1532. [PMID: 32717349 DOI: 10.1016/j.molp.2020.07.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Accepted: 07/22/2020] [Indexed: 05/09/2023]
Abstract
Plant extracellular vesicles (EVs) are membrane-enclosed nanoparticles that play diverse roles in plant development and response. Recently, impressive progress has been made in the isolation and identification of the proteins and RNAs carried in plant EVs; however, the analysis of EV lipid compositions remains rudimentary. Here, we performed lipidomic analysis of Arabidopsis rosette leaf EVs, revealing a high abundance of certain groups of lipids, in particular sphingolipids, in the EVs. Remarkably, the EV sphingolipids are composed of nearly pure glycosylinositolphosphoceramides (GIPCs), which are green lineage abundant and negatively charged. We further showed that the Arabidopsis TETRASPANIN 8 (TET8) knockout mutant has a lower amount of cellular GIPCs and secrets fewer EVs, companied with impaired reactive oxygen species (ROS) burst toward stresses. Exogenous application of GIPCs promoted the secretion of EVs and ROS burst in both the WT and tet8 mutant. The characteristic enrichment of sphingolipid GIPCs provides valuable insights into the biogenesis and function of plant EVs.
Collapse
Affiliation(s)
- Ning-Jing Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Ning Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jing-Jing Bao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui-Xian Zhu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
25
|
Leonard M, Kühn A, Harting R, Maurus I, Nagel A, Starke J, Kusch H, Valerius O, Feussner K, Feussner I, Kaever A, Landesfeind M, Morgenstern B, Becher D, Hecker M, Braus-Stromeyer SA, Kronstad JW, Braus GH. Verticillium longisporum Elicits Media-Dependent Secretome Responses With Capacity to Distinguish Between Plant-Related Environments. Front Microbiol 2020; 11:1876. [PMID: 32849460 PMCID: PMC7423881 DOI: 10.3389/fmicb.2020.01876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Verticillia cause a vascular wilt disease affecting a broad range of economically valuable crops. The fungus enters its host plants through the roots and colonizes the vascular system. It requires extracellular proteins for a successful plant colonization. The exoproteomes of the allodiploid Verticillium longisporum upon cultivation in different media or xylem sap extracted from its host plant Brassica napus were compared. Secreted fungal proteins were identified by label free liquid chromatography-tandem mass spectrometry screening. V. longisporum induced two main secretion patterns. One response pattern was elicited in various non-plant related environments. The second pattern includes the exoprotein responses to the plant-related media, pectin-rich simulated xylem medium and pure xylem sap, which exhibited similar but additional distinct features. These exoproteomes include a shared core set of 221 secreted and similarly enriched fungal proteins. The pectin-rich medium significantly induced the secretion of 143 proteins including a number of pectin degrading enzymes, whereas xylem sap triggered a smaller but unique fungal exoproteome pattern with 32 enriched proteins. The latter pattern included proteins with domains of known pathogenicity factors, metallopeptidases and carbohydrate-active enzymes. The most abundant proteins of these different groups are the necrosis and ethylene inducing-like proteins Nlp2 and Nlp3, the cerato-platanin proteins Cp1 and Cp2, the metallopeptidases Mep1 and Mep2 and the carbohydrate-active enzymes Gla1, Amy1 and Cbd1. Their pathogenicity contribution was analyzed in the haploid parental strain V. dahliae. Deletion of the majority of the corresponding genes caused no phenotypic changes during ex planta growth or invasion and colonization of tomato plants. However, we discovered that the MEP1, NLP2, and NLP3 deletion strains were compromised in plant infections. Overall, our exoproteome approach revealed that the fungus induces specific secretion responses in different environments. The fungus has a general response to non-plant related media whereas it is able to fine-tune its exoproteome in the presence of plant material. Importantly, the xylem sap-specific exoproteome pinpointed Nlp2 and Nlp3 as single effectors required for successful V. dahliae colonization.
Collapse
Affiliation(s)
- Miriam Leonard
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Anika Kühn
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Kirstin Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Burkhard Morgenstern
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Dörte Becher
- Department Microbial Proteomics, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Li Y, Han Y, Qu M, Chen J, Chen X, Geng X, Wang Z, Chen S. Apoplastic Cell Death-Inducing Proteins of Filamentous Plant Pathogens: Roles in Plant-Pathogen Interactions. Front Genet 2020; 11:661. [PMID: 32676100 PMCID: PMC7333776 DOI: 10.3389/fgene.2020.00661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Filamentous pathogens, such as phytopathogenic oomycetes and fungi, secrete a remarkable diversity of apoplastic effector proteins to facilitate infection, many of which are able to induce cell death in plants. Over the past decades, over 177 apoplastic cell death-inducing proteins (CDIPs) have been identified in filamentous oomycetes and fungi. An emerging number of studies have demonstrated the role of many apoplastic CDIPs as essential virulence factors. At the same time, apoplastic CDIPs have been documented to be recognized by plant cells as pathogen-associated molecular patterns (PAMPs). The recent findings of extracellular recognition of apoplastic CDIPs by plant leucine-rich repeat-receptor-like proteins (LRR-RLPs) have greatly advanced our understanding of how plants detect them and mount a defense response. This review summarizes the latest advances in identifying apoplastic CDIPs of plant pathogenic oomycetes and fungi, and our current understanding of the dual roles of apoplastic CDIPs in plant-filamentous pathogen interactions.
