1
|
Köhler JM, Ehrhardt L, Günther PM, Cao J. Bacterial Communities from the Copper Mine of Wettelrode (Germany). Life (Basel) 2025; 15:204. [PMID: 40003612 PMCID: PMC11856635 DOI: 10.3390/life15020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Bacterial communities from three different sampling sites of a copper mine tunnel were characterized by 16S rRNA sequencing (NGS). A high presence of halophilic bacteria was confirmed by comparison with literature data and with reference samples from other highly salt-exposed soils. Among others, high read numbers of Gracilimonas, Kangiella, Limibacillus, Marinobacter, Woseia, and uncultivated strains of Actinomarinales, Gammaproteobacterium AT-s16, Actinobacteria 0319-7L14, and Thiotrichaceae were found. The community in a sample from the surface of the copper seam was significantly different from the community composition of a sample from the mine tunnel floor. The specificity in the appearance and in the abundance of special bacterial types (for example, Thiogranum, Thiohalophilus, Sulfuriflexus, Sedimenticolaceae, Desulfomonile, Desulfosporosinus, and Cand. Thiobios) can be partially explained by the different local conditions for sulfur-related metabolisms at the sampling sites.
Collapse
Affiliation(s)
- J. Michael Köhler
- Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Technische University Ilmenau, D-98684 Ilmenau, Germany; (L.E.); (P.M.G.); (J.C.)
| | | | | | | |
Collapse
|
2
|
Contarini PE, Emboule E, Jean-Louis P, Woyke T, Date SV, Gros O, Volland JM. A novel open-source cultivation system helps establish the first full cycle chemosynthetic symbiosis model system involving the giant ciliate Zoothamnium niveum. Front Microbiol 2024; 15:1491485. [PMID: 39726965 PMCID: PMC11669664 DOI: 10.3389/fmicb.2024.1491485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Symbiotic interactions drive species evolution, with nutritional symbioses playing vital roles across ecosystems. Chemosynthetic symbioses are globally distributed and ecologically significant, yet the lack of model systems has hindered research progress. The giant ciliate Zoothamnium niveum and its sulfur-oxidizing symbionts represent the only known chemosynthetic symbiosis with a short life span that has been transiently cultivated in the laboratory. While it is experimentally tractable and presents a promising model system, it currently lacks an open-source, simple, and standardized cultivation setup. Following the FABricated Ecosystems (EcoFABs) model, we leveraged 3D printing and polydimethylsiloxane (PDMS) casting to develop simple flow-through cultivation chambers that can be produced and adopted by any laboratory. The streamlined manufacturing process reduces production time by 86% and cuts cost by tenfold compared to the previous system. Benchmarking using previously established optimal growth conditions, the new open-source cultivation system proves stable, efficient, more autonomous, and promotes a more prolific growth of the symbiosis. For the first time, starting from single cells, we successfully cultivated the symbiosis in flow-through chambers for 20 days, spanning multiple generations of colonies that remained symbiotic. They were transferred from chamber to chamber enabling long-term cultivation and eliminating the need for continuous field sampling. The chambers, optimized for live imaging, allowed detailed observation of the synchronized growth between the host and symbiont. Highlighting the benefit of this new system, we here describe a new step in the first hours of development where the host pauses growth, expels a coat, before resuming growth, hinting at a putative symbiont selection mechanism early in the colony life cycle. With this simple, open-source, cultivation setup, Z. niveum holds promises for comparative studies, standardization of research and wide adoption by the symbiosis research community.
Collapse
Affiliation(s)
- P. E. Contarini
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - E. Emboule
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - P. Jean-Louis
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - T. Woyke
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - S. V. Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, United States
| | - O. Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - J-M. Volland
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Laboratory for Research in Complex Systems, Menlo Park, CA, United States
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
3
|
Dagar J, Maurya S, Antil S, Abraham JS, Somasundaram S, Lal R, Makhija S, Toteja R. Symbionts of Ciliates and Ciliates as Symbionts. Indian J Microbiol 2024; 64:304-317. [PMID: 39010998 PMCID: PMC11246404 DOI: 10.1007/s12088-024-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
Endosymbiotic relationships between ciliates and others are critical for their ecological roles, physiological adaptations, and evolutionary implications. These can be obligate and facultative. Symbionts often provide essential nutrients, contribute to the ciliate's metabolism, aid in digestion, and offer protection against predators or environmental stressors. In turn, ciliates provide a protected environment and resources for their symbionts, facilitating their survival and proliferation. Ultrastructural and full-cycle rRNA approaches are utilized to identify these endosymbionts. Fluorescence in situ hybridization using "species- and group-specific probes" which are complementary to the genetic material (DNA or RNA) of a particular species or group of interest represent convenient tools for their detection directly in the environment. A systematic survey of these endosymbionts has been conducted using both traditional and metagenomic approaches. Ciliophora and other protists have a wide range of prokaryotic symbionts, which may contain potentially pathogenic bacteria. Ciliates can establish symbiotic relationships with a variety of hosts also, ranging from protists to metazoans. Understanding ciliate symbiosis can provide useful insights into the complex relationships that drive microbial communities and ecosystems in general.
Collapse
Affiliation(s)
- Jyoti Dagar
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Swati Maurya
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sandeep Antil
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | | | | | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Kendlbacher V, Winter TMR, Bright M. Zoothamnium mariella sp. nov., a marine, colonial ciliate with an atypcial growth pattern, and its ectosymbiont Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov. PLoS One 2024; 19:e0300758. [PMID: 38557976 PMCID: PMC10984469 DOI: 10.1371/journal.pone.0300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Ciliates are unicellular eukaryotes, regularly involved in symbiotic associations. Symbionts may colonize the inside of their cells as well as their surface as ectosymbionts. Here, we report on a new ciliate species, designated as Zoothamnium mariella sp. nov. (Peritrichia, Sessilida), discovered in the northern Adriatic Sea (Mediterranean Sea) in 2021. We found this ciliate species to be monospecifically associated with a new genus of ectosymbiotic bacteria, here proposed as Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov. To formally describe the new ciliate species, we investigated its morphology and sequenced its 18S rRNA gene. To demonstrate its association with a single species of bacterial ectosymbiont, we performed 16S rRNA gene sequencing, fluorescence in situ hybridization, and scanning electron microscopy. Additionally, we explored the two partners' cultivation requirements and ecology. Z. mariella sp. nov. was characterized by a colony length of up to 1 mm. A consistent number of either seven or eight long branches alternated on the stalk in close distance to each other. The colony developed three different types of zooids: microzooids ("trophic stage"), macrozooids ("telotroch stage"), and terminal zooids ("dividing stage"). Viewed from inside the cell, the microzooids' oral ciliature ran in 1 ¼ turns in a clockwise direction around the peristomial disc before entering the infundibulum, where it performed another ¾ turn. Phylogenetic analyses assigned Z. mariella sp. nov. to clade II of the family Zoothamnidae. The ectosymbiont formed a monophyletic clade within the Gammaproteobacteria along with two other ectosymbionts of peritrichous ciliates and a free-living vent bacterium. It colonized the entire surface of its ciliate host, except for the most basal stalk of large colonies, and exhibited a single, spindle-shaped morphotype. Furthermore, the two partners together appear to be generalists of temperate, oxic, marine shallow-water environments and were collectively cultivable in steady flow-through systems.
Collapse
Affiliation(s)
- Vincent Kendlbacher
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | | | - Monika Bright
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Naik AT, Kamensky KM, Hellum AM, Moisander PH. Disturbance frequency directs microbial community succession in marine biofilms exposed to shear. mSphere 2023; 8:e0024823. [PMID: 37931135 PMCID: PMC10790581 DOI: 10.1128/msphere.00248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Disturbances are major drivers of community succession in many microbial systems; however, relatively little is known about marine biofilm community succession, especially under antifouling disturbance. Antifouling technologies exert strong local disturbances on marine biofilms, and resulting biomass losses can be accompanied by shifts in biofilm community composition and succession. We address this gap in knowledge by bridging microbial ecology with antifouling technology development. We show that disturbance by shear can strongly alter marine biofilm community succession, acting as a selective filter influenced by frequency of exposure. Examining marine biofilm succession patterns with and without shear revealed stable associations between key prokaryotic and eukaryotic taxa, highlighting the importance of cross-domain assessment in future marine biofilm research. Describing how compounded top-down and bottom-up disturbances shape the succession of marine biofilms is valuable for understanding the assembly and stability of these complex microbial communities and predicting species invasiveness.
Collapse
Affiliation(s)
- Abhishek T. Naik
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| | | | - Aren M. Hellum
- Naval Undersea Warfare Center, Newport, Rhode Island, USA
| | - Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| |
Collapse
|
6
|
Ajani PA, Savela H, Kahlke T, Harrison D, Jeffries T, Kohli GS, Verma A, Laczka O, Doblin MA, Seymour JR, Larsson ME, Potts J, Scanes P, Gribben PE, Harrison L, Murray SA. Response of planktonic microbial assemblages to disturbance in an urban sub-tropical estuary. WATER RESEARCH 2023; 243:120371. [PMID: 37506634 DOI: 10.1016/j.watres.2023.120371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Microbes are sensitive indicators of estuarine processes because they respond rapidly to dynamic disturbance events. As most of the world's population lives in urban areas and climate change-related disturbance events are becoming more frequent, estuaries bounded by cities are experiencing increasing stressors, at the same time that their ecosystem services are required more than ever. Here, using a multidisciplinary approach, we determined the response of planktonic microbial assemblages in response to seasonality and a rainfall disturbance in an urban estuary bounded by Australia's largest city, Sydney. We used molecular barcoding (16S, 18S V4 rRNA) and microscopy-based identification to compare microbial assemblages at locations with differing characteristics and urbanisation histories. Across 142 samples, we identified 8,496 unique free-living bacterial zOTUs, 8,175 unique particle associated bacterial zOTUs, and 1,920 unique microbial eukaryotic zOTUs. Using microscopy, we identified only the top <10% abundant, larger eukaryotic taxa (>10 µm), however quantification was possible. The site with the greater history of anthropogenic impact showed a more even community of associated bacteria and eukaryotes, and a significant increase in dissolved inorganic nitrogen following rainfall, when compared to the more buffered site. This coincided with a reduced proportional abundance of Actinomarina and Synechococcus spp., a change in SAR 11 clades, and an increase in the eukaryotic microbial groups Dinophyceae, Mediophyceae and Bathyoccocaceae, including a temporary dominance of the harmful algal bloom dinoflagellate Prorocentrum cordatum (syn. P. minimum). Finally, a validated hydrodynamic model of the estuary supported these results, showing that the more highly urbanised and upstream location consistently experienced a higher magnitude of salinity reduction in response to rainfall events during the study period. The best abiotic variables to explain community dissimilarities between locations were TDP, PN, modelled temperature and salinity (r = 0.73) for the free living bacteria, TP for the associated bacteria (r = 0.43), and modelled temperature (r = 0.28) for the microbial eukaryotic communities. Overall, these results show that a minor disturbance such as a brief rainfall event can significantly shift the microbial assemblage of an anthropogenically impacted area within an urban estuary to a greater degree than a seasonal change, but may result in a lesser response to the same disturbance at a buffered, more oceanic influenced location. Fine scale research into the factors driving the response of microbial communities in urban estuaries to climate related disturbances will be necessary to understand and implement changes to maintain future estuarine ecosystem services.
