1
|
Antibodies Against Sarcocystis neurona , Neospora spp., and Toxoplasma gondii in Horses and Mules From the Northern Pantanal Wetland of Brazil. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Alvarado-Esquivel C, Howe DK, Yeargan MR, Alvarado-Esquivel D, Alfredo Zamarripa-Barboza J, Dubey JP. Seroepidemiology of Sarcocystis neurona and Neospora hughesi infections in domestic donkeys (Equus asinus) in Durango, Mexico. ACTA ACUST UNITED AC 2017; 24:27. [PMID: 28730993 PMCID: PMC5520387 DOI: 10.1051/parasite/2017030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023]
Abstract
There is currently no information regarding Sarcocystis neurona and Neospora hughesi infections in donkeys in Mexico. Here, we determined the presence of antibodies against S. neurona and N. hughesi in donkeys in the northern Mexican state of Durango. Serum samples of 239 domestic donkeys (Equus asinus) were assayed for S. neurona and N. hughesi antibodies using home-made enzyme-linked immunoassays; six (2.5%) of the 239 donkeys tested seropositive for S. neurona. The seroprevalence of S. neurona infection was comparable among donkeys regardless of their origin, health status, or sex. Multivariate analysis showed that seropositivity to S. neurona was associated with increased age (OR = 2.95; 95% CI: 1.11–7.82; p = 0.02). Antibodies to N. hughesi were found in two (0.8%) of the 239 donkeys. Both exposed donkeys were healthy, 3- and 6-year-old females. This is the first evidence of S. neurona and N. hughesi infections in donkeys in Mexico.
Collapse
Affiliation(s)
- Cosme Alvarado-Esquivel
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State. Avenida Universidad S/N, 34000 Durango, Mexico
| | - Daniel K Howe
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky Lexington, Kentucky 40546-0099, USA
| | - Michelle R Yeargan
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky Lexington, Kentucky 40546-0099, USA
| | - Domingo Alvarado-Esquivel
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State. Avenida Universidad S/N, 34000 Durango, Mexico
| | - José Alfredo Zamarripa-Barboza
- Healthcare Center No. 1 "Dr. Carlos León de la Peña". Secretary of Health, Boulevard de la Juventud S/N, 34000 Durango, Mexico
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Building 1001, Beltsville, Maryland 20705-2350, USA
| |
Collapse
|
3
|
Reed SM, Furr M, Howe DK, Johnson AL, MacKay RJ, Morrow JK, Pusterla N, Witonsky S. Equine Protozoal Myeloencephalitis: An Updated Consensus Statement with a Focus on Parasite Biology, Diagnosis, Treatment, and Prevention. J Vet Intern Med 2016; 30:491-502. [PMID: 26857902 PMCID: PMC4913613 DOI: 10.1111/jvim.13834] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/27/2022] Open
Abstract
Equine protozoal myeloencephalitis (EPM) remains an important neurologic disease of horses. There are no pathognomonic clinical signs for the disease. Affected horses can have focal or multifocal central nervous system (CNS) disease. EPM can be difficult to diagnose antemortem. It is caused by either of 2 parasites, Sarcocystis neurona and Neospora hughesi, with much less known about N. hughesi. Although risk factors such as transport stress and breed and age correlations have been identified, biologic factors such as genetic predispositions of individual animals, and parasite‐specific factors such as strain differences in virulence, remain largely undetermined. This consensus statement update presents current published knowledge of the parasite biology, host immune response, disease pathogenesis, epidemiology, and risk factors. Importantly, the statement provides recommendations for EPM diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- S M Reed
- Rood and Riddle Equine Hospital, 2150 Georgetown Road, Lexington, Kentucky, 40511.,Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY
| | - M Furr
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK
| | - D K Howe
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY
| | - A L Johnson
- New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA
| | - R J MacKay
- College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - J K Morrow
- Equine Diagnostic Solutions LLC, Lexington, KY
| | - N Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| | - S Witonsky
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA
| |
Collapse
|
4
|