Collapse
Affiliation(s)
- Ya Li
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijuan Han
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
27
|
Nazar Pour F, Cobos R, Rubio Coque JJ, Serôdio J, Alves A, Félix C, Ferreira V, Esteves AC, Duarte AS. Toxicity of Recombinant Necrosis and Ethylene-Inducing Proteins (NLPs) from Neofusicoccum parvum. Toxins (Basel) 2020; 12:E235. [PMID: 32272814 PMCID: PMC7232490 DOI: 10.3390/toxins12040235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022] Open
Abstract
Neofusicoccum parvum is a fungal pathogen associated with a wide range of plant hosts. Despite being widely studied, the molecular mechanism of infection of N. parvum is still far from being understood. Analysis of N. parvum genome lead to the identification of six putative genes encoding necrosis and ethylene-inducing proteins (NLPs). The sequence of NLPs genes (NprvNep 1-6) were analyzed and four of the six NLP genes were successfully cloned, expressed in E. coli and purified by affinity chromatography. Pure recombinant proteins were characterized according to their phytotoxic and cytotoxic effects to tomato leaves and to mammalian Vero cells, respectively. These assays revealed that all NprvNeps tested are cytotoxic to Vero cells and also induce cell death in tomato leaves. NprvNep2 was the most toxic to Vero cells, followed by NprvNep1 and 3. NprvNep4 induced weaker, but, nevertheless, still significant toxic effects to Vero cells. A similar trend of toxicity was observed in tomato leaves: the most toxic was NprvNep 2 and the least toxic NprvNep 4. This study describes for the first time an overview of the NLP gene family of N. parvum and provides additional insights into its pathogenicity mechanism.
Collapse
Affiliation(s)
- Forough Nazar Pour
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino (IIVV), Escuela de Ingeniería Agraria, Universidad de León, Avda. Portugal, 41, 24009 León, Spain; (R.C.); (J.J.R.C.)
| | - Juan José Rubio Coque
- Instituto de Investigación de la Viña y el Vino (IIVV), Escuela de Ingeniería Agraria, Universidad de León, Avda. Portugal, 41, 24009 León, Spain; (R.C.); (J.J.R.C.)
| | - João Serôdio
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Artur Alves
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Carina Félix
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Vanessa Ferreira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Ana Cristina Esteves
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Spain;
| | - Ana Sofia Duarte
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Spain;
| |
Collapse
|
28
|
Zhao T, Xie Q, Li C, Li C, Mei L, Yu JZ, Chen J, Zhu S. Cotton roots are the major source of gossypol biosynthesis and accumulation. BMC PLANT BIOLOGY 2020; 20:88. [PMID: 32103722 PMCID: PMC7045692 DOI: 10.1186/s12870-020-2294-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/17/2020] [Indexed: 06/05/2023]
Abstract
BACKGROUND Gossypol is a specific secondary metabolite in Gossypium species. It not only plays a critical role in development and self-protection of cotton plants, but also can be used as important anti-cancer and male contraceptive compound. However, due to the toxicity of gossypol for human beings and monogastric animals, the consumption of cottonseeds was limited. To date, little is known about the gossypol metabolism in cotton plants. RESULTS In this study, we found that cotyledon was the primary source of gossypol at the seed germination stage. But thereafter, it was mainly originated from developing roots. Grafting between glanded and glandless cotton as well as sunflower rootstocks and cotton scion revealed that gossypol was mainly synthesized in the root systems of cotton plants. And both glanded and glandless cotton roots had the ability of gossypol biosynthesis. But the pigment glands, the main storage of gossypol, had indirect effects on gossypol biosynthesis. In vitro culture of root and rootless seedling confirmed the strong gossypol biosynthesis ability in root system and the relatively weak gossypol biosynthesis ability in other organs of the seedling. Expression profiling of the key genes involved in the gossypol biosynthetic pathway also supported the root as the major organ of gossypol biosynthesis. CONCLUSIONS Our study provide evidence that the cotton root system is the major source of gossypol in both glanded and glandless cottons, while other organs have a relatively weak ability to synthesize gossypol. Gossypol biosynthesis is not directed related to the expression of pigment glands, but the presence of pigment glands is essential for gossypol accumulation. These findings can not only clarify the complex regulation network of gossypol metabolism, but it could also accelerate the crop breeding process with enhanced commercial values.
Collapse
Affiliation(s)
- Tianlun Zhao
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qianwen Xie
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Cong Li
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Cheng Li
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lei Mei
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA
| | - Jinhong Chen
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
29
|
Zhang X, Cheng W, Feng Z, Zhu Q, Sun Y, Li Y, Sun J. Transcriptomic analysis of gene expression of Verticillium dahliae upon treatment of the cotton root exudates. BMC Genomics 2020; 21:155. [PMID: 32050898 PMCID: PMC7017574 DOI: 10.1186/s12864-020-6448-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022] Open
Abstract
Background Cotton Verticillium wilt is one of the most devastating diseases for cotton production in the world. Although this diseases have been widely studied at the molecular level from pathogens, the molecular basis of V. dahliae interacted with cotton has not been well examined. Results In this study, RNA-seq analysis was carried out on V. dahliae samples cultured by different root exudates from three cotton cultivars (a susceptible upland cotton cultivar, a tolerant upland cotton cultivar and a resistant island cotton cultivar) and water for 0 h, 6 h, 12 h, 24 h and 48 h. Statistical analysis of differentially expressed genes revealed that V. dahliae responded to all kinds of root exudates but more strongly to susceptible cultivar than to tolerant and resistant cultivars. Go analysis indicated that ‘hydrolase activity, hydrolyzing O-glycosyl compounds’ related genes were highly enriched in V. dahliae cultured by root exudates from susceptible cotton at early stage of interaction, suggesting genes related to this term were closely related to the pathogenicity of V. dahliae. Additionally, ‘transmembrane transport’, ‘coenzyme binding’, ‘NADP binding’, ‘cofactor binding’, ‘oxidoreductase activity’, ‘flavin adenine dinucleotide binding’, ‘extracellular region’ were commonly enriched in V. dahliae cultured by all kinds of root exudates at early stage of interaction (6 h and 12 h), suggesting that genes related to these terms were required for the initial steps of the roots infections. Conclusions Based on the GO analysis results, the early stage of interaction (6 h and 12 h) were considered as the critical stage of V. dahliae-cotton interaction. Comparative transcriptomic analysis detected that 31 candidate genes response to root exudates from cotton cultivars with different level of V. dahliae resistance, 68 response to only susceptible cotton cultivar, and 26 genes required for development of V. dahliae. Collectively, these expression data have advanced our understanding of key molecular events in the V. dahliae interacted with cotton, and provided a framework for further functional studies of candidate genes to develop better control strategies for the cotton wilt disease.
