1
|
Lammens EM, Nikel PI, Lavigne R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 2020; 11:5294. [PMID: 33082347 PMCID: PMC7576135 DOI: 10.1038/s41467-020-19124-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Non-model bacteria like Pseudomonas putida, Lactococcus lactis and other species have unique and versatile metabolisms, offering unique opportunities for Synthetic Biology (SynBio). However, key genome editing and recombineering tools require optimization and large-scale multiplexing to unlock the full SynBio potential of these bacteria. In addition, the limited availability of a set of characterized, species-specific biological parts hampers the construction of reliable genetic circuitry. Mining of currently available, diverse bacteriophages could complete the SynBio toolbox, as they constitute an unexplored treasure trove for fully adapted metabolic modulators and orthogonally-functioning parts, driven by the longstanding co-evolution between phage and host.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, DK, Denmark
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium.
| |
Collapse
|
2
|
Webb CHT, Lupták A. Kinetic Parameters of trans Scission by Extended HDV-like Ribozymes and the Prospect for the Discovery of Genomic trans-Cleaving RNAs. Biochemistry 2018; 57:1440-1450. [PMID: 29388767 DOI: 10.1021/acs.biochem.7b00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV)-like ribozymes are self-cleaving catalytic RNAs with a widespread distribution in nature and biological roles ranging from self-scission during rolling-circle replication in viroids to co-transcriptional processing of eukaryotic retrotransposons, among others. The ribozymes fold into a double pseudoknot with a common catalytic core motif and highly variable peripheral domains. Like other self-cleaving ribozymes, HDV-like ribozymes can be converted into trans-acting catalytic RNAs by bisecting the self-cleaving variants at non-essential loops. Here we explore the trans-cleaving activity of ribozymes derived from the largest examples of the ribozymes (drz-Agam-2 family), which contain an extended domain between the substrate strand and the rest of the RNA. When this peripheral domain is bisected at its distal end, the substrate strand is recognized through two helices, rather than just one 7 bp helix common among the HDV ribozymes, resulting in stronger binding and increased sequence specificity. Kinetic characterization of the extended trans-cleaving ribozyme revealed an efficient trans-cleaving system with a surprisingly high KM', supporting a model that includes a recently proposed activation barrier related to the assembly of the catalytically competent ribozyme. The ribozymes also exhibit a very long koff for the products (∼2 weeks), resulting in a trade-off between sequence specificity and turnover. Finally, structure-based searches for the catalytic cores of these ribozymes in the genome of the mosquito Anopheles gambiae, combined with sequence searches for their putative substrates, revealed two potential ribozyme-substrate pairs that may represent examples of natural trans-cleaving ribozymes.
Collapse
Affiliation(s)
- Chiu-Ho T Webb
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States.,Department of Pharmaceutical Sciences , University of California-Irvine , Irvine , California 92697 , United States.,Department of Chemistry , University of California-Irvine , Irvine , California 92697 , United States
| |
Collapse
|
3
|
Scarborough RJ, Lévesque MV, Boudrias-Dalle E, Chute IC, Daniels SM, Ouellette RJ, Perreault JP, Gatignol A. A Conserved Target Site in HIV-1 Gag RNA is Accessible to Inhibition by Both an HDV Ribozyme and a Short Hairpin RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e178. [PMID: 25072692 PMCID: PMC4121520 DOI: 10.1038/mtna.2014.31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/03/2014] [Indexed: 12/18/2022]
Abstract
Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies.