Collapse
Affiliation(s)
- Penelope A Ajani
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia.
| | - Henna Savela
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia
| | - Tim Kahlke
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Daniel Harrison
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour NSW 2450, Australia
| | - Thomas Jeffries
- Western Sydney University, School of Science, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Gurjeet S Kohli
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Arjun Verma
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Olivier Laczka
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Martina A Doblin
- Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia; University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Justin R Seymour
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Michaela E Larsson
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Jaimie Potts
- Science, Economics and Insights Division, NSW Department of Planning and Environment
| | - Peter Scanes
- Science, Economics and Insights Division, NSW Department of Planning and Environment
| | - Paul E Gribben
- Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia; University of NSW, Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, New South Wales 2052, Australia
| | - Luke Harrison
- Marine Studies Institute, School of Geosciences, University of Sydney, Australia
| | - Shauna A Murray
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia
| |
Collapse
|
7
|
Barosa B, Ferrillo A, Selci M, Giardina M, Bastianoni A, Correggia M, di Iorio L, Bernardi G, Cascone M, Capuozzo R, Intoccia M, Price R, Vetriani C, Cordone A, Giovannelli D. Mapping the microbial diversity associated with different geochemical regimes in the shallow-water hydrothermal vents of the Aeolian archipelago, Italy. Front Microbiol 2023; 14:1134114. [PMID: 37637107 PMCID: PMC10452888 DOI: 10.3389/fmicb.2023.1134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Shallow-water hydrothermal vents are unique marine environments ubiquitous along the coast of volcanically active regions of the planet. In contrast to their deep-sea counterparts, primary production at shallow-water vents relies on both photoautotrophy and chemoautotrophy. Such processes are supported by a range of geochemical regimes driven by different geological settings. The Aeolian archipelago, located in the southern Tyrrhenian sea, is characterized by intense hydrothermal activity and harbors some of the best sampled shallow-water vents of the Mediterranean Sea. Despite this, the correlation between microbial diversity, geochemical regimes and geological settings of the different volcanic islands of the archipelago is largely unknown. Here, we report the microbial diversity associated with six distinct shallow-water hydrothermal vents of the Aeolian Islands using a combination of 16S rRNA amplicon sequencing along with physicochemical and geochemical measurements. Samples were collected from biofilms, fluids and sediments from shallow vents on the islands of Lipari, Panarea, Salina, and Vulcano. Two new shallow vent locations are described here for the first time. Our results show the presence of diverse microbial communities consistent in their composition with the local geochemical regimes. The shallow water vents of the Aeolian Islands harbor highly diverse microbial community and should be included in future conservation efforts.
Collapse
Affiliation(s)
- Bernardo Barosa
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | | | - Matteo Selci
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Marco Giardina
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Alessia Bastianoni
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Monica Correggia
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Luciano di Iorio
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | | | - Martina Cascone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Rosaria Capuozzo
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Michele Intoccia
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Roy Price
- School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
| | - Angelina Cordone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Istituto per le Risorse Biologiche e Biotecnologiche Marine, Consiglio Nazionale Delle Ricerche, CNR-IRBIM, Ancona, Italy
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Tokyo, Japan
- Marine Chemistry and Geochemistry Department–Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
8
|
Plante CJ, Hill-Spanik KM, Emerson R. Inputs don't equal outputs: bacterial microbiomes of the ingesta, gut, and feces of the keystone deposit feeder Ilyanassa obsoleta. FEMS Microbiol Ecol 2022; 99:6887277. [PMID: 36496168 DOI: 10.1093/femsec/fiac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteria drive energy fluxes and geochemical processes in estuarine sediments. Deposit-feeding invertebrates alter the structure and activity of microbial communities through sediment ingestion, gut passage, and defecation. The eastern mud snail, Ilyanassa obsoleta, is native to estuaries of the northwestern Atlantic, ranging from Nova Scotia, Canada, to Florida in the USA. Given extremely high densities, their deposit-feeding and locomotory activities exert ecological influence on other invertebrates and microbes. Our aim was to characterize the bacterial microbiome of this 'keystone species' and determine how its feeding alters the native bacterial microbiota. We gathered snails from both mudflat and sandflat habitats and collected their fresh fecal pellets in the laboratory. Dissection of these same snails allowed us to compare bacterial assemblages of ingested sediments, shell surfaces, gut sections (esophagus, stomach, intestine), and feces using DNA metabarcoding. Our findings indicate a diverse, resident gut microbiota. The stomach and intestines were dominated by bacteria of the genus Mycoplasma. Comparison of ingesta and feces revealed digestion of several bacterial taxa, introduction of gut residents during passage, in addition to unique bacterial taxa within the feces of unknown provenance. Our results demonstrate that I. obsoleta has the potential to modify microbial community structure in estuarine sediments.
Collapse
Affiliation(s)
- Craig J Plante
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| | | | - Rowan Emerson
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| |
Collapse
|
9
|
Deng L, Meile C, Fiskal A, Bölsterli D, Han X, Gajendra N, Dubois N, Bernasconi SM, Lever MA. Deposit-feeding worms control subsurface ecosystem functioning in intertidal sediment with strong physical forcing. PNAS NEXUS 2022; 1:pgac146. [PMID: 36714871 PMCID: PMC9802194 DOI: 10.1093/pnasnexus/pgac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/25/2022] [Indexed: 06/18/2023]
Abstract
Intertidal sands are global hotspots of terrestrial and marine carbon cycling with strong hydrodynamic forcing by waves and tides and high macrofaunal activity. Yet, the relative importance of hydrodynamics and macrofauna in controlling these ecosystems remains unclear. Here, we compare geochemical gradients and bacterial, archaeal, and eukaryotic gene sequences in intertidal sands dominated by subsurface deposit-feeding worms (Abarenicola pacifica) to adjacent worm-free areas. We show that hydrodynamic forcing controls organismal assemblages in surface sediments, while in deeper layers selective feeding by worms on fine, algae-rich particles strongly decreases the abundance and richness of all three domains. In these deeper layers, bacterial and eukaryotic network connectivity decreases, while percentages of clades involved in degradation of refractory organic matter, oxidative nitrogen, and sulfur cycling increase. Our findings reveal macrofaunal activity as the key driver of biological community structure and functioning, that in turn influence carbon cycling in intertidal sands below the mainly physically controlled surface layer.
Collapse
Affiliation(s)
| | - Christof Meile
- Department of Marine Sciences, University of Georgia, 325 Sanford Drive, Athens, GA 30602, USA
| | | | - Damian Bölsterli
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | | | - Niroshan Gajendra
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Nathalie Dubois
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Sonneggstrasse 5, 8092 Zürich, Switzerland
| | - Stefano M Bernasconi
- Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Sonneggstrasse 5, 8092 Zürich, Switzerland
| | - Mark A Lever
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Hui M, Wang A, Cheng J, Sha Z. Full-length 16S rRNA amplicon sequencing reveals the variation of epibiotic microbiota associated with two shrimp species of Alvinocarididae: possibly co-determined by environmental heterogeneity and specific recognition of hosts. PeerJ 2022; 10:e13758. [PMID: 35966925 PMCID: PMC9368993 DOI: 10.7717/peerj.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Shrimps of the family Alvinocarididae, endemic species to deep sea chemosynthetic ecosystems, harbor epibiotic microbes on gills which probably play important roles in the survival of the shrimps. Among them, Alvinocaris longirostris and Shinkaicaris leurokolos occupy different ecological niches within the same hydrothermal vent in Okinawa Trough, and A. longirostris also exists in a methane seep of the South China Sea. In this study, full-length 16S rRNA sequences of the gill associated bacteria of two alvinocaridid species from different chemosynthetically ecological niches were first captured by single-molecule real-time sequencing. Totally, 120,792 optimized circular consensus sequences with ∼1,450 bp in length were obtained and clustered into 578 operational taxonomic units. Alpha diversity analysis showed seep A. longirostris had the highest species richness and evenness (average Chao1 = 213.68, Shannon = 3.39). Beta diversity analysis revealed that all samples were clearly divided into three groups, and microbial community of A. longirostris from seep and vent were more related than the other comparisons. By permutational multivariate analysis of variance, the most significant community compositional variance was detected between seep A. longirostris and vent S. leurokolos (R 2 = 0.731, P = 0.001). The taxon tags were further classified into 21 phyla, 40 classes, 89 orders, 124 families and 135 genera. Overall, the microbial communities were dominated by Campylobacteria and Gammaproteobacteria. Alphaproteobacteria, Bacteroidia, Verrucomicrobiae, Bacilli and other minor groups were also detected at lower abundance. Taxonomic groups recovered from the vent S. leurokolos samples were only dominated by Sulfurovaceae (94.06%). In comparison, gill-associated microbiota of vent A. longirostris consisted of more diverse sulfur-oxidizing bacteria, including Sulfurovaceae (69.21%), Thiotrichaceae (6.77%) and a putative novel Gammaproteobacteria group (14.37%), while in seep A. longirostris, Gammaproteobacteria un-group (44.01%) constituted the major component, following the methane-oxidizing bacteria Methylomonadaceae (19.38%), and Sulfurovaceae (18.66%). Therefore, the gill associated bacteria composition and abundance of alvinocaridid shrimps are closely related to the habitat heterogeneity and the selection of microbiota by the host. However, the interaction between these alvinocaridid shrimps and the epibiotic communities requires further study based on metagenome sequencing and fluorescence in situ hybridization.
