1
|
Freitas BLS, Fava NMDN, Melo-Neto MGD, Dalkiranis GG, Tonetti AL, Byrne JA, Fernandez-Ibañez P, Sabogal-Paz LP. Efficacy of UVC-LED radiation in bacterial, viral, and protozoan inactivation: an assessment of the influence of exposure doses and water quality. WATER RESEARCH 2024; 266:122322. [PMID: 39213680 DOI: 10.1016/j.watres.2024.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Ultraviolet light-emitting diodes (UV-LEDs) have demonstrated the ability to inactivate microorganisms in water, offering an environmentally safer alternative to the conventional mercury lamp, in UV applications. While several studies have explored the microbiological effect of UVC-LEDs (200nm-280nm), limited information exists regarding their effects on waters with critical qualities. These critical qualities encompass bacteria, viruses, and protozoa - drinking water quality indicators defined by the World Health Organization for small water systems. For the first time, this work reports on the Escherichia coli, PhiX-174, MS2, and Cryptosporidium oocysts inactivation using a bench-scale UVC-LED (280 nm) water disinfection system. UV doses at a wavelength of 280 nm (UV280) of up to 143.4 mJ/cm2 were delivered under two quality-critical water conditions: filtered water (UV transmittance at 280 nm - UVT280 90.2 %) and WHO challenge water (UVT 15.7 %). Results revealed microbiological reductions dependent on exposure time and UVT. For UV280 dose of 16.1 mJ/cm2, 2.93-3.70 log E. coli reductions were observed in UVT 90.2 % and 15.7 %, 3.49-4.21 log for PhiX-174, 0.63-0.78 log for MS2, and 0.02-0.04 log for Cryptosporidium oocysts. Significantly higher UV280 doses of 143.4 mJ/cm2 led to reductions of 3.94-5.35 log for MS2 and 0.42-0.46 log for Cryptosporidium oocysts. Statistical analysis revealed that the sensitivity among the organisms to UV280 exposure was E. coli = PhiX-174 > MS2 >> Cryptosporidium oocysts. Although experiments with WHO challenge water posed greater challenges for achieving 1 log reduction compared to filtered water, this difference only proved statistically significant for PhiX-174 and MS2 reductions. Overall, UVC-LED technology demonstrated notable efficacy in microbiological inactivation, achieving significant reductions based on WHO scheme of evaluation for POU technologies in both bacteria and viruses even in critical-quality waters. The findings emphasize the potential for extending the application of UVC-LED as a viable solution for household water treatment.
Collapse
Affiliation(s)
- Bárbara Luíza Souza Freitas
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Natália Melo de Nasser Fava
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Murilo Guilherme de Melo-Neto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Gustavo Gonçalves Dalkiranis
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Adriano Luiz Tonetti
- School of Civil Engineering, Architecture and Urbanism - FECFAU, UNICAMP (State University of Campinas), Avenida Albert Einstein, 951, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-852, Brazil
| | - John Anthony Byrne
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Jordanstown, BT37 0QB, Northern Ireland, United Kingdom
| | - Pilar Fernandez-Ibañez
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Jordanstown, BT37 0QB, Northern Ireland, United Kingdom
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
2
|
Buse HY, Hall JS, Hunter GL, Goodrich JA. Differences in UV-C LED Inactivation of Legionella pneumophila Serogroups in Drinking Water. Microorganisms 2022; 10:microorganisms10020352. [PMID: 35208810 PMCID: PMC8877565 DOI: 10.3390/microorganisms10020352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/05/2022] Open
Abstract
Legionella pneumophila (Lp) is an opportunistic pathogen that causes respiratory infections primarily through inhalation of contaminated aerosols. Lp can colonize premise plumbing systems due to favorable growth conditions (e.g., lower disinfectant residual, stagnation, warm temperatures). UV-C light-emitting diodes (UV-C LEDs) are an emerging water treatment technology and have been shown to effectively inactivate waterborne pathogens. In this study, the inactivation of four Lp strains (three clinical sg1, 4, and 6; and one sg1 drinking water (DW) isolate) was evaluated using a UV-C LED collimated beam at three wavelengths (255, 265, and 280 nm) and six fluence rates (0.5–34 mJ/cm2). Exposure to 255 nm resulted in higher log reductions at the lower fluences compared to exposures at 265 and 280 nm. Efficacy testing was also performed using a UV-C LED point-of-entry (POE) flow-through device. Based on the log inactivation curves, at 255 nm, the sg4 and sg6 clinical isolates were more susceptible to inactivation compared to the two sg1 isolates. However, at 265 and 280 nm, the sg1 and sg4 clinical isolates were more resistant to inactivation compared to the sg6 clinical and sg1 DW isolates. Differential log reductions were also observed using the POE device. Results indicate that although UV-C LED disinfection is effective, variations in Lp inactivation, wavelengths, and technology applications should be considered, especially when targeting specific isolates within premise plumbing systems.