Collapse
Affiliation(s)
- Xinyu Zhang
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China
| | - Wenhan Cheng
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China
| | - Zhidi Feng
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Yuqiang Sun
- Zhejiang Sci-Tech University College of Life Sciences, Zhejiang, 310016, Hangzhou, China
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China.
| | - Jie Sun
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China.
| |
Collapse
|
30
|
Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol 2020; 16:250-256. [PMID: 31932723 DOI: 10.1038/s41589-019-0446-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022]
Abstract
In plants, lineage-specific metabolites can be created by activities derived from the catalytic promiscuity of ancestral proteins, although examples of recruiting detoxification systems to biosynthetic pathways are scarce. The ubiquitous glyoxalase (GLX) system scavenges the cytotoxic methylglyoxal, in which GLXI isomerizes the α-hydroxy carbonyl in the methylglyoxal-glutathione adduct for subsequent hydrolysis. We show that GLXIs across kingdoms are more promiscuous than recognized previously and can act as aromatases without cofactors. In cotton, a specialized GLXI variant, SPG, has lost its GSH-binding sites and organelle-targeting signal, and evolved to aromatize cyclic sesquiterpenes bearing α-hydroxyketones to synthesize defense compounds in the cytosol. Notably, SPG is able to transform acetylated deoxynivalenol, the prevalent mycotoxin contaminating cereals and foods. We propose that detoxification enzymes are a valuable source of new catalytic functions and SPG, a standalone enzyme catalyzing complex reactions, has potential for toxin degradation, crop engineering and design of novel aromatics.
Collapse
|
31
|
Zhang J, Hu HL, Wang XN, Yang YH, Zhang CJ, Zhu HQ, Shi L, Tang CM, Zhao MW. Dynamic infection of Verticillium dahliae in upland cotton. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:90-105. [PMID: 31419841 DOI: 10.1111/plb.13037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/08/2019] [Indexed: 05/26/2023]
Abstract
Verticillium wilt, an infection caused by the soilborne fungus Verticillium dahliae, is one of the most serious diseases in cotton. No effective control method against V. dahliae has been established, and the infection mechanism of V. dahliae in upland cotton remains unknown. GFP-tagged V. dahliae isolates with different pathogenic abilities were used to analyse the colonisation and infection of V. dahliae in the roots and leaves of different upland cotton cultivars, the relationships among infection processes, the immune responses and the resistance ability of different cultivars against V. dahliae. Here, we report a new infection model for V. dahliae in upland cotton plants. V. dahliae can colonise and infect any organ of upland cotton plants and then spread to the entire plant from the infected organ through the surface and interior of the organ. Vascular tissue was found to not be the sole transmission route of V. dahliae in cotton plants. In addition, the rate of infection of a V. dahliae isolate with strong pathogenicity was notably faster than that of an isolate with weak pathogenicity. The resistance of upland cotton to Verticillium wilt was related to the degree of the immune response induced in plants infected with V. dahliae. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - H-L Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-N Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Y-H Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-J Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - H-Q Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - L Shi
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-M Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - M-W Zhao
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Dhar N, Chen JY, Subbarao KV, Klosterman SJ. Hormone Signaling and Its Interplay With Development and Defense Responses in Verticillium-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:584997. [PMID: 33250913 PMCID: PMC7672037 DOI: 10.3389/fpls.2020.584997] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/12/2020] [Indexed: 05/19/2023]
Abstract
Soilborne plant pathogenic species in the fungal genus Verticillium cause destructive Verticillium wilt disease on economically important crops worldwide. Since R gene-mediated resistance is only effective against race 1 of V. dahliae, fortification of plant basal resistance along with cultural practices are essential to combat Verticillium wilts. Plant hormones involved in cell signaling impact defense responses and development, an understanding of which may provide useful solutions incorporating aspects of basal defense. In this review, we examine the current knowledge of the interplay between plant hormones, salicylic acid, jasmonic acid, ethylene, brassinosteroids, cytokinin, gibberellic acid, auxin, and nitric oxide, and the defense responses and signaling pathways that contribute to resistance and susceptibility in Verticillium-host interactions. Though we make connections where possible to non-model systems, the emphasis is placed on Arabidopsis-V. dahliae and V. longisporum interactions since much of the research on this interplay is focused on these systems. An understanding of hormone signaling in Verticillium-host interactions will help to determine the molecular basis of Verticillium wilt progression in the host and potentially provide insight on alternative approaches for disease management.