Collapse
Affiliation(s)
- Min Hui
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Aiyang Wang
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,,Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Cheng
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhongli Sha
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,,Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Metabolism Interactions Promote the Overall Functioning of the Episymbiotic Chemosynthetic Community of Shinkaia crosnieri of Cold Seeps. mSystems 2022; 7:e0032022. [PMID: 35938718 PMCID: PMC9426478 DOI: 10.1128/msystems.00320-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Remarkably diverse bacteria have been observed as biofilm aggregates on the surface of deep-sea invertebrates that support the growth of hosts through chemosynthetic carbon fixation. Growing evidence also indicates that community-wide interactions, and especially cooperation among symbionts, contribute to overall community productivity. Here, metagenome-guided metatranscriptomic and metabolic analyses were conducted to investigate the taxonomic composition, functions, and potential interactions of symbionts dwelling on the seta of Shinkaia crosnieri lobsters in a methane cold seep. Methylococcales and Thiotrichales dominated the community, followed by the Campylobacteriales, Nitrosococcales, Flavobacteriales, and Chitinophagales Metabolic interactions may be common among the episymbionts since many separate taxon genomes encoded complementary genes within metabolic pathways. Specifically, Thiotrichales could contribute to detoxification of hydroxylamine that is a metabolic by-product of Methylococcales. Further, Nitrosococcales may rely on methanol leaked from Methylococcales cells that efficiently oxidize methane. Elemental sulfur may also serve as a community good that enhances sulfur utilization that benefits the overall community, as evidenced by confocal Raman microscopy. Stable intermediates may connect symbiont metabolic activities in cyclical oxic-hypoxic fluctuating environments, which then enhance overall community functioning. This hypothesis was partially confirmed via in situ experiments. These results highlight the importance of microbe-microbe interactions in symbiosis and deep-sea adaptation. IMPORTANCE Symbioses between chemosynthetic bacteria and marine invertebrates are common in deep-sea chemosynthetic ecosystems and are considered critical foundations for deep-sea colonization. Episymbiotic microorganisms tend to form condensed biofilms that may facilitate metabolite sharing among biofilm populations. However, the prevalence of metabolic interactions among deep-sea episymbionts and their contributions to deep-sea adaptations are not well understood due to sampling and cultivation difficulties associated with deep-sea environments. Here, we investigated metabolic interactions among the episymbionts of Shinkaia crosnieri, a dominant chemosynthetic ecosystem lobster species in the Northwest Pacific Ocean. Meta-omics characterizations were conducted alongside in situ experiments to validate interaction hypotheses. Furthermore, imaging analysis was conducted, including electron microscopy, fluorescent in situ hybridization (FISH), and confocal Raman microscopy (CRM), to provide direct evidence of metabolic interactions. The results support the Black Queen Hypothesis, wherein leaked public goods are shared among cohabitating microorganisms to enhance the overall adaptability of the community via cooperation.
Collapse
|
12
|
Rotterová J, Edgcomb VP, Čepička I, Beinart R. Anaerobic Ciliates as a Model Group for Studying Symbioses in Oxygen-depleted Environments. J Eukaryot Microbiol 2022; 69:e12912. [PMID: 35325496 DOI: 10.1111/jeu.12912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaerobiosis has independently evolved in multiple lineages of ciliates, allowing them to colonize a variety of anoxic and oxygen-depleted habitats. Anaerobic ciliates commonly form symbiotic relationships with various prokaryotes, including methanogenic archaea and members of several bacterial groups. The hypothesized functions of these ecto- and endosymbionts include the symbiont utilizing the ciliate's fermentative end-products to increase host's anaerobic metabolic efficiency, or the symbiont directly providing the host with energy by denitrification or photosynthesis. The host, in turn, may protect the symbiont from competition, the environment, and predation. Despite rapid advances in sampling, molecular, and microscopy methods, as well as the associated broadening of the known diversity of anaerobic ciliates, many aspects of these ciliate symbioses, including host-specificity and co-evolution, remain largely unexplored. Nevertheless, with the number of comparative genomic and transcriptomic analyses targeting anaerobic ciliates and their symbionts on the rise, insights into the nature of these symbioses and the evolution of the ciliate transition to obligate anaerobiosis continue to deepen. This review summarizes the current body of knowledge regarding the complex nature of symbioses in anaerobic ciliates, the diversity of these symbionts, their role in the evolution of ciliate anaerobiosis and their significance in ecosystem-level processes.
Collapse
Affiliation(s)
- Johana Rotterová
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Roxanne Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
13
|
Espada-Hinojosa S, Drexel J, Kesting J, Kniha E, Pifeas I, Schuster L, Volland JM, Zambalos HC, Bright M. Host-symbiont stress response to lack-of-sulfide in the giant ciliate mutualism. PLoS One 2022; 17:e0254910. [PMID: 35213532 PMCID: PMC8880863 DOI: 10.1371/journal.pone.0254910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/05/2022] [Indexed: 11/18/2022] Open
Abstract
The mutualism between the thioautotrophic bacterial ectosymbiont Candidatus Thiobius zoothamnicola and the giant ciliate Zoothamnium niveum thrives in a variety of shallow-water marine environments with highly fluctuating sulfide emissions. To persist over time, both partners must reproduce and ensure the transmission of symbionts before the sulfide stops, which enables carbon fixation of the symbiont and nourishment of the host. We experimentally investigated the response of this mutualism to depletion of sulfide. We found that colonies released some initially present but also newly produced macrozooids until death, but in fewer numbers than when exposed to sulfide. The symbionts on the colonies proliferated less without sulfide, and became larger and more rod-shaped than symbionts from freshly collected colonies that were exposed to sulfide and oxygen. The symbiotic monolayer was severely disturbed by growth of other microbes and loss of symbionts. We conclude that the response of both partners to the termination of sulfide emission was remarkably quick. The development and the release of swarmers continued until host died and thus this behavior contributed to the continuation of the association.
Collapse
Affiliation(s)
| | - Judith Drexel
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Julia Kesting
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Edwin Kniha
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Iason Pifeas
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Lukas Schuster
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Jean-Marie Volland
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Helena C. Zambalos
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Monika Bright
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Fokin SI, Serra V. Bacterial Symbiosis in Ciliates (Alveolata, Ciliophora): Roads Traveled and Those Still to be Taken. J Eukaryot Microbiol 2022; 69:e12886. [PMID: 35006645 PMCID: PMC9539572 DOI: 10.1111/jeu.12886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
The diversity of prokaryotic symbionts in Ciliophora and other protists is fascinatingly rich; they may even include some potentially pathogenic bacteria. In this review, we summarize currently available data on biodiversity and some morphological and biological peculiarities of prokaryotic symbionts mainly within the genera Paramecium and Euplotes. Another direction of ciliate symbiology, neglected for a long time and now re‐discovered, is the study of epibionts of ciliates. This promises a variety of interesting outcomes. Last, but not least, we stress the new technologies, such as next generation sequencing and the use of genomics data, which all can clarify many new aspects of relevance. For this reason, a brief overview of achievements in genomic studies on ciliate's symbionts is provided. Summing up the results of numerous scientific contributions, we systematically update current knowledge and outline the prospects as to how symbiology of Ciliophora may develop in the near future.
Collapse
Affiliation(s)
- Sergei I Fokin
- University of Pisa, Pisa, Italy.,St. Petersburg State University, St. Petersburg, Russia
| | | |
Collapse
|
15
|
McIlroy D, Dufour SC, Taylor R, Nicholls R. The role of symbiosis in the first colonization of the seafloor by macrobiota: Insights from the oldest Ediacaran biota (Newfoundland, Canada). Biosystems 2021; 205:104413. [PMID: 33794297 DOI: 10.1016/j.biosystems.2021.104413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/23/2023]
Abstract
The earliest record of animal life comes from the Ediacaran of Newfoundland, including dm scale fossil organisms, most of which are inferred to have been epibenthic immotile eumetazoans. This work introduces the palaeobiology of the major fossil groups in the Newfoundland assemblages including strange fractal-like taxa and addresses some of biogeochemical challenges such as sulfide buildup that could most easily have been overcome by symbiogenesis. Specifically, the epibenthic reclining nature of some of the Ediacaran biota-with their fractal-like high surface area lower surfaces-are considered to have been well designed for gaining nutriment from chemosynthetic, sulfur-oxidizing bacteria. This view constitutes a shift away from the view that most of the biota were anomalously large osmotrophs.
Collapse
Affiliation(s)
- Duncan McIlroy
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada; Bonne Bay Marine Station, Memorial University of Newfoundland, Norris Point, PO Box 69, A0K 3V0, Canada.
| | - Suzanne C Dufour
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Rod Taylor
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | | |
Collapse
|
16
|
Carrier V, Svenning MM, Gründger F, Niemann H, Dessandier PA, Panieri G, Kalenitchenko D. The Impact of Methane on Microbial Communities at Marine Arctic Gas Hydrate Bearing Sediment. Front Microbiol 2020; 11:1932. [PMID: 33071992 PMCID: PMC7541813 DOI: 10.3389/fmicb.2020.01932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
Cold seeps are characterized by high biomass, which is supported by the microbial oxidation of the available methane by capable microorganisms. The carbon is subsequently transferred to higher trophic levels. South of Svalbard, five geological mounds shaped by the formation of methane gas hydrates, have been recently located. Methane gas seeping activity has been observed on four of them, and flares were primarily concentrated at their summits. At three of these mounds, and along a distance gradient from their summit to their outskirt, we investigated the eukaryotic and prokaryotic biodiversity linked to 16S and 18S rDNA. Here we show that local methane seepage and other environmental conditions did affect the microbial community structure and composition. We could not demonstrate a community gradient from the summit to the edge of the mounds. Instead, a similar community structure in any methane-rich sediments could be retrieved at any location on these mounds. The oxidation of methane was largely driven by anaerobic methanotrophic Archaea-1 (ANME-1) and the communities also hosted high relative abundances of sulfate reducing bacterial groups although none demonstrated a clear co-occurrence with the predominance of ANME-1. Additional common taxa were observed and their abundances were likely benefiting from the end products of methane oxidation. Among these were sulfide-oxidizing Campilobacterota, organic matter degraders, such as Bathyarchaeota, Woesearchaeota, or thermoplasmatales marine benthic group D, and heterotrophic ciliates and Cercozoa.
Collapse
Affiliation(s)
- Vincent Carrier
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway.,Centre for Arctic Gas Hydrate, Environment and Climate, The Arctic University of Norway, Tromsø, Norway
| | - Mette M Svenning
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway.,Centre for Arctic Gas Hydrate, Environment and Climate, The Arctic University of Norway, Tromsø, Norway
| | - Friederike Gründger
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Helge Niemann
- Centre for Arctic Gas Hydrate, Environment and Climate, The Arctic University of Norway, Tromsø, Norway.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Pierre-Antoine Dessandier
- Centre for Arctic Gas Hydrate, Environment and Climate, The Arctic University of Norway, Tromsø, Norway
| | - Giuliana Panieri
- Centre for Arctic Gas Hydrate, Environment and Climate, The Arctic University of Norway, Tromsø, Norway
| | - Dimitri Kalenitchenko
- Centre for Arctic Gas Hydrate, Environment and Climate, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
17
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
18
|
Bacterial Intracellular Sulphur Globules. BACTERIAL ORGANELLES AND ORGANELLE-LIKE INCLUSIONS 2020. [DOI: 10.1007/978-3-030-60173-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Altamia MA, Shipway JR, Concepcion GP, Haygood MG, Distel DL. Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius. Int J Syst Evol Microbiol 2018; 69:638-644. [PMID: 30540238 PMCID: PMC7705117 DOI: 10.1099/ijsem.0.003143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A chemolithoautotrophic sulfur-oxidizing, diazotrophic, facultatively heterotrophic, endosymbiotic bacterium, designated as strain 2141T, was isolated from the gills of the giant shipworm Kuphus polythalamius (Teredinidae: Bivalvia). Based on its 16S rRNA sequence, the endosymbiont falls within a clade that includes the as-yet-uncultivated thioautotrophic symbionts of a marine ciliate and hydrothermal vent gastropods, uncultivated marine sediment bacteria, and a free-living sulfur-oxidizing bacterium ODIII6, all of which belong to the Gammaproteobacteria. The endosymbiont is Gram-negative, rod-shaped and has a single polar flagellum when grown in culture. This bacterium can be grown chemolithoautotrophically on a chemically defined medium supplemented with either hydrogen sulfide, thiosulfate, tetrathionate or elemental sulfur. The closed-circular genome has a DNA G+C content of 60.1 mol% and is 4.79 Mbp in size with a large nitrogenase cluster spanning nearly 40 kbp. The diazotrophic capability was confirmed by growing the strain on chemolithoautotrophic thiosulfate-based medium without a combined source of fixed nitrogen. The bacterium is also capable of heterotrophic growth on organic acids such as acetate and propionate. The pH, temperature and salinity optima for chemolithoautotrophic growth on thiosulfate were found to be 8.5, 34 °C and 0.2 M NaCl, respectively. To our knowledge, this is the first report of pure culture of a thioautotrophic animal symbiont. The type strain of Thiosocius teredinicola is PMS-2141T.STBD.0c.01aT (=DSM 108030T).