Collapse
Affiliation(s)
- Helen Y. Buse
- US Environmental Protection Agency (USEPA), Office of Research and Development (ORD), Center for Environmental Solutions & Emergency Response (CESER), Homeland Security and Materials Management Division, Cincinnati, OH 45268, USA; (J.S.H.); (J.A.G.)
- Correspondence:
| | - John S. Hall
- US Environmental Protection Agency (USEPA), Office of Research and Development (ORD), Center for Environmental Solutions & Emergency Response (CESER), Homeland Security and Materials Management Division, Cincinnati, OH 45268, USA; (J.S.H.); (J.A.G.)
| | | | - James A. Goodrich
- US Environmental Protection Agency (USEPA), Office of Research and Development (ORD), Center for Environmental Solutions & Emergency Response (CESER), Homeland Security and Materials Management Division, Cincinnati, OH 45268, USA; (J.S.H.); (J.A.G.)
| |
Collapse
|
3
|
Cho KH, Wolny J, Kase JA, Unno T, Pachepsky Y. Interactions of E. coli with algae and aquatic vegetation in natural waters. WATER RESEARCH 2022; 209:117952. [PMID: 34965489 DOI: 10.1016/j.watres.2021.117952] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Both algae and bacteria are essential inhabitants of surface waters. Their presence is of ecological significance and sometimes of public health concern triggering various control actions. Interactions of microalgae, macroalgae, submerged aquatic vegetation, and bacteria appear to be important phenomena necessitating a deeper understanding by those involved in research and management of microbial water quality. Given the long-standing reliance on Escherichia coli as an indicator of the potential presence of pathogens in natural waters, understanding its biology in aquatic systems is necessary. The major effects of algae and aquatic vegetation on E. coli growth and survival, including changes in the nutrient supply, modification of water properties and constituents, impact on sunlight radiation penetration, survival as related to substrate attachment, algal mediation of secondary habitats, and survival inhibition due to the release of toxic substances and antibiotics, are discussed in this review. An examination of horizontal gene transfer and antibiotic resistance potential, strain-specific interactions, effects on the microbial, microalgae, and grazer community structure, and hydrodynamic controls is given. Outlooks due to existing and expected consequences of climate change and advances in observation technologies via high-resolution satellite imaging, unmanned aerial vehicles (drones), and mathematical modeling are additionally covered. The multiplicity of interactions among bacteria, algae, and aquatic vegetation as well as multifaceted impacts of these interactions, create a wide spectrum of research opportunities and technology developments.
Collapse
Affiliation(s)
- Kyung Hwa Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jennifer Wolny
- Division of Microbiology, Office of Regulatory Science, Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Julie A Kase
- Division of Microbiology, Office of Regulatory Science, Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Tatsui Unno
- College of Applied Life Science, Jeju National University, Republic of Korea
| | - Yakov Pachepsky
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, USA.