Collapse
Affiliation(s)
- Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
- Nikhilesh Dhar,
| | - Jie-Yin Chen
- Department of Plant Pathology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
- *Correspondence: Steven J. Klosterman,
| |
Collapse
|
33
|
Li C, He Q, Zhang F, Yu J, Li C, Zhao T, Zhang Y, Xie Q, Su B, Mei L, Zhu S, Chen J. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:784-800. [PMID: 31349367 PMCID: PMC6899791 DOI: 10.1111/tpj.14477] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 05/09/2023]
Abstract
Plants endure challenging environments in which they are constantly threatened by diverse pathogens. The soil-borne fungus Verticillium dahliae is a devastating pathogen affecting many plant species including cotton, in which it significantly reduces crop yield and fiber quality. Melatonin involvement in plant immunity to pathogens has been reported, but the mechanisms of melatonin-induced plant resistance are unclear. In this study, the role of melatonin in enhancing cotton resistance to V. dahliae was investigated. At the transcriptome level, exogenous melatonin increased the expression of genes in phenylpropanoid, mevalonate (MVA), and gossypol pathways after V. dahliae inoculation. As a result, lignin and gossypol, the products of these metabolic pathways, significantly increased. Silencing the serotonin N-acetyltransferase 1 (GhSNAT1) and caffeic acid O-methyltransferase (GhCOMT) melatonin biosynthesis genes compromised cotton resistance, with reduced lignin and gossypol levels after V. dahliae inoculation. Exogenous melatonin pre-treatment prior to V. dahliae inoculation restored the level of cotton resistance reduced by the above gene silencing effects. Melatonin levels were higher in resistant cotton cultivars than in susceptible cultivars after V. dahliae inoculation. The findings indicate that melatonin affects lignin and gossypol synthesis genes in phenylpropanoid, MVA, and gossypol pathways, thereby enhancing cotton resistance to V. dahliae.
Collapse
Affiliation(s)
- Cheng Li
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Qiuling He
- Zhejiang Key Laboratory of Plant Secondary Metabolism and RegulationZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Fan Zhang
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Jingwen Yu
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Cong Li
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Tianlun Zhao
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Yi Zhang
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Qianwen Xie
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Bangrong Su
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Lei Mei
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Shuijin Zhu
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| | - Jinhong Chen
- Zhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhou310058China
- Institute of Crop ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
34
|
Shen Y, Li J, Xiang J, Wang J, Yin K, Liu Q. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Express 2019; 9:117. [PMID: 31352630 PMCID: PMC6661057 DOI: 10.1186/s13568-019-0822-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Here, we report a novel protein elicitor from Bacillus subtilis BU412 which could cause hypersensitive response (HR) and systemic acquired resistance (SAR) in tobacco. The purification was executed by ion-exchange and size exclusion chromatography. The target band on SDS-PAGE was analyzed by mass spectrometry, and the peptide mass fingerprinting matched an uncharacterized protein (WP_017418614.1), which was then named AMEP412. AMEP412 could cause a clearly defined HR necrosis in tobacco leaves, which was less affected by thermal treatment. The sub-cellular localization assay revealed that AMEP412 localized on the cell surface. This protein could also trigger early defense events such as the generation of reactive oxygen species (H2O2 and O2-) and the induction of defense enzymes, including superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL). Moreover, AMEP412 could stimulate plant systemic resistance against Pseudomonas syringae pv. tomato DC3000.
Collapse
|
35
|
Tian X, Fang X, Huang JQ, Wang LJ, Mao YB, Chen XY. A gossypol biosynthetic intermediate disturbs plant defence response. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180319. [PMID: 30967019 PMCID: PMC6367145 DOI: 10.1098/rstb.2018.0319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/12/2022] Open
Abstract
Plant secondary metabolites and their biosynthesis have attracted great interest, but investigations of the activities of hidden intermediates remain rare. Gossypol and related sesquiterpenes are the major phytoalexins in cotton. Among the six biosynthetic intermediates recently identified, 8-hydroxy-7-keto-δ-cadinene (C234) crippled the plant disease resistance when accumulated upon gene silencing. C234 harbours an α,β-unsaturated carbonyl thus is a reactive electrophile species. Here, we show that C234 application also dampened the Arabidopsis resistance against the bacterial pathogen Pseudomonas syringae pv. maculicola ( Psm). We treated Arabidopsis with C234, Psm and ( Psm+C234), and analysed the leaf transcriptomes. While C234 alone exerted a mild effect, it greatly stimulated an over-response to the pathogen. Of the 7335 genes affected in the ( Psm+C234)-treated leaves, 3476 were unresponsive without the chemical, in which such functional categories as 'nucleotides transport', 'vesicle transport', 'MAP kinases', 'G-proteins', 'protein assembly and cofactor ligation' and 'light reaction' were enriched, suggesting that C234 disturbed certain physiological processes and the protein complex assembly, leading to distorted defence response and decreased disease resistance. As C234 is efficiently metabolized by CYP71BE79, plants of cotton lineage have evolved a highly active enzyme to prevent the phytotoxic intermediate accumulation during gossypol pathway evolution. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Xiu Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
36
|
Zhang Y, Gao Y, Liang Y, Dong Y, Yang X, Qiu D. Verticillium dahliae PevD1, an Alt a 1-like protein, targets cotton PR5-like protein and promotes fungal infection. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:613-626. [PMID: 30295911 PMCID: PMC6322577 DOI: 10.1093/jxb/ery351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
Alt a 1 family proteins (AA1s) have only been observed in the Dothideomycetes and Sordariomycetes classes of fungi, and their biological functions have remained poorly understood. Verticillium dahliae, a soil-borne pathogen that causes plant wilt disease, secretes hundreds of proteins during the process of pathogenic infection, including the AA1 member PevD1. In this study, we found that the pevd1 transcript was present in all of the hosts studied (cotton, Arabidopsis, tomato, and tobacco) and showed elevated expression throughout the infection process. Furthermore, pevd1 knockout mutants displayed attenuated pathogenicity compared with the wild-type (WT) strain and complemented strains in hosts. A partner protein of PevD1, pathogenesis-related protein 5 (PR5)-like protein GhPR5, was isolated from cotton (Gossypium hirsutum) plants by co-purification assays, and the PevD1-GhPR5 interaction was determined to be localized in the C-terminus (PevD1b, amino acids residues 113-155) by pull-down and yeast two-hybrid techniques. Re-introduction of the pevd1b gene into a pevd1 knockout mutant resulted in restoration of the virulence phenotype to WT levels. In addition, PevD1b, which is similar to PevD1, decreased the antifungal activity of GhPR5 in vitro. Our findings reveal an infection strategy in which V. dahliae secretes PevD1 to inhibit GhPR5 antifungal activity in order to overcome the host defence system.