Collapse
Affiliation(s)
- Marvin A. Altamia
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
- Department of Marine and Environmental Science, Ocean Genome Legacy Center, Northeastern University, Nahant MA 01908, USA
| | - J. Reuben Shipway
- Department of Marine and Environmental Science, Ocean Genome Legacy Center, Northeastern University, Nahant MA 01908, USA
| | - Gisela P. Concepcion
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Margo G. Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- *Correspondence: Margo G. Haygood,
| | - Daniel L. Distel
- Department of Marine and Environmental Science, Ocean Genome Legacy Center, Northeastern University, Nahant MA 01908, USA
- Daniel L. Distel,
| |
Collapse
|
20
|
Volland JM, Schintlmeister A, Zambalos H, Reipert S, Mozetič P, Espada-Hinojosa S, Turk V, Wagner M, Bright M. NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host. THE ISME JOURNAL 2018; 12:714-727. [PMID: 29426952 PMCID: PMC5854253 DOI: 10.1038/s41396-018-0069-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 11/09/2022]
Abstract
The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations with 14C- and 13C-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells fix substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells. Fluorescence in situ hybridization of freshly collected ciliates revealed that the vast majority of ingested microbial cells were ectosymbionts.
Collapse
Affiliation(s)
- Jean-Marie Volland
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria.
| | - Arno Schintlmeister
- Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology" and Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna, Austria
| | - Helena Zambalos
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria
| | - Siegfried Reipert
- Cell Imaging and Ultrastructure Research (CIUS), University of Vienna, Vienna, Austria
| | - Patricija Mozetič
- National Institute of Biology, Marine Biology Station, Piran, Slovenia
| | | | - Valentina Turk
- National Institute of Biology, Marine Biology Station, Piran, Slovenia
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology" and Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna, Austria
| | - Monika Bright
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Seah BKB, Schwaha T, Volland JM, Huettel B, Dubilier N, Gruber-Vodicka HR. Specificity in diversity: single origin of a widespread ciliate-bacteria symbiosis. Proc Biol Sci 2017; 284:20170764. [PMID: 28701560 PMCID: PMC5524500 DOI: 10.1098/rspb.2017.0764] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/06/2017] [Indexed: 12/03/2022] Open
Abstract
Symbioses between eukaryotes and sulfur-oxidizing (thiotrophic) bacteria have convergently evolved multiple times. Although well described in at least eight classes of metazoan animals, almost nothing is known about the evolution of thiotrophic symbioses in microbial eukaryotes (protists). In this study, we characterized the symbioses between mouthless marine ciliates of the genus Kentrophoros, and their thiotrophic bacteria, using comparative sequence analysis and fluorescence in situ hybridization. Ciliate small-subunit rRNA sequences were obtained from 17 morphospecies collected in the Mediterranean and Caribbean, and symbiont sequences from 13 of these morphospecies. We discovered a new Kentrophoros morphotype where the symbiont-bearing surface is folded into pouch-like compartments, illustrating the variability of the basic body plan. Phylogenetic analyses revealed that all investigated Kentrophoros belonged to a single clade, despite the remarkable morphological diversity of these hosts. The symbionts were also monophyletic and belonged to a new clade within the Gammaproteobacteria, with no known cultured representatives. Each host morphospecies had a distinct symbiont phylotype, and statistical analyses revealed significant support for host-symbiont codiversification. Given that these symbioses were collected from two widely separated oceans, our results indicate that symbiotic associations in unicellular hosts can be highly specific and stable over long periods of evolutionary time.
Collapse
Affiliation(s)
- Brandon K B Seah
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Thomas Schwaha
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Jean-Marie Volland
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | | |
Collapse
|
22
|
Oren A. A plea for linguistic accuracy - also for Candidatus taxa. Int J Syst Evol Microbiol 2017; 67:1085-1094. [PMID: 27926819 DOI: 10.1099/ijsem.0.001715] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
While all names of new taxa submitted to the International Journal of Systematic and Evolutionary Microbiology, either in direct submissions or in validation requests for names effectively published elsewhere, are subject to nomenclatural review to ensure that they are acceptable based on the rules of the International Code of Nomenclature of Prokaryotes, the names of Candidatus taxa have not been subjected to such a review. Formally, this was not necessary because the rank of Candidatus is not covered by the Code, and the names lack the priority afforded validly published names. However, many Candidatus taxa of different ranks are widely discussed in the scientific literature, and a proposal to incorporate the nomenclature of uncultured prokaryotes under the provisions of the Code is currently pending. Therefore, an evaluation of the names of Candidatus taxa published thus far is very timely. Out of the ~400 Candidatus names found in the literature, 120 contradict the current rules of the Code or are otherwise problematic. A list of those names of Candidatus taxa that need correction is presented here and alternative names that agree with the provisions of the Code are proposed.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| |
Collapse
|
23
|
Serra V, Fokin SI, Castelli M, Basuri CK, Nitla V, Verni F, Sandeep BV, Kalavati C, Petroni G. " Candidatus Gortzia shahrazadis", a Novel Endosymbiont of Paramecium multimicronucleatum and a Revision of the Biogeographical Distribution of Holospora-Like Bacteria. Front Microbiol 2016; 7:1704. [PMID: 27867371 PMCID: PMC5095128 DOI: 10.3389/fmicb.2016.01704] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/12/2016] [Indexed: 11/13/2022] Open
Abstract
Holospora spp. and "Candidatus Gortzia infectiva", known as Holospora-like bacteria (HLB), are commonly found as nuclear endosymbionts of ciliates, especially the Paramecium genus. HLB are related by phylogenetic relationships, morphological features, and life-cycles, which involve two alternating morphotypes: reproductive and infectious forms (RF, IF). In this paper we describe a novel species belonging to the "Ca. Gortzia" genus, detected in P. multimicronucleatum, a ciliate for which infection by an HLB has not been reported, discovered in India. This novel endosymbiont shows unusual and surprising features with respect to other HLB, such as large variations in IF morphology and the occasional ability to reproduce in the host cytoplasm. We propose the name of "Candidatus Gortzia shahrazadis" for this novel HLB. Moreover, we report two additional species of HLB from Indian Paramecium populations: "Ca. Gortzia infectiva" (from P. jenningsi), and H. obtusa (from P. caudatum); the latter is the first record of Holospora from a tropical country. Although tropical, we retrieved H. obtusa at an elevation of 706 m corresponding to a moderate climate not unlike conditions where Holospora are normally found, suggesting the genus Holospora does exist in tropical countries, but restricted to higher elevations.
Collapse
Affiliation(s)
| | - Sergei I Fokin
- Department of Biology, University of PisaPisa, Italy; Department of Invertebrate Zoology, Saint Petersburg State UniversitySaint Petersburg, Russia
| | - Michele Castelli
- Department of Biology, University of PisaPisa, Italy; Department of Veterinary Medicine, University of MilanMilan, Italy
| | - Charan K Basuri
- Department of Zoology, Andhra University Visakhapatnam, India
| | | | - Franco Verni
- Department of Biology, University of Pisa Pisa, Italy
| | - Bhagavatula V Sandeep
- Department of Zoology, Andhra UniversityVisakhapatnam, India; Department of Biotechnology, Andhra UniversityVisakhapatnam, India
| | | | | |
Collapse
|
24
|
A Novel Colonial Ciliate Zoothamnium ignavum sp. nov. (Ciliophora, Oligohymenophorea) and Its Ectosymbiont Candidatus Navis piranensis gen. nov., sp. nov. from Shallow-Water Wood Falls. PLoS One 2016; 11:e0162834. [PMID: 27683199 PMCID: PMC5040259 DOI: 10.1371/journal.pone.0162834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/29/2016] [Indexed: 12/04/2022] Open
Abstract
Symbioses between ciliate hosts and prokaryote or unicellular eukaryote symbionts are widespread. Here, we report on a novel ciliate species within the genus Zoothamnium Bory de St. Vincent, 1824, isolated from shallow-water sunken wood in the North Adriatic Sea (Mediterranean Sea), proposed as Zoothamnium ignavum sp. nov. We found this ciliate species to be associated with a novel genus of bacteria, here proposed as “Candidatus Navis piranensis” gen. nov., sp. nov. The descriptions of host and symbiont species are based on morphological and ultrastructural studies, the SSU rRNA sequences, and in situ hybridization with symbiont-specific probes. The host is characterized by alternate microzooids on alternate branches arising from a long, common stalk with an adhesive disc. Three different types of zooids are present: microzooids with a bulgy oral side, roundish to ellipsoid macrozooids, and terminal zooids ellipsoid when dividing or bulgy when undividing. The oral ciliature of the microzooids runs 1¼ turns in a clockwise direction around the peristomial disc when viewed from inside the cell and runs into the infundibulum, where it makes another ¾ turn. The ciliature consists of a paroral membrane (haplokinety), three adoral membranelles (polykineties), and one stomatogenic kinety (germinal kinety). One circular row of barren kinetosomes is present aborally (trochal band). Phylogenetic analyses placed Z. ignavum sp. nov. within the clade II of the polyphyletic family Zoothamniidae (Oligohymenophorea). The ectosymbiont was found to occur in two different morphotypes, as rods with pointed ends and coccoid rods. It forms a monophyletic group with two uncultured Gammaproteobacteria within an unclassified group of Gammaproteobacteria, and is only distantly related to the ectosymbiont of the closely related peritrich Z. niveum (Hemprich and Ehrenberg, 1831) Ehrenberg, 1838.