| |
Collapse
|
4
|
Masjoudi M, Mohseni M, Bolton JR. Sensitivity of Bacteria, Protozoa, Viruses, and Other Microorganisms to Ultraviolet Radiation. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2021; 126:126021. [PMID: 39081635 PMCID: PMC11259122 DOI: 10.6028/jres.126.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 08/02/2024]
Abstract
Data concerning the sensitivity of various organisms to ultraviolet (UV) radiation exposure are very important in the design of UV disinfection equipment. This review analyzes fluence data from almost 250 studies and organizes the data into a set of recommended fluence values for specific log reductions and an appendix containing all the collected data. This article was sponsored by Dianne L. Poster, Material Measurement Laboratory, and C. Cameron Miller, Physical Measurement Laboratory, National Institute of Standards and Technology (NIST). It is published in collaboration with the International Ultraviolet Association as a complement to the NIST Workshop on Ultraviolet Disinfection Technologies, 14-15 January 2020, Gaithersburg, MD. The views expressed represent those of the authors and not necessarily those of NIST.
Collapse
Affiliation(s)
- Mahsa Masjoudi
- Department of Chemical & Biological
Engineering University of British Columbia Vancouver, BC, V6T 1Z3
Canada
| | - Madjid Mohseni
- Department of Chemical & Biological
Engineering University of British Columbia Vancouver, BC, V6T 1Z3
Canada
| | - James R. Bolton
- Department of Civil and Environmental
Engineering University of Alberta Edmonton, AB, T6G 2R3
Canada
| |
Collapse
|
5
|
Prior physicochemical stress exposures and subsequent UV-C resistance of E. coli O157:H7 in coconut liquid endosperm. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hess-Erga OK, Moreno-Andrés J, Enger Ø, Vadstein O. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:704-716. [PMID: 30677936 DOI: 10.1016/j.scitotenv.2018.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Increasing concerns have accelerated the development of international regulations and methods for ballast water management to limit the introduction of non-indigenous species. The transport of microorganisms with ballast water has received scientific attention in recent years. However, few studies have focused on the importance of organisms smaller than 10 μm in diameter. In this work, we review the effects of ballast water transport, disinfection, and the release of microorganisms on ecosystem processes with a special focus on heterotrophic bacteria. It is important to evaluate both direct and indirect effects of ballast water treatment systems, such as the generation of easily degradable substrates and the subsequent regrowth of heterotrophic microorganisms in ballast tanks. Disinfection of water can alter the composition of bacterial communities through selective recolonization in the ballast water or the recipient water, and thereby affects bacterial driven functions that are important for the marine food web. Dissolved organic matter quality and quantity and the ecosystem status of the treated water can also be affected by the disinfection method used. These side effects of disinfection should be further investigated in a broader context and in different scales (laboratory studies, large-scale facilities, and on the ships).
Collapse
Affiliation(s)
- Ole-Kristian Hess-Erga
- NTNU Norwegian University of Science and Technology, Department of Biotechnology and Food Science, 7491 Trondheim, Norway
| | - Javier Moreno-Andrés
- Department of Environmental Technologies, University of Cádiz, INMAR-Marine Research Institute, Camepus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain
| | - Øivind Enger
- Sarsia Seed AS, Postboks 7150, 5020 Bergen, Norway
| | - Olav Vadstein
- NTNU Norwegian University of Science and Technology, Department of Biotechnology and Food Science, 7491 Trondheim, Norway.