Collapse
Affiliation(s)
- Yi Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingbo Liang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yijie Dong
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| |
Collapse
|
37
|
Blum A, Bressan M, Zahid A, Trinsoutrot-Gattin I, Driouich A, Laval K. Verticillium Wilt on Fiber Flax: Symptoms and Pathogen Development In Planta. PLANT DISEASE 2018; 102:2421-2429. [PMID: 30281419 DOI: 10.1094/pdis-01-18-0139-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fiber flax (Linum usitatissimum L.), an important crop in Normandy (France), is increasingly affected by Verticillium wilt caused by the soilborne fungus Verticillium dahliae. This disease leads to nonnegligible yield losses and depreciated fibers that are consequently difficult to upgrade. Verticillium wilt is a major threat to a broad range of agriculture. In this study, susceptible fiber flax cultivar Adélie was infected by VdLu01 (isolated from fiber flax, this study) or green fluorescent protein-tagged VdLs17 (transformed and provided by the department of Plant Pathology, University of California, Davis). Between 3 and 4 weeks postinoculation, wilting symptoms on leaves were first observed, with acropetal growth during the following weeks. Pathogen development was tracked by confocal laser-scanning microscopy during the asymptomatic and symptomatic stages. First, conidia germination led to the development of hyphae on root epidermis; more particularly, on the zone of cell differentiation and around emerging lateral roots, while the zone of cell division and the root tip were free of the pathogen. At 3 days postinoculation, the zone of cell differentiation and lateral roots were embedded into a fungal mass. Swelling structures such as appressoria were observed at 1 week postinoculation. At 2 weeks postinoculation and onward, the pathogen had colonized xylem vessels in roots, followed by the stem and, finally, leaves during the symptomatic stage. Additionally, observations of infected plants after retting in the field revealed microsclerotia embedded inside the bast fiber bundle, thus potentially contributing to weakening of fiber. All of these results provide a global account of V. dahliae development when infecting fiber flax.
Collapse
Affiliation(s)
- Adrien Blum
- UniLaSalle-Campus Rouen, Unité Aghyle, CS 40118, LaSalle Beauvais-Esitpa, 76134 Mont-Saint-Aignan Cedex, France; and Glycobiologie et Matrice Extracellulaire végétale EA 4358, SFR Végétal-Agronomie, Université de Rouen 76821 Mont-Saint-Aignan, France
| | | | - Abderrakib Zahid
- Glycobiologie et Matrice Extracellulaire végétale EA 4358, SFR Végétal-Agronomie, Université de Rouen; and Département de Production, Protection et Biotechnologie végétale (Unité de Génétique, Biotechnologies et Amélioration des Plantes) Institut Agronomique et Vétérinaire Hassan II B.P. 6202 Rabat-Instituts, Madinat Al Irfan C.P. 10101, Morocco
| | | | - Azeddine Driouich
- Glycobiologie et Matrice Extracellulaire végétale EA 4358, SFR Végétal-Agronomie, Université de Rouen
| | | |
Collapse
|
38
|
Tian X, Ruan JX, Huang JQ, Yang CQ, Fang X, Chen ZW, Hong H, Wang LJ, Mao YB, Lu S, Zhang TZ, Chen XY. Characterization of gossypol biosynthetic pathway. Proc Natl Acad Sci U S A 2018; 115:E5410-E5418. [PMID: 29784821 PMCID: PMC6003316 DOI: 10.1073/pnas.1805085115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gossypol and related sesquiterpene aldehydes in cotton function as defense compounds but are antinutritional in cottonseed products. By transcriptome comparison and coexpression analyses, we identified 146 candidates linked to gossypol biosynthesis. Analysis of metabolites accumulated in plants subjected to virus-induced gene silencing (VIGS) led to the identification of four enzymes and their supposed substrates. In vitro enzymatic assay and reconstitution in tobacco leaves elucidated a series of oxidative reactions of the gossypol biosynthesis pathway. The four functionally characterized enzymes, together with (+)-δ-cadinene synthase and the P450 involved in 7-hydroxy-(+)-δ-cadinene formation, convert farnesyl diphosphate (FPP) to hemigossypol, with two gaps left that each involves aromatization. Of six intermediates identified from the VIGS-treated leaves, 8-hydroxy-7-keto-δ-cadinene exerted a deleterious effect in dampening plant disease resistance if accumulated. Notably, CYP71BE79, the enzyme responsible for converting this phytotoxic intermediate, exhibited the highest catalytic activity among the five enzymes of the pathway assayed. In addition, despite their dispersed distribution in the cotton genome, all of the enzyme genes identified show a tight correlation of expression. Our data suggest that the enzymatic steps in the gossypol pathway are highly coordinated to ensure efficient substrate conversion.