Collapse
Affiliation(s)
- Robert J Scarborough
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Michel V Lévesque
- Département de Biochimie, RNA Group/Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Etienne Boudrias-Dalle
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Ian C Chute
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Sylvanne M Daniels
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | | | - Jean-Pierre Perreault
- Département de Biochimie, RNA Group/Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Anne Gatignol
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada [3] Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Silencing of amyloid precursor protein expression using a new engineered delta ribozyme. Int J Alzheimers Dis 2012; 2012:947147. [PMID: 22482079 PMCID: PMC3296272 DOI: 10.1155/2012/947147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) etiological studies suggest that an elevation in amyloid-β peptides (Aβ) level contributes to aggregations of the peptide and subsequent development of the disease. The major constituent of these amyloid peptides is the 1 to 40–42 residue peptide (Aβ40−42) derived from amyloid protein precursor (APP). Most likely, reducing Aβ levels in the brain may block both its aggregation and neurotoxicity and would be beneficial for patients with AD. Among the several possible ways to lower Aβ accumulation in the cells, we have selectively chosen to target the primary step in the Aβ cascade, namely, to reduce APP gene expression. Toward this end, we engineered specific SOFA-HDV ribozymes, a new generation of catalytic RNA tools, to decrease APP mRNA levels. Additionally, we demonstrated that APP-ribozymes are effective at decreasing APP mRNA and protein levels as well as Aβ levels in neuronal cells. Our results could lay the groundwork for a new protective treatment for AD.
Collapse
|
5
|
Abstract
Small cis-acting ribozymes have been converted into trans-acting ribozymes possessing the ability to cleave RNA substrates. The Hepatitis Delta Virus (HDV) ribozyme is one of the rare examples of these that is derived from an RNA species that is found in human cells. Consequently, it possesses the natural ability to function in the presence of human proteins in addition to an outstanding stability in human cells, two significant advantages in its use. The development of an additional specific on/off adaptor (SOFA) has led to the production of a new generation of HDV ribozymes with improved specificities that provide a tool with significant potential for future development in the fields of both functional genomics and gene -therapy. SOFA-HDV ribozyme-based gene inactivation systems have been reported in both prokaryotic and eukaryotic cells. Here, a step-by-step approach for the efficient design of highly specific SOFA-HDV ribozymes with a minimum investment of time and effort is described.
Collapse
Affiliation(s)
- Michel V Lévesque
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
6
|
Motard J, Rouxel R, Paun A, von Messling V, Bisaillon M, Perreault JP. A novel ribozyme-based prophylaxis inhibits influenza A virus replication and protects from severe disease. PLoS One 2011; 6:e27327. [PMID: 22110627 PMCID: PMC3215696 DOI: 10.1371/journal.pone.0027327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/13/2011] [Indexed: 12/17/2022] Open
Abstract
Influenza A virus seasonal outbreaks and occasional pandemics represent a global health threat. The high genetic instability of this virus permits rapid escape from the host immune system and emergence of resistance to antivirals. There is thus an urgent need to develop novel approaches for efficient treatment of newly emerging strains. Based on a sequence alignment of representatives from every subtype known to infect humans, we identified nucleic acid regions that are conserved amongst these influenza A populations. We then engineered SOFA-HDV-Ribozymes as therapeutic tools recognizing these conserved regions to catalytically cleave the corresponding viral mRNA targets. The most promising ribozymes were chosen based on an initial in silico screening, and their efficacy was assessed using in vitro cleavage assays. Further characterization of their antiviral effect in cell culture and in mice led to the gradual identification of prophylactic SOFA-HDV-Ribozyme combinations, providing proof-of-principle for the potential of this novel strategy to develop antivirals against genetically highly variable viruses.