| |
Collapse
|
7
|
UV‑C irradiation as an alternative treatment technique: Study of its effect on microbial inactivation, cytotoxicity, and sensory properties in cranberry-flavored water. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Farrell C, Hassard F, Jefferson B, Leziart T, Nocker A, Jarvis P. Turbidity composition and the relationship with microbial attachment and UV inactivation efficacy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:638-647. [PMID: 29272833 DOI: 10.1016/j.scitotenv.2017.12.173] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Turbidity in water can be caused by a range of different turbidity causing materials (TCM). Here the characteristics and attachment of bacteria to TCMs was assessed and the resultant impact on UV disinfection determined. TCMs represent potential vehicles for bacterial penetration of water treatment barriers, contamination of potable supplies and impact on subsequent human health. The TCMs under investigation were representative of those that may be present in surface and ground waters, both from the source and formed in the treatment process. The TCMs were chalk, Fe (III) hydroxide precipitate, kaolin clay, manganese dioxide and humic acids, at different turbidity levels representative of source waters (0, 0.1, 0.2, 0.4, 1, 2, and 5 NTU). Escherichia coli and Enterococcus faecalis attachment followed the order of Fe(III)>chalk, with little to no attachment seen for MnO2, humic acids and clay. The attachment was postulated to be due to chalk and Fe(III) particles having a more neutral surface charge resulting in elevated aggregation with bacteria compared to other TCMs. The humic acids and Fe(III) were the TCMs which influenced inactivation of E. coli and E. faecalis due to decreasing UV transmittance (UVT) with increasing TCM concentration. The presence of the Fe(III) TCM at 0.2 NTU resulted in the poorest E. coli inactivation, with 2.5 log10 reduction at UV dose of 10mJcm-2 (kd of -0.23cm2mJ-1) compared to a 3.9 log10 reduction in the absence of TCMs. E. faecalis had a greater resistance to UV irradiation than E. coli for all TCMs. Effective disinfection of drinking water is a priority for ensuring high public health standards. Uniform regulations for turbidity levels for waters pre-disinfection by UV light set by regulators may not always be appropriate and efficacy is dependent on the type, as well as the amount, of turbidity present in the water.
Collapse
Affiliation(s)
- Charlotte Farrell
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Bruce Jefferson
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Tangui Leziart
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | | | - Peter Jarvis
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
9
|
Meunier SM, Sasges MR, Aucoin MG. Evaluating ultraviolet sensitivity of adventitious agents in biopharmaceutical manufacturing. J Ind Microbiol Biotechnol 2017; 44:893-909. [PMID: 28283956 PMCID: PMC7087614 DOI: 10.1007/s10295-017-1917-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
Abstract
Incidents of contamination in biopharmaceutical production have highlighted the need to apply alternative or supplementary disinfection techniques. Ultraviolet (UV) irradiation is a well-established method for inactivating a broad range of microorganisms, and is therefore a good candidate as an orthogonal technique for disinfection. To apply UV as a safeguard against adventitious agents, the UV sensitivity of these target agents must be known so that the appropriate dose of UV may be applied to achieve the desired level of inactivation. This document compiles and reviews experimentally derived 254 nm sensitivities of organisms relevant to biopharmaceutical production. In general, different researchers have found similar sensitivity values despite a lack of uniformity in experimental design or standardized quantification techniques. Still, the lack of consistent methodologies has led to suspicious UV susceptibilities in certain instances, justifying the need to create a robust collection of sensitivity values that can be used in the design and sizing of UV systems for the inactivation of adventitious agents.
Collapse
Affiliation(s)
- Sarah M Meunier
- Trojan Technologies, 3020 Gore Rd., London, ON, N5V 4T7, Canada.,Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michael R Sasges
- Trojan Technologies, 3020 Gore Rd., London, ON, N5V 4T7, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
10
|
Gabriel AA, Colambo JCR. Comparative resistances of selected spoilage and pathogenic bacteria in ultraviolet-C-treated, turbulent-flowing young coconut liquid endosperm. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
The response of aggregated Pseudomonas putida CP1 cells to UV-C and UV-A/B disinfection. World J Microbiol Biotechnol 2016; 32:185. [DOI: 10.1007/s11274-016-2138-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
|
12
|
Qiang Z, Zhang H, Dong H, Adams C, Luan G, Wang L. Formation of disinfection byproducts in a recirculating mariculture system: emerging concerns. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:471-477. [PMID: 25573452 DOI: 10.1039/c4em00564c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Disinfection is commonly employed in recirculating mariculture systems (RMS) to control animal diseases and improve seawater quality; however, little is known about the occurrence of disinfection byproducts (DBPs) formed in such RMS. Beijing Aquarium is a typical RMS with artificially prepared seawater and mainly adopts a decentralized treatment strategy for different animal tanks, including sand filtration, foam fractionation, and disinfection (O3, UV, and O3/ClO2). This study reveals that the adopted disinfection processes were highly effective in controlling marine heterotrophic bacteria; however, some concerns were raised on the formation of various kinds of DBPs, including secondary oxidants, inorganic oxyanions, and hazardous organic species. Free chlorine and free bromine were generated from ozonation at health-relevant concentrations. High concentrations of BrO3(-) and ClO3(-) were formed in mammal tanks, which exceeded the USEPA-regulated maximum contaminant level (MCL) for drinking water by 19-25 and 52-54 times, respectively. Extremely high concentrations of NO3(-) were detected in mammal tanks, which considerably exceeded the MCL regulated by the Sea Water Quality Standard of China for the mariculture industry (Class II) by about 1100 times. Undoubtedly, the presence of various DBPs poses serious health threats to aquarium animals. To solve these problems, potential control measures for DBPs are proposed.