Renier AC, Morrow JK, Graves AJ, Finno CJ, Howe DK, Owens SD, Tamez-Trevino E, Packham AE, Conrad PA, Pusterla N. Diagnosis of Equine Protozoal Myeloencephalitis Using Indirect Fluorescent Antibody Testing and Enzyme-Linked Immunosorbent Assay Titer Ratios for Sarcocystis neurona and Neospora hughesi. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2015.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Yeargan M, de Assis Rocha I, Morrow J, Graves A, Reed SM, Howe DK. A new trivalent SnSAG surface antigen chimera for efficient detection of antibodies against Sarcocystis neurona and diagnosis of equine protozoal myeloencephalitis. J Vet Diagn Invest 2015; 27:377-81. [PMID: 25943129 DOI: 10.1177/1040638715584995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzyme-linked immunosorbent assays (ELISAs) based on the SnSAG surface antigens of Sarcocystis neurona provide reliable detection of infection by the parasite. Moreover, accurate serodiagnosis of equine protozoal myeloencephalitis (EPM) is achieved with the SnSAG ELISAs by measuring antibodies in serum and cerebrospinal fluid (CSF) to reveal active infection in the central nervous system. Two independent ELISAs based on recombinant (r)SnSAG2 or a chimeric fusion of SnSAG3 and SnSAG4 (rSnSAG4/3) are currently used together for EPM serodiagnosis to overcome varied antibody responses in different horses. To achieve reliable antibody detection with a single ELISA instead of 2 separate ELISAs, rSnSAG2 was fused with rSnSAG4/3 into a single trivalent protein, designated rSnSAG2/4/3. Paired serum and CSF from 163 horses were tested with all 3 ELISAs. When the consensus antibody titers obtained with the rSnSAG2 and rSnSAG4/3 ELISAs were compared to the single SAG2/4/3 ELISA titers, Spearman rank correlation coefficients of ρ = 0.74 and ρ = 0.90 were obtained for serum and CSF, respectively, indicating strong agreement between the tests. When the rSnSAG2 and rSnSAG4/3 consensus serum-to-CSF titer ratio was compared to the rSnSAG2/4/3 serum-to-CSF titer ratio, the Spearman correlation coefficient was ρ = 0.87, again signifying strong agreement. Importantly, comparing the diagnostic interpretation of the serum-to-CSF titer ratios yielded a Cohen kappa value of 0.77. These findings suggest that the single ELISA based on the trivalent rSnSAG2/4/3 will provide serologic and diagnostic results that are highly comparable to the consensus of the 2 independent ELISAs based on rSnSAG2 and rSnSAG4/3.
Collapse
Affiliation(s)
- Michelle Yeargan
- Department of Veterinary Science, University of Kentucky, Lexington, KY (Yeargan, Rocha, Reed, Howe)Rood and Riddle Equine Hospital, Lexington, KY (Reed)Equine Diagnostic Solutions LLC, Lexington, KY (Morrow, Graves)
| | - Izabela de Assis Rocha
- Department of Veterinary Science, University of Kentucky, Lexington, KY (Yeargan, Rocha, Reed, Howe)Rood and Riddle Equine Hospital, Lexington, KY (Reed)Equine Diagnostic Solutions LLC, Lexington, KY (Morrow, Graves)
| | - Jennifer Morrow
- Department of Veterinary Science, University of Kentucky, Lexington, KY (Yeargan, Rocha, Reed, Howe)Rood and Riddle Equine Hospital, Lexington, KY (Reed)Equine Diagnostic Solutions LLC, Lexington, KY (Morrow, Graves)
| | - Amy Graves
- Department of Veterinary Science, University of Kentucky, Lexington, KY (Yeargan, Rocha, Reed, Howe)Rood and Riddle Equine Hospital, Lexington, KY (Reed)Equine Diagnostic Solutions LLC, Lexington, KY (Morrow, Graves)
| | - Stephen M Reed
- Department of Veterinary Science, University of Kentucky, Lexington, KY (Yeargan, Rocha, Reed, Howe)Rood and Riddle Equine Hospital, Lexington, KY (Reed)Equine Diagnostic Solutions LLC, Lexington, KY (Morrow, Graves)
| | - Daniel K Howe
- Department of Veterinary Science, University of Kentucky, Lexington, KY (Yeargan, Rocha, Reed, Howe)Rood and Riddle Equine Hospital, Lexington, KY (Reed)Equine Diagnostic Solutions LLC, Lexington, KY (Morrow, Graves)
| |
Collapse
|
6
|
Dubey JP, Howe DK, Furr M, Saville WJ, Marsh AE, Reed SM, Grigg ME. An update on Sarcocystis neurona infections in animals and equine protozoal myeloencephalitis (EPM). Vet Parasitol 2015; 209:1-42. [PMID: 25737052 DOI: 10.1016/j.vetpar.2015.01.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/27/2023]
Abstract
Equine protozoal myeloencephalitis (EPM) is a serious disease of horses, and its management continues to be a challenge for veterinarians. The protozoan Sarcocystis neurona is most commonly associated with EPM. S. neurona has emerged as a common cause of mortality in marine mammals, especially sea otters (Enhydra lutris). EPM-like illness has also been recorded in several other mammals, including domestic dogs and cats. This paper updates S. neurona and EPM information from the last 15 years on the advances regarding life cycle, molecular biology, epidemiology, clinical signs, diagnosis, treatment and control.