Collapse
|
25
|
Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME JOURNAL 2016; 10:1939-53. [PMID: 26872043 DOI: 10.1038/ismej.2015.257] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 01/10/2023]
Abstract
Marine sediments are the largest carbon sink on earth. Nearly half of dark carbon fixation in the oceans occurs in coastal sediments, but the microorganisms responsible are largely unknown. By integrating the 16S rRNA approach, single-cell genomics, metagenomics and transcriptomics with (14)C-carbon assimilation experiments, we show that uncultured Gammaproteobacteria account for 70-86% of dark carbon fixation in coastal sediments. First, we surveyed the bacterial 16S rRNA gene diversity of 13 tidal and sublittoral sediments across Europe and Australia to identify ubiquitous core groups of Gammaproteobacteria mainly affiliating with sulfur-oxidizing bacteria. These also accounted for a substantial fraction of the microbial community in anoxic, 490-cm-deep subsurface sediments. We then quantified dark carbon fixation by scintillography of specific microbial populations extracted and flow-sorted from sediments that were short-term incubated with (14)C-bicarbonate. We identified three distinct gammaproteobacterial clades covering diversity ranges on family to order level (the Acidiferrobacter, JTB255 and SSr clades) that made up >50% of dark carbon fixation in a tidal sediment. Consistent with these activity measurements, environmental transcripts of sulfur oxidation and carbon fixation genes mainly affiliated with those of sulfur-oxidizing Gammaproteobacteria. The co-localization of key genes of sulfur and hydrogen oxidation pathways and their expression in genomes of uncultured Gammaproteobacteria illustrates an unknown metabolic plasticity for sulfur oxidizers in marine sediments. Given their global distribution and high abundance, we propose that a stable assemblage of metabolically flexible Gammaproteobacteria drives important parts of marine carbon and sulfur cycles.
Collapse
|
26
|
Senra MVX, Dias RJP, Castelli M, Silva-Neto ID, Verni F, Soares CAG, Petroni G. A House for Two--Double Bacterial Infection in Euplotes woodruffi Sq1 (Ciliophora, Euplotia) Sampled in Southeastern Brazil. MICROBIAL ECOLOGY 2016; 71:505-517. [PMID: 26381539 DOI: 10.1007/s00248-015-0668-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Several ciliated protists form symbiotic associations with a diversity of microorganisms, leading to drastic impact on their ecology and evolution. In this work, two Euplotes spp. sampled in Rio de Janeiro, Brazil, were identified based on morphological and molecular features as Euplotes woodruffi strain Sq1 and E. encysticus strain Sq2 and investigated for the presence of endosymbionts. While E. woodruffi Sq1 stably hosts two bacterial populations, namely Polynucleobacter necessarius (Betaproteobacteria) and a new member of the family "Candidatus Midichloriaceae" (Alphaproteobacteria, Rickettsiales), here described as "Candidatus Bandiella woodruffii," branching with a broad host range bacterial group found in association with cnidarians, sponges, euglenoids, and some arthropods; in E. encysticus Sq2 no symbiotic bacterium could be detected. The dispersion ability of this novel bacterium was tested by co-incubating E. woodruffi Sq1 with three different ciliate species. Among the tested strains "Ca. B. woodruffii" could only be detected in association with E. encysticus Sq2 with a prevalence of 20 % after 1 week and 40 % after 2 weeks, maintaining this level for up to 6 months. Nevertheless, this apparent in vitro association was abolished when E. woodruffi Sq1 donor was removed from the microcosm, suggesting that this bacterium has the capacity for at least a short-term survival outside its natural host and the aptitude to ephemerally interact with other organisms. Together, these findings strongly suggest the need for more detailed investigations to evaluate the host range for "Ca. B. woodruffii" and any possible pathogenic effect of this bacterium on other organisms including humans.
Collapse
Affiliation(s)
- Marcus V X Senra
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Av. Carlos Chagas Filho 373 - CCS A2-120, Rio de Janeiro, 21.944-970, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, UFJF, Rio de Janeiro, Brazil
| | - Roberto J P Dias
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, UFJF, Rio de Janeiro, Brazil
| | - Michele Castelli
- Department of Biology, University of Pisa, via A. Volta 4/6, Pisa, 56126, Italy
| | - Inácio D Silva-Neto
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Franco Verni
- Department of Biology, University of Pisa, via A. Volta 4/6, Pisa, 56126, Italy
| | - Carlos A G Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Av. Carlos Chagas Filho 373 - CCS A2-120, Rio de Janeiro, 21.944-970, Brazil.
| | - Giulio Petroni
- Department of Biology, University of Pisa, via A. Volta 4/6, Pisa, 56126, Italy.
| |
Collapse
|
27
|
Abouna S, Gonzalez-Rizzo S, Grimonprez A, Gros O. First Description of Sulphur-Oxidizing Bacterial Symbiosis in a Cnidarian (Medusozoa) Living in Sulphidic Shallow-Water Environments. PLoS One 2015; 10:e0127625. [PMID: 26011278 PMCID: PMC4444309 DOI: 10.1371/journal.pone.0127625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/17/2015] [Indexed: 01/18/2023] Open
Abstract
Background Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Methodology/Principal Findings Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. Conclusions/Significance This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.
Collapse
Affiliation(s)
- Sylvie Abouna
- Institut de Biologie Paris-Seine, UMR 7138—Evolution Paris-Seine, Equipe Biologie de la Mangrove. Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592. 97159 Pointe-à-Pitre cedex, Guadeloupe, France
| | - Silvina Gonzalez-Rizzo
- Institut de Biologie Paris-Seine, UMR 7138—Evolution Paris-Seine, Equipe Biologie de la Mangrove. Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592. 97159 Pointe-à-Pitre cedex, Guadeloupe, France
| | - Adrien Grimonprez
- Institut de Biologie Paris-Seine, UMR 7138—Evolution Paris-Seine, Equipe Biologie de la Mangrove. Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592. 97159 Pointe-à-Pitre cedex, Guadeloupe, France
| | - Olivier Gros
- Institut de Biologie Paris-Seine, UMR 7138—Evolution Paris-Seine, Equipe Biologie de la Mangrove. Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592. 97159 Pointe-à-Pitre cedex, Guadeloupe, France
- C3MAG, UFR des Sciences Exactes et Naturelles, Université des Antilles et de la Guyane, BP 592. 97159 Pointe-à-Pitre, Guadeloupe (French West Indies)
- * E-mail:
| |
Collapse
|
28
|
Bright M, Espada-Hinojosa S, Lagkouvardos I, Volland JM. The giant ciliate Zoothamnium niveum and its thiotrophic epibiont Candidatus Thiobios zoothamnicoli: a model system to study interspecies cooperation. Front Microbiol 2014; 5:145. [PMID: 24778630 PMCID: PMC3985026 DOI: 10.3389/fmicb.2014.00145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/20/2014] [Indexed: 02/05/2023] Open
Abstract
Symbioses between chemoautotrophic sulfur-oxidizing (thiotrophic) bacteria and protists or animals are among the most diverse and prevalent in the ocean. They are extremely difficult to maintain in aquaria and no thiotrophic symbiosis involving an animal host has ever been successfully cultivated. In contrast, we have cultivated the giant ciliate Zoothamnium niveum and its obligate ectosymbiont Candidatus Thiobios zoothamnicoli in small flow-through aquaria. This review provides an overview of the host and the symbiont and their phylogenetic relationships. We summarize our knowledge on the ecology, geographic distribution and life cycle of the host, on the vertical transmission of the symbiont, and on the cultivation of this symbiosis. We then discuss the benefits and costs involved in this cooperation compared with other thiotrophic symbioses and outline our view on the evolution and persistence of this byproduct mutualism.
Collapse
Affiliation(s)
- Monika Bright
- Department of Limnology and Oceanography, University of ViennaVienna, Austria
| | | | - Ilias Lagkouvardos
- Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Jean-Marie Volland
- Department of Limnology and Oceanography, University of ViennaVienna, Austria
| |
Collapse
|
29
|
Bolhuis H, Schluepmann H, Kristalijn J, Sulaiman Z, Marshall DJ. Molecular analysis of bacterial diversity in mudflats along the salinity gradient of an acidified tropical Bornean estuary (South East Asia). AQUATIC BIOSYSTEMS 2014; 10:10. [PMID: 25392733 PMCID: PMC4229359 DOI: 10.1186/2046-9063-10-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/19/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND The Brunei River and Bay estuarine system (BES) in the northwest of Borneo is acidic and highly turbid. The system supports extensive intertidal mudflats and presents a potentially steep salinity and pH gradient along its length (45 km). Temporal variation in physical parameters is observed diurnally due to seawater flux during tidal forcing, and stochastically due to elevated freshwater inflow after rains, resulting in a salinity range between 0 and 34 psu. High velocity freshwater run-off from acid sulphate formations during monsoon seasons results in highly variable and acidic conditions (pH 4) at the upper reaches of the BES, whereas the pH is relatively stable (pH 8) at the seaward extremes, due to mixing with seawater from the South China Sea. At their surfaces, the BES mudflats present microbial ecosystems driven by oxygenic phototrophs. To study the effect of various physical parameters on the bacterial diversity of the BES mudflats, surface samples were collected from six sites stretching over 40 km for molecular and phylogentic analysis. RESULTS The bacterial diversity at these sites was compared by community fingerprinting analysis using 16S rRNA gene based denaturing gradient gel electrophoresis and by 16S rRNA gene sequencing and phylogenetic analyses. Results revealed functionally conserved, diatom-driven microbial mudflat communities composed of mainly novel, uncultured species. Species composition was evaluated as 50-70% unique for each site along the BES. Clustering of the sequences commonly occurred and revealed that proteobacterial diversity was related to the salinity gradient. When considering all phyla, the diversity varied consistently with physical parameters (including anthropogenic) that are expected to influence microbial composition. CONCLUSION The BES mudflats were found to comprise the typical functional groups of microorganisms associated with photosynthetic carbon flux, sulfur cycling (Gamma- and Deltaproteobacteria), and decomposition (Bacteroidetes). From a structural perspective, however, the mudflats constituted discretely distributed communities along the physical gradient of the BES, composed of largely novel species of Bacteria. This study provides first insights into patterns of bacterial community structure in tropical South East Asian coastal ecosystems that are potentially threatened by increasing variability in pH and salinity, in line with predicted future environmental change.