Collapse
Affiliation(s)
- Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | | | | | | | | | | |
Collapse
|
13
|
Liu G, Verberk JQJC, Van Dijk JC. Bacteriology of drinking water distribution systems: an integral and multidimensional review. Appl Microbiol Biotechnol 2013; 97:9265-76. [DOI: 10.1007/s00253-013-5217-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 11/27/2022]
|
14
|
Liu G, Ling FQ, Magic-Knezev A, Liu WT, Verberk JQJC, Van Dijk JC. Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods. WATER RESEARCH 2013; 47:3523-33. [PMID: 23618316 DOI: 10.1016/j.watres.2013.03.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/02/2013] [Accepted: 03/31/2013] [Indexed: 05/16/2023]
Abstract
Water quality regulations commonly place quantitative limits on the number of organisms (e.g., heterotrophic plate count and coliforms) without considering the presence of multiple cells per particle, which is only counted as one regardless how many cells attached. Therefore, it is important to quantify particle-associated bacteria (PAB), especially cells per particle. In addition, PAB may house (opportunistic) pathogens and have higher resistance to disinfection than planktonic bacteria. It is essential to know bacterial distribution on particles. However, limited information is available on quantification and identification of PAB in drinking water. In the present study, PAB were sampled from the unchlorinated drinking water at three treatment plants in the Netherlands, each with different particle compositions. Adenosine triphosphate (ATP) and total cell counts (TCC) with flow cytometry were used to quantify the PAB, and high-throughput pyrosequencing was used to identify them. The number and activity of PAB ranged from 1.0 to 3.5 × 10(3) cells ml(-1) and 0.04-0.154 ng l(-1) ATP. There were between 25 and 50 cells found to be attached on a single particle. ATP per cell in PAB was higher than in planktonic bacteria. Among the identified sequences, Proteobacteria were found to be the most dominant phylum at all locations, followed by OP3 candidate division and Nitrospirae. Sequences related to anoxic bacteria from the OP3 candidate division and other anaerobic bacteria were detected. Genera of bacteria were found appear to be consistent with the major element composition of the associated particles. The presence of multiple cells per particle challenges the use of quantitative methods such as HPC and Coliforms that are used in the current drinking water quality regulations. The detection of anoxic and anaerobic bacteria suggests the ecological importance of PAB in drinking water distribution systems.
Collapse
Affiliation(s)
- G Liu
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
15
|
Nourmoradi H, Nikaeen M, Stensvold CR, Mirhendi H. Ultraviolet irradiation: An effective inactivation method of Aspergillus spp. in water for the control of waterborne nosocomial aspergillosis. WATER RESEARCH 2012; 46:5935-5940. [PMID: 22985523 DOI: 10.1016/j.watres.2012.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/31/2012] [Accepted: 08/11/2012] [Indexed: 06/01/2023]
Abstract
Invasive aspergillosis is the second most common cause of nosocomial fungal infections and occurring mainly by Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger. There is evidence that nosocomial aspergillosis may be waterborne. This study was conducted to evaluate the ultraviolet (UV) irradiation efficiency in terms of inactivating the most important Aspergillus species in water since these are potential sources for nosocomial aspergillosis. A continuous flow UV reactor which could be used as a point-of-use (POU) system was used to survey Aspergillus inactivation by UV irradiation. The inactivation efficiency of UV fluence (4.15-25 mJ/cm(2)) was measured by determination of fungal density in water before and after radiation. Because turbidity and iron concentration are two major water quality factors impacting UV disinfection effectiveness, the potential influence of these factors on UV inactivation of Aspergillus spp. was also measured. The 4 log inactivation for A. fumigatus, A. niger and A. flavus at a density of 1000 cfu/ml was achieved at UV fluences of 12.45 mJ/cm(2), 16.6 mJ/cm(2) and 20.75 mJ/cm(2), respectively. The inactivation efficiency for lower density (100 cfu/ml) was the same as for the higher density except for A. flavus. The removal efficiency of Aspergillus spp. was decreased by increasing the turbidity and iron concentration. UV disinfection could effectively inactivate Aspergillus spores from water and eliminate potential exposure of high-risk patients to fungal aerosols by installation of POU UV systems.