Collapse
Affiliation(s)
- J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD 20705-2350, USA.
| | - D K Howe
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - M Furr
- Marion du Pont Scott Equine Medical Center, Virginia Maryland Regional College of Veterinary Medicine, 17690 Old Waterford Road, Leesburg, VA 20176, USA
| | - W J Saville
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| | - A E Marsh
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| | - S M Reed
- Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - M E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institutes of Health, National Institutes of Allergy, and Infectious Diseases, 4 Center Drive, Room B1-06, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Abstract
Equine protozoal myeloencephalitis (EPM) can be caused by either of 2 related protozoan parasites, Sarcocystis neurona and Neospora hughesi, although S. neurona is the most frequent etiologic pathogen. Horses are commonly infected, but clinical disease occurs infrequently; the factors influencing disease occurrence are not well understood. Risk factors for the development of EPM include the presence of opossums and prior stressful health-related events. Attempts to reproduce EPM experimentally have reliably induced antibody responses in challenged horses but have not consistently produced acute neurologic disease. Diagnosis and options for treatment of EPM have improved over the past decade.
Collapse
Affiliation(s)
- Daniel K Howe
- Department of Veterinary Science, M.H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546-0099, USA.
| | - Robert J MacKay
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Room VH-136, PO Box 100136, Gainesville, FL 32610-0125, USA
| | - Stephen M Reed
- Department of Veterinary Science, M.H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546-0099, USA; Rood and Riddle Equine Hospital, PO Box 12070, Lexington, KY 40580, USA
| |
Collapse
|
8
|
Seroprevalence of Sarcocystis neurona and Its Association With Neurologic Disorders in Argentinean Horses. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Accurate Antemortem Diagnosis of Equine Protozoal Myeloencephalitis (EPM) Based on Detecting Intrathecal Antibodies against Sarcocystis neurona
Using the SnSAG2 and SnSAG4/3 ELISAs. J Vet Intern Med 2013; 27:1193-200. [DOI: 10.1111/jvim.12158] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 05/09/2013] [Accepted: 07/10/2013] [Indexed: 12/01/2022] Open
|
10
|
Update on infectious diseases affecting the equine nervous system. Vet Clin North Am Equine Pract 2011; 27:573-87. [PMID: 22100045 DOI: 10.1016/j.cveq.2011.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Arias M, Yeargan M, Francisco I, Dangoudoubiyam S, Becerra P, Francisco R, Sánchez-Andrade R, Paz-Silva A, Howe DK. Exposure to Sarcocystis spp. in horses from Spain determined by Western blot analysis using Sarcocystis neurona merozoites as heterologous antigen. Vet Parasitol 2011; 185:301-4. [PMID: 22019182 DOI: 10.1016/j.vetpar.2011.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/21/2011] [Accepted: 09/30/2011] [Indexed: 10/17/2022]
Abstract
Horses serve as an intermediate host for several species of Sarcocystis, all of which utilize canids as the definitive host. Sarcocystis spp. infection and formation of latent sarcocysts in horses often appears to be subclinical, but morbidity can occur, especially when the parasite burden is large. A serological survey was conducted to determine the presence of antibodies against Sarcocystis spp. in seemingly healthy horses from the Galicia region of Spain. Western blot analyses using Sarcocystis neurona merozoites as heterologous antigen suggested greater than 80% seroprevalance of Sarcocystis spp. in a sample set of 138 horses. The serum samples were further tested with enzyme-linked immunosorbent assays (ELISAs) based on recombinant S. neurona-specific surface antigens (rSnSAGs). As expected for horses from the Eastern Hemisphere, less than 4% of the serum samples were positive when analyzed with either the rSnSAG2 or the rSnSAG4/3 ELISAs. An additional 246 horses were tested using the rSnSAG2 ELISA, which revealed that less than 3% of the 384 samples were seropositive. Collectively, the results of this serologic study suggested that a large proportion of horses from this region of Spain are exposed to Sarcocystis spp. Furthermore, the anti-Sarcocystis seroreactivity in these European horses could be clearly distinguished from anti-S. neurona antibodies using the rSnSAG2 and rSnSAG4/3 ELISAs.