Collapse
Affiliation(s)
- Henk Bolhuis
- Department of Marine Microbiology, Royal Netherlands Institute of Sea Research (NIOZ), P.O. Box 140, 4400AC Yerseke, The Netherlands
| | - Henriette Schluepmann
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Juri Kristalijn
- Department of Marine Microbiology, Royal Netherlands Institute of Sea Research (NIOZ), P.O. Box 140, 4400AC Yerseke, The Netherlands
| | - Zohrah Sulaiman
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei Darussalam
- Institut Teknologi Brunei, Tungku Link, Gadong BE1410, Brunei Darussalam
| | - David J Marshall
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
30
|
Boscaro V, Schrallhammer M, Benken KA, Krenek S, Szokoli F, Berendonk TU, Schweikert M, Verni F, Sabaneyeva EV, Petroni G. Rediscovering the genus Lyticum, multiflagellated symbionts of the order Rickettsiales. Sci Rep 2013; 3:3305. [PMID: 24264310 PMCID: PMC3837311 DOI: 10.1038/srep03305] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/21/2013] [Indexed: 11/09/2022] Open
Abstract
Among the bacterial symbionts harbored by the model organism Paramecium, many still lack a recent investigation that includes a molecular characterization. The genus Lyticum consists of two species of large-sized bacteria displaying numerous flagella, despite their inability to move inside their hosts' cytoplasm. We present a multidisciplinary redescription of both species, using the deposited type strains as well as newly collected material. On the basis of 16S rRNA gene sequences, we assigned Lyticum to the order Rickettsiales, that is intensely studied because of its pathogenic representatives and its position as the extant group most closely related to the mitochondrial ancestor. We provide conclusive proofs that at least some Rickettsiales possess actual flagella, a feature that has been recently predicted from genomic data but never confirmed. We give support to the hypothesis that the mitochondrial ancestor could have been flagellated, and provide the basis for further studies on these ciliate endosymbionts.
Collapse
|
31
|
Herron MD, Rashidi A, Shelton DE, Driscoll WW. Cellular differentiation and individuality in the 'minor' multicellular taxa. Biol Rev Camb Philos Soc 2013; 88:844-61. [PMID: 23448295 PMCID: PMC4103886 DOI: 10.1111/brv.12031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 01/07/2023]
Abstract
Biology needs a concept of individuality in order to distinguish organisms from parts of organisms and from groups of organisms, to count individuals and compare traits across taxa, and to distinguish growth from reproduction. Most of the proposed criteria for individuality were designed for 'unitary' or 'paradigm' organisms: contiguous, functionally and physiologically integrated, obligately sexually reproducing multicellular organisms with a germ line sequestered early in development. However, the vast majority of the diversity of life on Earth does not conform to all of these criteria. We consider the issue of individuality in the 'minor' multicellular taxa, which collectively span a large portion of the eukaryotic tree of life, reviewing their general features and focusing on a model species for each group. When the criteria designed for unitary organisms are applied to other groups, they often give conflicting answers or no answer at all to the question of whether or not a given unit is an individual. Complex life cycles, intimate bacterial symbioses, aggregative development, and strange genetic features complicate the picture. The great age of some of the groups considered shows that 'intermediate' forms, those with some but not all of the traits traditionally associated with individuality, cannot reasonably be considered ephemeral or assumed transitional. We discuss a handful of recent attempts to reconcile the many proposed criteria for individuality and to provide criteria that can be applied across all the domains of life. Finally, we argue that individuality should be defined without reference to any particular taxon and that understanding the emergence of new kinds of individuals requires recognizing individuality as a matter of degree.
Collapse
Affiliation(s)
- Matthew D. Herron
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 Lowell St, Tucson, AZ 85721, USA
| | | | - Deborah E. Shelton
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 Lowell St, Tucson, AZ 85721, USA
| | - William W. Driscoll
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 Lowell St, Tucson, AZ 85721, USA
| |
Collapse
|
32
|
Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the "plastisphere": microbial communities on plastic marine debris. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7137-46. [PMID: 23745679 DOI: 10.1021/es401288x] [Citation(s) in RCA: 1571] [Impact Index Per Article: 130.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.
Collapse
Affiliation(s)
- Erik R Zettler
- Sea Education Association, P.O. Box 6, Woods Hole, Massachusetts 02543, United States
| | | | | |
Collapse
|
33
|
Laurent MCZ, Le Bris N, Gaill F, Gros O. Dynamics of wood fall colonization in relation to sulfide concentration in a mangrove swamp. MARINE ENVIRONMENTAL RESEARCH 2013; 87-88:85-95. [PMID: 23623161 DOI: 10.1016/j.marenvres.2013.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 06/02/2023]
Abstract
Wood debris are an important component of mangrove marine environments. Current knowledge of the ecological role of wood falls is limited by the absence of information on metazoan colonization processes over time. The aim of this study was to provide insights to their temporal dynamics of wood eukaryotic colonization from a shallow water experiment in a mangrove swamp. Combined in situ chemical monitoring and biological surveys revealed that the succession of colonizers in the mangrove swamp relates with the rapid evolution of sulfide concentration on the wood surface. Sulfide-tolerant species are among the first colonizers and dominate over several weeks when the sulfide content is at its maximum, followed by less tolerant opportunistic species when sulfide decreases. This study supports the idea that woody debris can sustain chemosynthetic symbioses over short time-scale in tropical shallow waters.
Collapse
Affiliation(s)
- Mélina C Z Laurent
- UMR-CNRS-IRD-MNHN-UPMC 7138, Systématique-Adaptation-Evolution, Equipe « Biologie de la mangrove », Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
| | | | | | | |
Collapse
|
34
|
Mori Y, Kataoka T, Okamura T, Kondo R. Dominance of green sulfur bacteria in the chemocline of the meromictic Lake Suigetsu, Japan, as revealed by dissimilatory sulfite reductase gene analysis. Arch Microbiol 2013; 195:303-12. [PMID: 23455488 DOI: 10.1007/s00203-013-0879-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/18/2012] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
Abstract
This study investigated the spatiotemporal abundance and diversity of the α-subunit of the dissimilatory sulfite reductase gene (dsrA) in the meromictic Lake Suigetsu for assessing the sulfur-oxidizing bacterial community. The density of dsrA in the chemocline reached up to 3.1 × 10(6) copies ml(-1) in summer by means of quantitative real-time PCR and it was generally higher than deeper layers. Most of the dsrA clones sequenced were related to green sulfur bacteria such as Chlorobium phaeovibrioides, C. limicola, and C. luteolum. Below the chemocline of the lake, we also detected other dsrA clones related to the purple sulfur bacterium Halochromatium salexigens and some branching lineages of diverse sequences that were related to chemotrophic sulfur bacterial species such as Magnetospirillum gryphiswaldense, Candidatus Ruthia magnifica, and Candidatus Thiobios zoothamnicoli. The abundance and community compositions of sulfur-oxidizing bacteria changed depending on the water depth and season. This study indicated that the green sulfur bacteria dominated among sulfur-oxidizing bacterial population in the chemocline of Lake Suigetsu and that certain abiotic environmental variables were important factors that determined sulfur bacterial abundance and community structure.
Collapse
Affiliation(s)
- Yumi Mori
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui 917-0003, Japan.
| | | | | | | |
Collapse
|
35
|
Modeo L, Fokin SI, Boscaro V, Andreoli I, Ferrantini F, Rosati G, Verni F, Petroni G. Morphology, ultrastructure, and molecular phylogeny of the ciliate Sonderia vorax with insights into the systematics of order Plagiopylida. BMC Microbiol 2013; 13:40. [PMID: 23418998 PMCID: PMC3626617 DOI: 10.1186/1471-2180-13-40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ciliates of the family Sonderiidae are common members of the eukaryotic communities in various anoxic environments. They host both ecto- and endosymbiotic prokaryotes (the latter associated with hydrogenosomes) and possess peculiar morpho-ultrastructural features, whose functions and homologies are not known. Their phylogenetic relationships with other ciliates are not completely resolved and the available literature, especially concerning electron microscopy and molecular studies, is quite scarce. RESULTS Sonderia vorax Kahl, 1928 is redescribed from an oxygen-deficient, brackish-water pond along the Ligurian Sea coastlines of Italy. Data on morphology, morphometry, and ultrastructure are reported. S. vorax is ovoid-ellipsoid in shape, dorsoventrally flattened, 130 x 69 μm (mean in vivo); it shows an almost spherical macronucleus, and one relatively large micronucleus. The ventral kinetom has a "secant system" including fronto-ventral and fronto-lateral kineties. A distinctive layer of bacteria laying between kineties covers the ciliate surface. Two types of extrusomes and hydrogenosomes-endosymbiotic bacteria assemblages are present in the cytoplasm. The phylogeny based on 18S rRNA gene sequences places S. vorax among Plagiopylida; Sonderiidae clusters with Plagiopylidae, although lower-level relationships remain uncertain. The studied population is fixed as neotype and the ciliate is established as type species of the genus, currently lacking. CONCLUSIONS This is the first description of a representative of Sonderiidae performed with both morphological and molecular data. To sum up, many previous hypotheses on this interesting, poorly known taxon are confirmed but confusion and contradictory data are as well highlighted.
Collapse
Affiliation(s)
- Letizia Modeo
- Unit of Protistology-Zoology, Department of Biology, University of Pisa, via A. Volta 4/6, Pisa 56126, Italy
| | - Sergei I Fokin
- Unit of Protistology-Zoology, Department of Biology, University of Pisa, via A. Volta 4/6, Pisa 56126, Italy
- Department of Invertebrate Zoology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russia
| | - Vittorio Boscaro
- Unit of Protistology-Zoology, Department of Biology, University of Pisa, via A. Volta 4/6, Pisa 56126, Italy
| | - Ilaria Andreoli
- Unit of Protistology-Zoology, Department of Biology, University of Pisa, via A. Volta 4/6, Pisa 56126, Italy
| | - Filippo Ferrantini
- Unit of Protistology-Zoology, Department of Biology, University of Pisa, via A. Volta 4/6, Pisa 56126, Italy
| | - Giovanna Rosati
- Unit of Protistology-Zoology, Department of Biology, University of Pisa, via A. Volta 4/6, Pisa 56126, Italy
| | - Franco Verni
- Unit of Protistology-Zoology, Department of Biology, University of Pisa, via A. Volta 4/6, Pisa 56126, Italy
| | - Giulio Petroni
- Unit of Protistology-Zoology, Department of Biology, University of Pisa, via A. Volta 4/6, Pisa 56126, Italy
| |
Collapse
|
36
|
Boscaro V, Petroni G, Ristori A, Verni F, Vannini C. "Candidatus Defluviella procrastinata" and "Candidatus Cyrtobacter zanobii", two novel ciliate endosymbionts belonging to the "Midichloria clade". MICROBIAL ECOLOGY 2013; 65:302-310. [PMID: 23296446 DOI: 10.1007/s00248-012-0170-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
The "Midichloria clade" is a recently discovered but well-established evolutionary lineage clustering inside the order Rickettsiales (Alphaproteobacteria). Not much is known about the biology of these organisms. The best characterized ones are endocellular symbionts of very different eukaryotic hosts, ranging from arthropods to protists. "Candidatus Midichloria mitochondrii", the most studied organism of the group, is an interesting object of study because of its unique capability to infect metazoans' mitochondria and the presence of flagellar genes in its genome. With this work, we aim at increasing the knowledge on the biodiversity and phylogeny of the "Midichloria group". We characterized according to the "full cycle rRNA approach" two novel endosymbionts of ciliated protozoa, i.e. Paramecium nephridiatum and Euplotes aediculatus. According to the nomenclatural rules for uncultivated prokaryotes, we established the novel taxa "Candidatus Defluviella procrastinata" and "Candidatus Cyrtobacter zanobii" for the two bacterial symbionts. Our phylogenetic analysis based on 16S rRNA gene sequences confirms that the evolutionary histories of "Midichloria clade" representatives and of their hosts are very different. This suggests that the symbiotic processes arose many times independently, perhaps through ways of transmission still not described in Rickettsiales.