Collapse
Affiliation(s)
- H Nourmoradi
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | | | | | | |
Collapse
|
16
|
Kollu K, Ormeci B. Effect of particles and bioflocculation on ultraviolet disinfection of Escherichia coli. WATER RESEARCH 2012; 46:750-60. [PMID: 22172560 DOI: 10.1016/j.watres.2011.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 10/21/2011] [Accepted: 11/16/2011] [Indexed: 05/26/2023]
Abstract
Presence of particles is known to decrease the effectiveness of ultraviolet (UV) disinfection by shielding the targeted microorganisms from UV light. This study aims to provide an in-depth understanding on the effect of particles and flocs on UV disinfection by using a stable, well-defined and well-controlled synthetic system that can simulate the bioflocculation of particles and microorganisms in water and wastewater samples. The synthetic system was created by using Escherichia coli, latex particles (1, 3.2, 11, 25, and 45 μm), alginate, and divalent cations; and the bioflocculation of particles was achieved naturally, as it would occur in the environment, without using chemical coagulants. E. coli was quantified before and after UV disinfection using membrane filtration. Even in the absence of particles, some of the self-aggregated E. coli could survive a UV dose of 90 mJ/cm(2). E. coli inactivation levels measured in the presence of particles were lower than the inactivation levels measured in the absence of particles. At low UV doses (<9 mJ/cm(2)), neither particle size nor degree of flocculation had a significant effect on the inactivation of E. coli. Particle size had a significant effect on the inactivation of E. coli only at high UV doses (80 mJ/cm(2)), and larger particles (e.g., 25 μm) protected bacteria more compared to smaller particles (e.g., 3.2 and 11 μm). What size of particles flocs were made of (3.2, 11, and 25 μm) did not make a significant difference on the inactivation levels of E. coli. For 3.2 μm particles, there was no significant difference in E. coli inactivation between non-flocculated and flocculated samples at any UV dose. For 11 and 25 μm particles, there was a significant difference in E. coli inactivation between non-flocculated and flocculated samples at 80 mJ/cm(2). Degree of flocculation became a significant factor in determining the number of surviving bacteria only at high UV doses and only for larger particles.
Collapse
Affiliation(s)
- Kerim Kollu
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | | |
Collapse
|
17
|
Bacterioneuston community structure in the southern Baltic sea and its dependence on meteorological conditions. Appl Environ Microbiol 2011; 77:3726-33. [PMID: 21478321 DOI: 10.1128/aem.00042-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial community in the sea surface microlayer (SML) (bacterioneuston) is exposed to unique physicochemical properties and stronger meteorological influences than the bacterial community in the underlying water (ULW) (bacterioplankton). Despite extensive research, however, the structuring factors of the bacterioneuston remain enigmatic. The aim of this study was to examine the effect of meteorological conditions on bacterioneuston and bacterioplankton community structures and to identify distinct, abundant, active bacterioneuston members. Nineteen bacterial assemblages from the SML and ULW of the southern Baltic Sea, sampled from 2006 to 2008, were compared. Single-strand conformation polymorphism (SSCP) fingerprints were analyzed to distinguish total (based on the 16S rRNA gene) and active (based on 16S rRNA) as well as nonattached and particle-attached bacterial assemblages. The nonattached communities of the SML and ULW were very similar overall (similarity: 47 to 99%; mean: 88%). As an exception, during low wind speeds and high radiation levels, the active bacterioneuston community increasingly differed from the active bacterioplankton community. In contrast, the particle-attached assemblages in the two compartments were generally less similar (similarity: 8 to 98%; mean: 62%), with a strong variability in the active communities that was solely related to wind speed. Both nonattached and particle-attached active members of the bacterioneuston, which were found exclusively in the SML, were related to environmental clones belonging to the Cyanobacteria, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria originally found in diverse habitats, but especially in water columns. These results suggest that bacterioneuston communities are strongly influenced by the ULW but that specific meteorological conditions favor the development of distinctive populations in the air-water interface.