Collapse
MESH Headings
- Animals
- Antiviral Agents/metabolism
- Antiviral Agents/pharmacology
- Base Sequence
- Biocatalysis
- Female
- HEK293 Cells
- Hepatitis Delta Virus/enzymology
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Nucleoproteins/metabolism
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Catalytic/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Julie Motard
- Département de biochimie, RNA group/Groupe ARN, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Ronan Rouxel
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | - Alexandra Paun
- Département de biochimie, RNA group/Groupe ARN, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Martin Bisaillon
- Département de biochimie, RNA group/Groupe ARN, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
- * E-mail: (JPP); (MB)
| | - Jean-Pierre Perreault
- Département de biochimie, RNA group/Groupe ARN, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
- * E-mail: (JPP); (MB)
| |
Collapse
|
7
|
Lévesque MV, Rouleau SG, Perreault JP. Selection of the most potent specific on/off adaptor-hepatitis delta virus ribozymes for use in gene targeting. Nucleic Acid Ther 2011; 21:241-52. [PMID: 21793786 DOI: 10.1089/nat.2011.0301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Hepatitis Delta Virus (HDV) ribozyme, which is well adapted to the environment of the human cell, is an excellent candidate for the future development of gene-inactivation systems. On top of this, a new generation of HDV ribozymes now exists that benefits from the addition of a specific on/off adaptor (specifically the SOFA-HDV ribozymes) which greatly increases both the ribozyme's specificity and its cleavage activity. Unlike RNAi and hammerhead ribozymes, the designing of SOFA-HDV ribozymes to cleave, in trans, given RNA species has never been the object of a systematic optimization study, even with their recent use for the gene knockdown of various targets. This report aims at both improving and clarifying the design process of SOFA-HDV ribozymes. Both the ribozyme and the targeted RNA substrate were analyzed in order to provide new criteria that are useful in the selection of the most potent SOFA-HDV ribozymes. The crucial features present in both the ribozyme's biosensor and blocker, as well as at the target site, were identified and characterized. Simple rules were derived and tested using hepatitis C virus NS5B RNA as a model target. Overall, this method should promote the use of the SOFA-HDV ribozymes in a plethora of applications in both functional genomics and gene therapy.
Collapse
Affiliation(s)
- Michel V Lévesque
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke , Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
8
|
Investigating a new generation of ribozymes in order to target HCV. PLoS One 2010; 5:e9627. [PMID: 20224783 PMCID: PMC2835756 DOI: 10.1371/journal.pone.0009627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/17/2010] [Indexed: 02/08/2023] Open
Abstract
For a long time nucleic acid-based approaches directed towards controlling the propagation of Hepatitis C Virus (HCV) have been considered to possess high potential. Towards this end, ribozymes (i.e. RNA enzymes) that specifically recognize and subsequently catalyze the cleavage of their RNA substrate present an attractive molecular tool. Here, the unique properties of a new generation of ribozymes are taken advantage of in order to develop an efficient and durable ribozyme-based technology with which to target HCV (+) RNA strands. These ribozymes resulted from the coupling of a specific on/off adaptor (SOFA) to the ribozyme domain derived from the Hepatitis Delta Virus (HDV). The former switches cleavage activity “on” solely in the presence of the desired RNA substrate, while the latter was the first catalytic RNA reported to function naturally in human cells, specifically in hepatocytes. In order to maximize the chances for success, a step-by-step approach was used for both the design and the selection of the ribozymes. This approach included the use of both bioinformatics and biochemical methods for the identification of the sites possessing the greatest potential for targeting, and the subsequent in vitro testing of the cleavage activities of the corresponding SOFA-HDV ribozymes. These efforts led to a significant improvement in the ribozymes' designs. The ability of the resulting SOFA-HDV ribozymes to inhibit HCV replication was further examined using a luciferase-based replicon. Although some of the ribozymes exhibited high levels of cleavage activity in vitro, none appears to be a potential long term inhibitor in cellulo. Analysis of recent discoveries in the cellular biology of HCV might explain this failure, as well as provide some ideas on the potential limits of using nucleic acid-based drugs to control the propagation of HCV. Finally, the above conclusions received support from experiments performed using a collection of SOFA-HDV ribozymes directed against HCV (−) strands.
Collapse
|
9
|
Reymond C, Beaudoin JD, Perreault JP. Modulating RNA structure and catalysis: lessons from small cleaving ribozymes. Cell Mol Life Sci 2009; 66:3937-50. [PMID: 19718544 PMCID: PMC2777235 DOI: 10.1007/s00018-009-0124-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 01/12/2023]
Abstract
RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today's knowledge in the field.