Collapse
Affiliation(s)
- Vittorio Boscaro
- Biology Department, Protistology-Zoology Unit, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
37
|
Boscaro V, Fokin SI, Schrallhammer M, Schweikert M, Petroni G. Revised systematics of Holospora-like bacteria and characterization of "Candidatus Gortzia infectiva", a novel macronuclear symbiont of Paramecium jenningsi. MICROBIAL ECOLOGY 2013; 65:255-267. [PMID: 22940732 DOI: 10.1007/s00248-012-0110-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
The genus Holospora (Rickettsiales) includes highly infectious nuclear symbionts of the ciliate Paramecium with unique morphology and life cycle. To date, nine species have been described, but a molecular characterization is lacking for most of them. In this study, we have characterized a novel Holospora-like bacterium (HLB) living in the macronuclei of a Paramecium jenningsi population. This bacterium was morphologically and ultrastructurally investigated in detail, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and developed a specific probe for fluorescence in situ hybridization experiments. A new taxon, "Candidatus Gortzia infectiva", was established for this HLB according to its unique characteristics and the relatively low DNA sequence similarities shared with other bacteria. The phylogeny of the order Rickettsiales based on 16S rRNA gene sequences has been inferred, adding to the available data the sequence of the novel bacterium and those of two Holospora species (Holospora obtusa and Holospora undulata) characterized for the purpose. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and showed a possible pattern of evolution for some of their features. We suggested to classify inside the family Holosporaceae only HLBs, excluding other more distantly related and phenotypically different Paramecium endosymbionts.
Collapse
Affiliation(s)
- Vittorio Boscaro
- Biology Department, Protistology-Zoology Unit, University of Pisa, Via A. Volta 4, 56126 Pisa, Italy
| | | | | | | | | |
Collapse
|
38
|
Dziallas C, Allgaier M, Monaghan MT, Grossart HP. Act together-implications of symbioses in aquatic ciliates. Front Microbiol 2012; 3:288. [PMID: 22891065 PMCID: PMC3413206 DOI: 10.3389/fmicb.2012.00288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/22/2012] [Indexed: 02/01/2023] Open
Abstract
Mutual interactions in the form of symbioses can increase the fitness of organisms and provide them with the capacity to occupy new ecological niches. The formation of obligate symbioses allows for rapid evolution of new life forms including multitrophic consortia. Microbes are important components of many known endosymbioses and their short generation times and strong potential for genetic exchange may be important drivers of speciation. Hosts provide endo- and ectosymbionts with stable, nutrient-rich environments, and protection from grazers. This is of particular importance in aquatic ecosystems, which are often highly variable, harsh, and nutrient-deficient habitats. It is therefore not surprising that symbioses are widespread in both marine and freshwater environments. Symbioses in aquatic ciliates are good model systems for exploring symbiont-host interactions. Many ciliate species are globally distributed and have been intensively studied in the context of plastid evolution. Their relatively large cell size offers an ideal habitat for numerous microorganisms with different functional traits including commensalism and parasitism. Phagocytosis facilitates the formation of symbiotic relationships, particularly since some ingested microorganisms can escape the digestion. For example, photoautotrophic algae and methanogens represent endosymbionts that greatly extend the biogeochemical functions of their hosts. Consequently, symbiotic relationships between protists and prokaryotes are widespread and often result in new ecological functions of the symbiotic communities. This enables ciliates to thrive under a wide range of environmental conditions including ultraoligotrophic or anoxic habitats. We summarize the current understanding of this exciting research topic to identify the many areas in which knowledge is lacking and to stimulate future research by providing an overview on new methodologies and by formulating a number of emerging questions in this field.
Collapse
Affiliation(s)
- Claudia Dziallas
- Marine Biological Section, University of CopenhagenHelsingør, Denmark
| | - Martin Allgaier
- Department of Limnology of Stratified Lakes, Leibniz-Institute of Freshwater Ecology and Inland FisheriesStechlin, Germany
- Berlin Center for Genomics in Biodiversity ResearchBerlin, Germany
| | - Michael T. Monaghan
- Department of Limnology of Shallow Lakes and Lowland Rivers, Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlin, Germany
| | - Hans-Peter Grossart
- Department of Limnology of Stratified Lakes, Leibniz-Institute of Freshwater Ecology and Inland FisheriesStechlin, Germany
- Institute for Biochemistry and Biology, Potsdam UniversityPotsdam, Germany
| |
Collapse
|
39
|
Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mussmann M. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol 2010; 13:758-74. [PMID: 21134098 DOI: 10.1111/j.1462-2920.2010.02380.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂ -incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.
Collapse
Affiliation(s)
- Sabine Lenk
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Goffredi SK. Indigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebrates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:479-488. [PMID: 23766219 DOI: 10.1111/j.1758-2229.2010.00136.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Symbioses involving bacteria and invertebrates contribute to the biological diversity and high productivity of both aquatic and terrestrial environments. Well-known examples from chemosynthetic deep-sea hydrothermal vent environments involve ectosymbiotic microbes associated with the external surfaces of marine invertebrates. Some of these ectosymbioses confer protection or defence from predators or the environment itself, some are nutritional in nature, and many still are of unknown function. Several recently discovered hydrothermal vent invertebrates, including two populations of yeti crab (Kiwa spp.), a limpet (Symmetromphalus aff. hageni), and the scaly-foot snail (as yet undescribed), support a consortium of diverse bacteria. Comparisons of these ectosymbioses to those previously described revealed similarities among the associated microorganisms, suggesting that certain microbes are indigenous to the surfaces of marine invertebrates. In particular, members of the Thiovulgaceae (epsilonproteobacteria) and Thiotrichaceae (gammaproteobacteria) appear to preferentially form ectosymbioses with vent crustaceans and gastropods. Interactions between specific Proteobacteria and the surfaces of many marine invertebrates likely have ecological and evolutionary significance at these chemically challenging habitats.
Collapse
Affiliation(s)
- Shana K Goffredi
- Biology Department, Occidental College, 1600 Campus Rd, Los Angeles, CA 90041, USA
| |
Collapse
|
41
|
Fujiwara Y, Kawato M, Noda C, Kinoshita G, Yamanaka T, Fujita Y, Uematsu K, Miyazaki JI. Extracellular and mixotrophic symbiosis in the whale-fall mussel Adipicola pacifica: a trend in evolution from extra- to intracellular symbiosis. PLoS One 2010; 5:e11808. [PMID: 20676405 PMCID: PMC2910738 DOI: 10.1371/journal.pone.0011808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 06/24/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deep-sea mussels harboring chemoautotrophic symbionts from hydrothermal vents and seeps are assumed to have evolved from shallow-water asymbiotic relatives by way of biogenic reducing environments such as sunken wood and whale falls. Such symbiotic associations have been well characterized in mussels collected from vents, seeps and sunken wood but in only a few from whale falls. METHODOLOGY/PRINCIPAL FINDING Here we report symbioses in the gill tissues of two mussels, Adipicola crypta and Adipicola pacifica, collected from whale-falls on the continental shelf in the northwestern Pacific. The molecular, morphological and stable isotopic characteristics of bacterial symbionts were analyzed. A single phylotype of thioautotrophic bacteria was found in A. crypta gill tissue and two distinct phylotypes of bacteria (referred to as Symbiont A and Symbiont C) in A. pacifica. Symbiont A and the A. crypta symbiont were affiliated with thioautotrophic symbionts of bathymodiolin mussels from deep-sea reducing environments, while Symbiont C was closely related to free-living heterotrophic bacteria. The symbionts in A. crypta were intracellular within epithelial cells of the apical region of the gills and were extracellular in A. pacifica. No spatial partitioning was observed between the two phylotypes in A. pacifica in fluorescence in situ hybridization experiments. Stable isotopic analyses of carbon and sulfur indicated the chemoautotrophic nature of A. crypta and mixotrophic nature of A. pacifica. Molecular phylogenetic analyses of the host mussels showed that A. crypta constituted a monophyletic clade with other intracellular symbiotic (endosymbiotic) mussels and that A. pacifica was the sister group of all endosymbiotic mussels. CONCLUSIONS/SIGNIFICANCE These results strongly suggest that the symbiosis in A. pacifica is at an earlier stage in evolution than other endosymbiotic mussels. Whale falls and other modern biogenic reducing environments may act as refugia for primal chemoautotrophic symbioses between eukaryotes and prokaryotes since the extinction of ancient large marine vertebrates.
Collapse
Affiliation(s)
- Yoshihiro Fujiwara
- Chemo-Ecosystem Evolution Research (ChEER) Team, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ruehland C, Dubilier N. Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Environ Microbiol 2010; 12:2312-26. [PMID: 21966922 DOI: 10.1111/j.1462-2920.2010.02256.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The marine oligochaete worm Tubificoides benedii is often found in high numbers in eutrophic coastal sediments with low oxygen and high sulfide concentrations. A dense biofilm of filamentous bacteria on the worm's tail end were morphologically described over 20 years ago, but no further studies of these epibiotic associations were done. In this study, we used fluorescence in situ hybridization and comparative sequence analysis of 16S rRNA and protein-coding genes to characterize the microbial community of the worm's tail ends. The presence of genes involved in chemoautotrophy (cbbL and cbbM) and sulfur metabolism (aprA) indicated the potential of the T. benedii microbial community for chemosynthesis. Two filamentous ectosymbionts were specific to the worm's tail ends: one belonged to the Leucothrix mucor clade within the Gammaproteobacteria and the other to the Thiovulgaceae within the Epsilonproteobacteria. Both T. benedii ectosymbionts belonged to clades that consisted almost exclusively of bacteria associated with invertebrates from deep-sea hydrothermal vents. Such close relationships between symbionts from shallow-water and deep-sea hosts that are not closely related to each other are unusual, and indicate that biogeography and host affiliation did not play a role in these associations. Instead, similarities between the dynamic environments of vents and organic-rich mudflats with their strong fluctuations in reductants and oxidants may have been the driving force behind the establishment and evolution of these symbioses.