Collapse
|
18
|
Viscusi DJ, Bergman MS, Eimer BC, Shaffer RE. Evaluation of five decontamination methods for filtering facepiece respirators. ACTA ACUST UNITED AC 2009; 53:815-27. [PMID: 19805391 PMCID: PMC2781738 DOI: 10.1093/annhyg/mep070] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP. Further research is needed before any specific decontamination methods can be recommended.
Collapse
Affiliation(s)
- Dennis J Viscusi
- National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, PA 15236, USA
| | | | | | | |
Collapse
|
19
|
Marco-Noales E, Bertolini E, Morente C, López MM. Integrated approach for detection of nonculturable cells of Ralstonia solanacearum in asymptomatic Pelargonium spp. cuttings. PHYTOPATHOLOGY 2008; 98:949-955. [PMID: 18943214 DOI: 10.1094/phyto-98-8-0949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ralstonia solanacearum (biovar 2, race 3) is a soil and water-borne pathogen that causes serious diseases in several solanaceous hosts. It can also infect geranium plants, posing an important threat to their culture when latently infected cuttings are imported from countries where the pathogen is endemic. R. solanacearum can be present in very low numbers in asymptomatic geranium cuttings, and/or in a particular stressed physiological state that escapes direct isolation on the solid media usually employed. Consequently, an integrated protocol has been developed to analyze asymptomatic geranium cuttings routinely. The first screening tests include isolation and co-operational-polymerase chain reaction (Co-PCR), based on the simultaneous and co-operational action of three primers from 16S rRNA of R. solanacearum. This method was selected as the most sensitive one, able to detect only 1 cell/ml including nonculturable cells. When isolation is negative but Co-PCR is positive, the bioassay in tomato plants is proposed, since stressed bacterial cells or those present in low numbers that do not grow on solid media can be recovered from inoculated tomato plants and retain pathogenicity. This methodology has been demonstrated to be useful and has allowed us to assess the relevance of the physiological status of bacterial cells and its implications in detection. It also reveals the risk of introducing R. solanacearum through asymptomatic geranium material when relying only on bacterial isolation.
Collapse
Affiliation(s)
- E Marco-Noales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | | | | | | |
Collapse
|
20
|
|
21
|
Grandjean D, Jorand F, Guilloteau H, Block JC. Iron uptake is essential for Escherichia coli survival in drinking water. Lett Appl Microbiol 2006; 43:111-7. [PMID: 16834730 DOI: 10.1111/j.1472-765x.2006.01895.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to elucidate if the need for iron for Escherichia coli to remain cultivable in a poorly nutritive medium such as the drinking water uses the iron transport system via the siderophores. METHODS AND RESULTS Environmental strains of E. coli (isolated from a drinking water network), referenced strains of E. coli and mutants deficient in TonB, an essential protein for iron(III) acquisition, were incubated for 3 weeks at 25 degrees C, in sterile drinking water with and without lepidocrocite (gamma-FeOOH), an insoluble iron corrosion product. Only cells with a functional iron transport system were able to survive throughout the weeks. CONCLUSIONS The iron transport system via protein TonB plays an essential role on the survival of E. coli in a weakly nutritive medium like drinking water. SIGNIFICANCE AND IMPACTS OF THE STUDY Iron is a key parameter involved in coliform persistence in drinking water distribution systems.
Collapse
Affiliation(s)
- D Grandjean
- Laboratoire de Chimie Physique et Microbiologie Pour l'Environnement (LCPME), rue de Vandoeuvre, Villers-lès-Nancy, France
| | | | | | | |
Collapse
|