Collapse
Affiliation(s)
- Xiu Tian
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China
- School of Life Sciences, Nanjing University, 210023 Nanjing, China
| | - Ju-Xin Ruan
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Zhi-Wen Chen
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Hui Hong
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Shan Lu
- School of Life Sciences, Nanjing University, 210023 Nanjing, China
| | - Tian-Zhen Zhang
- Department of Agronomy, Zhejiang University, 310058 Hangzhou, China;
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, 200032 Shanghai, China;
- Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, 201602 Shanghai, China
| |
Collapse
|
39
|
Zhang W, Gui Y, Short DPG, Li T, Zhang D, Zhou L, Liu C, Bao Y, Subbarao KV, Chen J, Dai X. Verticillium dahliae transcription factor VdFTF1 regulates the expression of multiple secreted virulence factors and is required for full virulence in cotton. MOLECULAR PLANT PATHOLOGY 2018; 19:841-857. [PMID: 28520093 PMCID: PMC6638078 DOI: 10.1111/mpp.12569] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/11/2017] [Accepted: 05/13/2017] [Indexed: 05/05/2023]
Abstract
Fungal transcription factors (TFs) implicated in the regulation of virulence gene expression have been identified in a number of plant pathogens. In Verticillium dahliae, despite its agricultural importance, few regulators of transcription have been characterized. In this study, a T-DNA insertion mutant with significantly reduced virulence towards cotton was identified. The T-DNA was traced to VdFTF1, a gene encoding a TF containing a Fungal_trans domain. Transient expression in onion epidermal cells indicated that VdFTF1 is localized to the nucleus. The VdFTF1-deletion strains displayed normal vegetative growth, mycelial pigmentation and conidial morphology, but exhibited significantly reduced virulence on cotton, suggesting that VdFTF1 is required exclusively for pathogenesis. Comparisons of global transcription patterns of wild-type and VdFTF1-deletion strains indicated that VdFTF1 affected the expression of 802 genes, 233 of which were associated with catalytic processes. These genes encoded 69 potentially secreted proteins, 43 of which contained a carbohydrate enzyme domain known to participate in pathogenesis during infection of cotton. Targeted gene deletion of one VdFTF1-regulated gene resulted in significantly impaired vascular colonization, as measured by quantitative polymerase chain reaction, as well as aggressiveness and symptom severity in cotton. In conclusion, VdFTF1, which encodes a TF containing a Fungal_trans domain, regulates the gene expression of plant cell wall degradation enzymes in V. dahliae, which are required for full virulence on cotton.
Collapse
Affiliation(s)
- Wen‐Qi Zhang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Yue‐Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Dylan P. G. Short
- Department of Plant PathologyUniversity of CaliforniaDavisCA 95616USA
| | - Ting‐Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Dan‐Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Chun Liu
- BGI‐ShenzhenShenzhenGuangdong 518083China
| | - Yu‐Ming Bao
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | | | - Jie‐Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Xiao‐Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| |
Collapse
|
40
|
Liang Y, Cui S, Tang X, Zhang Y, Qiu D, Zeng H, Guo L, Yuan J, Yang X. An Asparagine-Rich Protein Nbnrp1 Modulate Verticillium dahliae Protein PevD1-Induced Cell Death and Disease Resistance in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2018; 9:303. [PMID: 29563924 PMCID: PMC5846053 DOI: 10.3389/fpls.2018.00303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 05/05/2023]
Abstract
PevD1 is a fungal protein secreted by Verticillium dahliae. Our previous researches showed that this protein could induce hypersensitive responses-like necrosis and systemic acquired resistance (SAR) in cotton and tobacco. To understand immune activation mechanisms whereby PevD1 elicits defense response, the yeast two-hybrid (Y2H) assay was performed to explore interacting protein of PevD1 in Arabidopsis thaliana, and a partner AtNRP (At5g42050) was identified. Here, AtNRP homolog in Nicotiana benthamiana was identified and designated as Nbnrp1. The Nbnrp1 could interact with PevD1 via Y2H and bimolecular fluorescence complementation (BiFC) analyses. Moreover, truncated protein binding assays demonstrated that the C-terminal 132 amino acid (development and cell death, DCD domain) of Nbnrp1 is required for PevD1-Nbnrp1 interaction. To further investigate the roles of Nbnrp1 in PevD1-induced defense response, Nbnrp1-overexpressing and Nbnrp1-silence transgenic plants were generated. The overexpression of Nbnrp1 conferred enhancement of PevD1-induced necrosis activity and disease resistance against tobacco mosaic virus (TMV), bacterial pathogen Pseudomonas syringae pv. tabaci and fungal pathogen V. dahliae. By contrast, Nbnrp1-silence lines displayed attenuated defense response compared with the wild-type. It is the first report that an asparagine-rich protein Nbnrp1 positively regulated V. dahliae secretory protein PevD1-induced cell death response and disease resistance in N. benthamiana.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Xu J, Wang X, Li Y, Zeng J, Wang G, Deng C, Guo W. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1629-1643. [PMID: 29431919 PMCID: PMC6096726 DOI: 10.1111/pbi.12900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/03/2018] [Indexed: 05/20/2023]
Abstract
Verticillium wilt (VW), caused by soil-borne fungi of the genus Verticillium, is a serious disease affecting a wide range of plants and leading to a constant and major challenge to agriculture worldwide. Cotton (Gossypium hirsutum) is the world's most important natural textile fibre and oil crop. VW of cotton is a highly devastating vascular disease; however, few resistant germplasms have been reported in cotton. An increasing number of studies have shown that RNA interference (RNAi)-based host-induced gene silencing (HIGS) is an effective strategy for improving plant resistance to pathogens by silencing genes essential for the pathogenicity of these pathogens. Here, we have identified and characterized multifunctional regulators of G protein signalling (RGS) in the Verticillium dahliae virulence strain, Vd8. Of eight VdRGS genes, VdRGS1 showed the most significant increase in expression in V. dahliae after treating with the roots of cotton seedlings. Based on the phenotype detection of VdRGS1 deletion and complementation mutants, we found that VdRGS1 played crucial roles in spore production, hyphal development, microsclerotia formation and pathogenicity. Tobacco rattle virus-mediated HIGS in cotton plants silenced VdRGS1 transcripts in invaded V. dahliae strains and enhanced broad-spectrum resistance to cotton VW. Our data demonstrate that VdRGS1 is a conserved and essential gene for V. dahliae virulence. HIGS of VdRGS1 provides effective control against V. dahliae infection and could obtain the durable disease resistance in cotton and in other VW-susceptible host crops by developing the stable transformants.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xinyu Wang
- College of Life SciencesNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yongqing Li
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Jianguo Zeng
- College of Life SciencesNanjing Agricultural UniversityNanjingJiangsuChina
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Chaoyang Deng
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
42
|
Zhang L, Ni H, Du X, Wang S, Ma XW, Nürnberger T, Guo HS, Hua C. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. THE NEW PHYTOLOGIST 2017; 215:368-381. [PMID: 28407259 DOI: 10.1111/nph.14537] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/21/2017] [Indexed: 05/05/2023]
Abstract
Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection.