Collapse
Affiliation(s)
- Cedric Reymond
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| | - Jean-Denis Beaudoin
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| |
Collapse
|
10
|
Tinsley RA, Walter NG. Long-range impact of peripheral joining elements on structure and function of the hepatitis delta virus ribozyme. Biol Chem 2007; 388:705-15. [PMID: 17570823 DOI: 10.1515/bc.2007.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The HDV ribozyme is an RNA enzyme from the human pathogenic hepatitis delta virus (HDV) that has recently also been identified in the human genome. It folds into a compact, nested double-pseudoknot. We examined here the functional relevance of the capping loop L4 and the helical crossover J1/2, which tightly interlace the two helical stacks of the ribozyme. Peripheral structural elements such as these are present in cis-acting, but not trans-acting ribozymes, which may explain the order-of-magnitude decrease in cleavage activity observed in trans-acting ribozymes with promise in gene therapy applications. Comparison of a systematic set of cis- and trans-acting HDV ribozymes shows that the absence of either L4 or J1/2 significantly and independently impacts catalytic activity. Using terbium(III) footprinting and affinity studies, as well as distance measurements based on time-resolved fluorescence resonance energy transfer, we find that J1/2 is most important for conferring structural properties similar to those of the cis-acting ribozyme. Our results are consistent with a model in which removal of either a helical crossover or surprisingly a capping loop induces greater dynamics and expansion of the catalytic core at long range, impacting local and global folding, as well as catalytic function.
Collapse
Affiliation(s)
- Rebecca A Tinsley
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
11
|
Lucier JF, Bergeron LJ, Brière FP, Ouellette R, Elela SA, Perreault JP. RiboSubstrates: a web application addressing the cleavage specificities of ribozymes in designated genomes. BMC Bioinformatics 2006; 7:480. [PMID: 17076887 PMCID: PMC1634876 DOI: 10.1186/1471-2105-7-480] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 10/31/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA-dependent gene silencing is becoming a routine tool used in laboratories worldwide. One of the important remaining hurdles in the selection of the target sequence, if not the most important one, is the designing of tools that have minimal off-target effects (i.e. cleaves only the desired sequence). Increasingly, in the current dawn of the post-genomic era, there is a heavy reliance on tools that are suitable for high-throughput functional genomics, consequently more and more bioinformatic software is becoming available. However, to date none have been designed to satisfy the ever-increasing need for the accurate selection of targets for a specific silencing reagent. RESULTS In order to overcome this hurdle we have developed RiboSubstrates http://www.riboclub.org/ribosubstrates. This integrated bioinformatic software permits the searching of a cDNA database for all potential substrates for a given ribozyme. This includes the mRNAs that perfectly match the specific requirements of a given ribozyme, as well those including Wobble base pairs and mismatches. The results generated allow rapid selection of sequences suitable as targets for RNA degradation. The current web-based RiboSubstrates version permits the identification of potential gene targets for both SOFA-HDV ribozymes and for hammerhead ribozymes. Moreover, a minimal template for the search of siRNAs is also available. This flexible and reliable tool is easily adaptable for use with any RNA tool (i.e. other ribozymes, deoxyribozymes and antisense), and may use the information present in any cDNA bank. CONCLUSION RiboSubstrates should become an essential step for all, even including "non-RNA biologists", who endeavor to develop a gene-inactivation system.
Collapse
Affiliation(s)
- Jean-François Lucier
- RNA Group/Groupe ARN, Sherbrooke, Canada
- Département de microbiologie et infectiologie, Université de Sherbrooke, Sherbrooke, Canada
| | - Lucien Junior Bergeron
- RNA Group/Groupe ARN, Sherbrooke, Canada
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Canada
| | - Francis P Brière
- RNA Group/Groupe ARN, Sherbrooke, Canada
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Canada
| | - Rodney Ouellette
- Institut Atlantique de Recherche sur le Cancer, Moncton, Canada
- Département de Chimie et Biochimie, Université de Moncton, Moncton, Canada
| | - Sherif Abou Elela
- RNA Group/Groupe ARN, Sherbrooke, Canada
- Département de microbiologie et infectiologie, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Sherbrooke, Canada
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|