Collapse
Affiliation(s)
- Caroline Ruehland
- Symbiosis Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | |
Collapse
|
43
|
Maurin LC, Himmel D, Mansot JL, Gros O. Raman microspectrometry as a powerful tool for a quick screening of thiotrophy: an application on mangrove swamp meiofauna of Guadeloupe (F.W.I.). MARINE ENVIRONMENTAL RESEARCH 2010; 69:382-389. [PMID: 20202680 DOI: 10.1016/j.marenvres.2010.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/27/2010] [Accepted: 02/02/2010] [Indexed: 05/28/2023]
Abstract
The mangrove swamp environment constitutes a sulphide rich habitat harbouring some thioautotrophic organisms. The ciliate Zoothamnium niveum and the nematode Eubostrichus dianae, both known to live associated with bacterial sulphide-oxidizing ectosymbionts, were analysed as positive controls by Raman microspectrometry. The detection of the 3 Raman bands characteristic of elemental sulphur (S(8)) allows us to define a positive model of sulphide-oxidizing symbiotic invertebrates and by extrapolation, of thioautotrophic organisms. A fast screening using this tool was carried out on eukaryotic organisms such as hydrozoan, nematodes, annelids, copepods, and ciliate (Pseudovorticella sp.) and on free-living filamentous bacteria found on decomposing leaves in order to detect thioautotrophic organisms. The Raman microspectrometry permits us: (i) to reveal thioautotrophic metabolism of free-living bacteria (Beggiatoa sp.) and even for Archaea and (ii) to detect sulphide-oxidizing endosymbiotic and ectosymbiotic bacteria associated with the Bivalve Lucina pectinata and Pseudovorticella sp., respectively. Raman microspectrometry represents a fast, easy and non destructive technique which can be used on living organisms without constraints of sample size. The Raman analysis can also be completed by ultrastructural analysis (SEM, TEM) on the same sample.
Collapse
Affiliation(s)
- Leslie C Maurin
- UMR-CNRS 7138, Systématique-Adaptation-Evolution, Equipe Biologie de la mangrove, Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, Département de Biologie, Pointe-à-Pitre Cedex, Guadeloupe, France.
| | | | | | | |
Collapse
|
44
|
Ecological strategies of protists and their symbiotic relationships with prokaryotic microbes. Trends Microbiol 2009; 17:563-9. [DOI: 10.1016/j.tim.2009.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 09/01/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022]
|
45
|
Bayer C, Heindl NR, Rinke C, Lücker S, Ott JA, Bulgheresi S. Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:136-144. [PMID: 19838308 PMCID: PMC2761003 DOI: 10.1111/j.1758-2229.2009.00019.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/06/2009] [Indexed: 05/24/2023]
Abstract
Marine nematodes that carry sulfur-oxidizing bacteria on their cuticle (Stilbonematinae, Desmodoridae) migrate between oxidized and reduced sand layers thereby supplying their symbionts with oxygen and sulfide. These symbionts, in turn, constitute the worms' major food source. Due to the accessibility, abundance and relative simplicity of this association, stilbonematids may be useful to understand symbiosis establishment. Nevertheless, only the symbiont of Laxus oneistus has been found to constitute one single phylotype within the Gammaproteobacteria. Here, we characterized the symbionts of three yet undescribed nematodes that were morphologically identified as members of the genus Robbea. They were collected at the island of Corsica, the Cayman Islands and the Belize Barrier Reef. The surface of these worms is covered by a single layer of morphologically undistinguishable bacteria. 18S rDNA-based phylogenetic analysis showed that all three species belong to the Stilbonematinae, although they do not form a distinct cluster within that subfamily. 16S rDNA-based analysis of the symbionts placed them interspersed in the cluster comprising the sulfur-oxidizing symbionts of L. oneistus and of marine gutless oligochaetes. Finally, the presence and phylogeny of the aprA gene indicated that the symbionts of all three nematodes can use reduced sulfur compounds as an energy source.
Collapse
Affiliation(s)
- Christoph Bayer
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Niels R Heindl
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Christian Rinke
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Sebastian Lücker
- Departments of Microbial Ecology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Joerg A Ott
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Silvia Bulgheresi
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
46
|
Røy H, Vopel K, Huettel M, Jørgensen BB. Sulfide assimilation by ectosymbionts of the sessile ciliate, Zoothamnium niveum. MARINE BIOLOGY 2009; 156:669-677. [PMID: 32921817 PMCID: PMC7477830 DOI: 10.1007/s00227-008-1117-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 12/15/2008] [Indexed: 06/11/2023]
Abstract
We investigated the constraints on sulfide uptake by bacterial ectosymbionts on the marine peritrich ciliate Zoothamnium niveum by a combination of experimental and numerical methods. Protists with symbionts were collected on large blocks of mangrove-peat. The blocks were placed in a flow cell with flow adjusted to in situ velocity. The water motion around the colonies was then characterized by particle tracking velocimetry. This shows that the feather-shaped colony of Z. niveum generates a unidirectional flow of seawater through the colony with no recirculation. The source of the feeding current was the free-flowing water although the size of the colonies suggests that they live partly submerged in the diffusive boundary layer. We showed that the filtered volume allows Z. niveum to assimilate sufficient sulfide to sustain the symbiosis at a few micromoles per liter in ambient concentration. Numerical modeling shows that sulfide oxidizing bacteria on the surfaces of Z. niveum can sustain 100-times higher sulfide uptake than bacteria on flat surfaces, such as microbial mats. The study demonstrates that the filter feeding zooids of Z. niveum are preadapted to be prime habitats for sulfide oxidizing bacteria due to Z. niveum's habitat preference and due to the feeding current. Z. niveum is capable of exploiting low concentrations of sulfide in near norm-oxic seawater. This links its otherwise dissimilar habitats and makes it functionally similar to invertebrates with thiotrophic symbionts in filtering organs.
Collapse
Affiliation(s)
- Hans Røy
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
- Present Address: Department of Biological Sciences, Center for Geomicrobiology, University of Aarhus, Ny Munkegade 1535, 8000 Aarhus C, Denmark
| | - Kay Vopel
- School of Applied Sciences, Auckland University of Technology, Mail No C43, Private Bag 92006, Auckland, 1142 New Zealand
| | - Markus Huettel
- Department of Oceanography, Florida State University, 117 N Woodward Ave., OSB 517, Tallahassee, FL 32306-4320 USA
| | - Bo Barker Jørgensen
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| |
Collapse
|
47
|
Laurent MCZ, Gros O, Brulport JP, Gaill F, Bris NL. Sunken wood habitat for thiotrophic symbiosis in mangrove swamps. MARINE ENVIRONMENTAL RESEARCH 2009; 67:83-88. [PMID: 19131100 DOI: 10.1016/j.marenvres.2008.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 05/27/2023]
Abstract
Large organic falls to the benthic environment, such as dead wood or whale bones, harbour organisms relying on sulfide-oxidizing symbionts. Nothing is known however, concerning sulfide enrichment at the wood surface and its relation to wood colonization by sulfide-oxidizing symbiotic organisms. In this study we combined in situ hydrogen sulfide and pH measurements on sunken wood, with associated fauna microscopy analyses in a tropical mangrove swamp. This shallow environment is known to harbour thiotrophic symbioses and is also abundantly supplied with sunken wood. A significant sulfide enrichment at the wood surface was revealed. A 72h sequence of measurements emphasized the wide fluctuation of sulfide levels (0.1->100muM) over time with both a tidal influence and rapid fluctuations. Protozoans observed on the wood surface were similar to Zoothamnium niveum and to vorticellids. Our SEM observations revealed their association with ectosymbiotic bacteria, which are likely to be sulfide-oxidizers. These results support the idea that sunken wood surfaces constitute an environment suitable for sulfide-oxidizing symbioses.
Collapse
Affiliation(s)
- Mélina C Z Laurent
- Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, Département de Biologie, B.P. 592, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France.
| | | | | | | | | |
Collapse
|
48
|
Cell proliferation and growth inZoothamnium niveum (Oligohymenophora, Peritrichida) — Thiotrophic bacteria symbiosis. Symbiosis 2009. [DOI: 10.1007/bf03179969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Loy A, Duller S, Baranyi C, Mussmann M, Ott J, Sharon I, Béjà O, Le Paslier D, Dahl C, Wagner M. Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ Microbiol 2009; 11:289-99. [PMID: 18826437 PMCID: PMC2702494 DOI: 10.1111/j.1462-2920.2008.01760.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 07/31/2008] [Indexed: 12/03/2022]
Abstract
Sulfur-oxidizing prokaryotes (SOP) catalyse a central step in the global S-cycle and are of major functional importance for a variety of natural and engineered systems, but our knowledge on their actual diversity and environmental distribution patterns is still rather limited. In this study we developed a specific PCR assay for the detection of dsrAB that encode the reversely operating sirohaem dissimilatory sulfite reductase (rDSR) and are present in many but not all published genomes of SOP. The PCR assay was used to screen 42 strains of SOP (most without published genome sequence) representing the recognized diversity of this guild. For 13 of these strains dsrAB was detected and the respective PCR product was sequenced. Interestingly, most dsrAB-encoding SOP are capable of forming sulfur storage compounds. Phylogenetic analysis demonstrated largely congruent rDSR and 16S rRNA consensus tree topologies, indicating that lateral transfer events did not play an important role in the evolutionary history of known rDSR. Thus, this enzyme represents a suitable phylogenetic marker for diversity analyses of sulfur storage compound-exploiting SOP in the environment. The potential of this new functional gene approach was demonstrated by comparative sequence analyses of all dsrAB present in published metagenomes and by applying it for a SOP census in selected marine worms and an alkaline lake sediment.
Collapse
Affiliation(s)
- Alexander Loy
- Department of Microbial Ecology, Universität Wein, Wein, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rinke C, Schmitz-Esser S, Loy A, Horn M, Wagner M, Bright M. High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont 'Candidatus Thiobios zoothamnicoli'. FEMS Microbiol Ecol 2009; 67:229-41. [PMID: 19120466 DOI: 10.1111/j.1574-6941.2008.00628.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
The giant marine ciliate Zoothamnium niveum (Ciliophora, Oligohymenophora) is obligatorily covered by a monolayer of putative chemoautotrophic sulfur-oxidizing (thiotrophic) bacteria. For Z. niveum specimens from the Caribbean Sea it has been demonstrated that this ectosymbiotic population consists of only a single pleomorphic phylotype described as Candidatus Thiobios zoothamnicoli. The goal of our study was to identify and phylogenetically analyse the ectosymbiont(s) of a recently discovered Z. niveum population from the Mediterranean Sea, and to compare marker genes encoding key enzymes of the carbon and sulfur metabolism between the two symbiont populations. We identified a single bacterial phylotype representing the ectosymbiont of Z. niveum from the Mediterranean population showing 99.7% 16S rRNA gene (99.2% intergenic spacer region) similarity to the Caribbean Z. niveum ectosymbiont. Genes encoding enzymes typical for an inorganic carbon metabolism [ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO)] and for sulfur metabolism (5'-adenylylsulfate reductase, dissimilatory sulfite reductase) were detected in both symbiotic populations. The very high amino acid sequence identity (97-100%) and the high nucleic acid sequence identity (90-98%) of these marker enzymes in two geographically distant symbiont populations suggests that the association of Z. niveum with Cand. Thiobios zoothamnicoli is very specific as well as temporally and spatially stable.
Collapse
Affiliation(s)
- Christian Rinke
- Department of Marine Biology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|