Collapse
Affiliation(s)
- Lisha Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, D-72076, Germany
| | - Hao Ni
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Wei Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, D-72076, Germany
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenlei Hua
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, D-72076, Germany
| |
Collapse
|
43
|
Bibi N, Ahmed IM, Fan K, Dawood M, Li F, Yuan S, Wang X. Role of brassinosteroids in alleviating toxin-induced stress of Verticillium dahliae on cotton callus growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12281-12292. [PMID: 28357791 DOI: 10.1007/s11356-017-8738-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Brassinosteroids are well known to mitigate biotic stresses; however, their role to induce tolerance against Verticillium dahliae is unknown. The current study employed V. dahliae (Vd) toxin as pathogen-free model system to induce stress on cotton callus growth, and its amelioration was investigated using 24-epibrassinolide (EBR). Results revealed that EBR has ameliorative effects against Vd toxin with greater seen effect when callus was treated with EBR prior to its exposure to Vd toxin (pre-EBR treatment) than EBR applied along with Vd toxin simultaneously (co-EBR treatment). Pre-EBR-treated calli remained green, while 65 and 90% callus browning was observed in co-EBR- and Vd toxin-alone-treated callus, respectively. Likewise, the fresh weight of the pre-EBR-treated callus was 52% higher than Vd toxin-alone treatment, whereas this increase was only 23% in co-EBR-treated callus. Meanwhile, EBR treatment of the cotton callus has also increased the contents of chlorophylls a and b, carotenoids, total phenols, flavonoids, soluble sugars, and proteins and increased the activity of enzymes involved in secondary metabolism like polyphenol oxidase (PPO), phenylalanine ammonialyase (PAL), cinnamyl alchol dehydrogenase (CAD), and shikimate dehydrogenase (SKDH) over Vd toxin-alone treatment with higher increments being observed in pre-EBR-treated callus. Furthermore, EBR treatment mimicked the DNA damage and improved the structure of mitochondria, granum, stroma thylakoids, and the attachment of ribosomes with the endoplasmic reticulum. This EBR-mediated mitigation was primarily associated with substantially increased contents of photosynthetic pigments and regulation of secondary metabolism.
Collapse
Affiliation(s)
- Noreen Bibi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Imrul Mosaddek Ahmed
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
- Plant Physiology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Kai Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Dawood
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Shuna Yuan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Lopisso DT, Knüfer J, Koopmann B, von Tiedemann A. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus. PHYTOPATHOLOGY 2017; 107:444-454. [PMID: 27992306 DOI: 10.1094/phyto-07-16-0280-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.
Collapse
Affiliation(s)
- Daniel Teshome Lopisso
- Department of Crop Sciences, Division of Plant Pathology and Crop Protection, Georg August University, Grisebachstr. 6, 37077 Göttingen, Germany
| | - Jessica Knüfer
- Department of Crop Sciences, Division of Plant Pathology and Crop Protection, Georg August University, Grisebachstr. 6, 37077 Göttingen, Germany
| | - Birger Koopmann
- Department of Crop Sciences, Division of Plant Pathology and Crop Protection, Georg August University, Grisebachstr. 6, 37077 Göttingen, Germany
| | - Andreas von Tiedemann
- Department of Crop Sciences, Division of Plant Pathology and Crop Protection, Georg August University, Grisebachstr. 6, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Liu N, Zhang X, Sun Y, Wang P, Li X, Pei Y, Li F, Hou Y. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton. Sci Rep 2017; 7:39840. [PMID: 28079053 PMCID: PMC5228132 DOI: 10.1038/srep39840] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/29/2016] [Indexed: 01/29/2023] Open
Abstract
Polygalacturonase-inhibiting protein (PGIP), belonging to a group of plant defence proteins, specifically inhibits endopolygalacturonases secreted by pathogens. Herein, we showed that purified GhPGIP1 is a functional inhibitor of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, the two fungal pathogens causing cotton wilt. Transcription of GhPGIP1 was increased in cotton upon infection, wounding, and treatment with defence hormone and H2O2. Resistance by GhPGIP1 was examined by its virus-induced gene silencing in cotton and overexpression in Arabidopsis. GhPGIP1-silenced cotton was highly susceptible to the infections. GhPGIP1 overexpression in transgenic Arabidopsis conferred resistance to the infection, accompanied by enhanced expression of pathogenesis-related proteins (PRs), isochorismate synthase 1 (ICS1), enhanced disease susceptibility 1 (EDS1), and phytoalexin-deficient 4 (PAD4) genes. Transmission electron microscopy revealed cell wall alteration and cell disintegration in plants inoculated with polygalacturonase (PGs), implying its role in damaging the cell wall. Docking studies showed that GhPGIP1 interacted strongly with C-terminal of V. dahliae PG1 (VdPG1) beyond the active site but weakly interacted with C-terminal of F. oxysporum f. sp. vasinfectum (FovPG1). These findings will contribute towards the understanding of the roles of PGIPs and in screening potential combat proteins with novel recognition specificities against evolving pathogenic factors for countering pathogen invasion.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, People’s Republic of China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, People’s Republic of China
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| |
Collapse
|
46
|
Häffner E, Diederichsen E. Belowground Defence Strategies Against Verticillium Pathogens. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42319-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Zhang YL, Li ZF, Feng ZL, Feng HJ, Shi YQ, Zhao LH, Zhang XL, Zhu HQ. Functional Analysis of the Pathogenicity-Related Gene VdPR1 in the Vascular Wilt Fungus Verticillium dahliae. PLoS One 2016; 11:e0166000. [PMID: 27846253 PMCID: PMC5112940 DOI: 10.1371/journal.pone.0166000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022] Open
Abstract
Verticillium dahliae Kleb., the causal agent of vascular wilt, can seriously diminish the yield and quality of many crops, including cotton. The pathogenic mechanism to cotton is complicated and unclear now. To screen pathogencity related genes and identify their function is the reliable way to explain the mechanism. In this study, we obtained a low-pathogenicity mutant vdpr1 from a T-DNA insertional library of the highly virulent isolate of V. dahliae Vd080, isolated from cotton. The tagged gene was named pathogenicity-related gene (VdPR1). The deletion mutant ΔVdPR1 did not form microsclerotia and showed a drastic reduction in spore yield and mycelial growth, compared to wild type. Also, ΔVdPR1 showed significantly lower protease and cellulase activities than those of wild type. Complementation of the mutant strain with VdPR1 (strain ΔVdPR1-C) almost completely rescued the attributes described above to wild-type levels. The knockout mutant ΔVdPR1 showed delayed infection, caused mild disease symptoms, formed a smaller biomass in roots of the host, and showed compromised systemic invasive growth in the xylem. These results suggest that VdPR1 is a multifaceted gene involved in regulating the growth development, early infection and pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Ya-Lin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhi-Fang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zi-Li Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Hong-Jie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yong-Qiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Li-Hong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xi-Ling Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
- * E-mail: (XLZ); (HQZ)
| | - He-Qin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
- * E-mail: (XLZ); (HQZ)
| |
Collapse
|
48
|
Toueni M, Ben C, Le Ru A, Gentzbittel L, Rickauer M. Quantitative Resistance to Verticillium Wilt in Medicago truncatula Involves Eradication of the Fungus from Roots and Is Associated with Transcriptional Responses Related to Innate Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1431. [PMID: 27746789 PMCID: PMC5041324 DOI: 10.3389/fpls.2016.01431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/08/2016] [Indexed: 05/07/2023]
Abstract
Resistance mechanisms to Verticillium wilt are well-studied in tomato, cotton, and Arabidopsis, but much less in legume plants. Because legume plants establish nitrogen-fixing symbioses in their roots, resistance to root-attacking pathogens merits particular attention. The interaction between the soil-borne pathogen Verticillium alfalfae and the model legume Medicago truncatula was investigated using a resistant (A17) and a susceptible (F83005.5) line. As shown by histological analyses, colonization by the pathogen was initiated similarly in both lines. Later on, the resistant line A17 eliminated the fungus, whereas the susceptible F83005.5 became heavily colonized. Resistance in line A17 does not involve homologs of the well-characterized tomato Ve1 and V. dahliae Ave1 genes. A transcriptomic study of early root responses during initial colonization (i.e., until 24 h post-inoculation) similarly was performed. Compared to the susceptible line, line A17 displayed already a significantly higher basal expression of defense-related genes prior to inoculation, and responded to infection with up-regulation of only a small number of genes. Although fungal colonization was still low at this stage, the susceptible line F83005.5 exhibited a disorganized response involving a large number of genes from different functional classes. The involvement of distinct phytohormone signaling pathways in resistance as suggested by gene expression patterns was supported by experiments with plant hormone pretreatment before fungal inoculation. Gene co-expression network analysis highlighted five main modules in the resistant line, whereas no structured gene expression was found in the susceptible line. One module was particularly associated to the inoculation response in A17. It contains the majority of differentially expressed genes, genes associated with PAMP perception and hormone signaling, and transcription factors. An in silico analysis showed that a high number of these genes also respond to other soil-borne pathogens in M. truncatula, suggesting a core of transcriptional response to root pathogens. Taken together, the results suggest that resistance in M. truncatula line A17 might be due to innate immunity combining preformed defense and PAMP-triggered defense mechanisms, and putative involvement of abscisic acid.
Collapse
Affiliation(s)
- Maoulida Toueni
- EcoLab, Université de Toulouse, CNRS, INPT, UPSToulouse, France
| | - Cécile Ben
- EcoLab, Université de Toulouse, CNRS, INPT, UPSToulouse, France
| | - Aurélie Le Ru
- Research Federation “Agrobiosciences, Interactions et Biodiversité”Castanet-Tolosan, France
| | | | | |
Collapse
|
49
|
Wang S, Xing H, Hua C, Guo HS, Zhang J. An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae. PHYTOPATHOLOGY 2016; 106:645-652. [PMID: 26780432 DOI: 10.1094/phyto-10-15-0280-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.
Collapse
Affiliation(s)
- Sheng Wang
- All authors: State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101; and first and second authors: University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiying Xing
- All authors: State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101; and first and second authors: University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenlei Hua
- All authors: State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101; and first and second authors: University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Shan Guo
- All authors: State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101; and first and second authors: University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- All authors: State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101; and first and second authors: University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Ho CL, Tan YC, Yeoh KA, Ghazali AK, Yee WY, Hoh CC. De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genomics 2016; 17:66. [PMID: 26781612 PMCID: PMC4717632 DOI: 10.1186/s12864-016-2368-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 01/06/2016] [Indexed: 11/25/2022] Open
Abstract
Background Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively. Results Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants. Conclusion The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2368-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chai-Ling Ho
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM-Serdang, Selangor, Malaysia. .,Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM-Serdang, Selangor, Malaysia.
| | - Yung-Chie Tan
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM-Serdang, Selangor, Malaysia.
| | - Keat-Ai Yeoh
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM-Serdang, Selangor, Malaysia.
| | - Ahmad-Kamal Ghazali
- Codon Genomics S/B, 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200 Seri Kembangan, Selangor, Malaysia.
| | - Wai-Yan Yee
- Codon Genomics S/B, 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200 Seri Kembangan, Selangor, Malaysia.
| | - Chee-Choong Hoh
- Codon Genomics S/B, 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200 Seri Kembangan, Selangor, Malaysia.
| |
Collapse
|