Collapse
Affiliation(s)
- M Arias
- Equine Diseases Study Group (Epidemiology, Parasitology and Zoonoses), Animal Pathology Department, Veterinary Faculty, Santiago de Compostela University, 27002 Lugo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dangoudoubiyam S, Oliveira JB, Víquez C, Gómez-García A, González O, Romero JJ, Kwok OCH, Dubey JP, Howe DK. Detection of antibodies against Sarcocystis neurona, Neospora spp., and Toxoplasma gondii in horses from Costa Rica. J Parasitol 2011; 97:522-4. [PMID: 21506839 DOI: 10.1645/ge-2722.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Serum samples from 315 horses from Costa Rica, Central America, were examined for the presence of antibodies against Sarcocystis neurona, Neospora spp., and Toxoplasma gondii by using the surface antigen (SAG) SnSAG2 enzyme-linked immunosorbent assay (ELISA), the NhSAG1 ELISA, and the modified agglutination test, respectively. Anti- S. neurona antibodies were found in 42.2% of the horses by using the SnSAG2 ELISA. Anti- Neospora spp. antibodies were found in only 3.5% of the horses by using the NhSAG1 ELISA, and only 1 of these horses was confirmed seropositive by Western blot. Antibodies to T. gondii were found in 34.0% of the horses tested, which is higher than in previous reports from North and South America. The finding of anti- S. neurona antibodies in horses from geographical areas where Didelphis marsupialis has wide distribution suggests that D. marsupialis is a potential definitive host for this parasite and a source of infection for these horses.
Collapse
Affiliation(s)
- S Dangoudoubiyam
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546-0099, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Furr M, Howe D, Reed S, Yeargan M. Antibody Coefficients for the Diagnosis of Equine Protozoal Myeloencephalitis. J Vet Intern Med 2010; 25:138-42. [DOI: 10.1111/j.1939-1676.2010.0658.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Yeargan MR, Howe DK. Improved detection of equine antibodies against Sarcocystis neurona using polyvalent ELISAs based on the parasite SnSAG surface antigens. Vet Parasitol 2010; 176:16-22. [PMID: 21075532 DOI: 10.1016/j.vetpar.2010.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Equine protozoal myeloencephalitis (EPM) is a common neurologic disease of horses that is caused by the apicomplexan pathogen Sarcocystis neurona. To help improve serologic diagnosis of S. neurona infection, we have modified existing enzyme-linked immunosorbent assays (ELISAs) based on the immunogenic parasite surface antigens SnSAG2, SnSAG3, and SnSAG4 to make the assays polyvalent, thereby circumventing difficulties associated with parasite antigenic variants and diversity in equine immune responses. Two approaches were utilized to achieve polyvalence: (1) mixtures of the individual recombinant SnSAGs (rSnSAGs) were included in single ELISAs; (2) a collection of unique SnSAG chimeras that fused protein domains from different SnSAG surface antigens into a single recombinant protein were generated for use in the ELISAs. These new assays were assessed using a defined sample set of equine sera and cerebrospinal fluids (CSFs) that had been characterized by Western blot and/or were from confirmed EPM horses. While all of the polyvalent ELISAs performed relatively well, the highest sensitivity and specificity (100%/100%) were achieved with assays containing the rSnSAG4/2 chimera (Domain 1 of SnSAG4 fused to SnSAG2) or using a mixture of rSnSAG3 and rSnSAG4. The rSnSAG4 antigen alone and the rSnSAG4/3 chimera (Domain 1 of SnSAG4 fused to Domain 2 of SnSAG3) exhibited the next best accuracy at 95.2% sensitivity and 100% specificity. Binding ratios and percent positivity (PP) ratios, determined by comparing the mean values for positive versus negative samples, showed that the most advantageous signal to noise ratios were provided by rSnSAG4 and the rSnSAG4/3 chimera. Collectively, our results imply that a polyvalent ELISA based on SnSAG4 and SnSAG3, whether as a cocktail of two proteins or as a single chimeric protein, can give optimal results in serologic testing of serum or CSF for the presence of antibodies against S. neurona. The use of polyvalent SnSAG ELISAs will enhance the reliability of serologic testing for S. neurona infection, which should lead to improved diagnosis of EPM.
Collapse
Affiliation(s)
- Michelle R Yeargan
- Department of Veterinary Science, M.H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546-0099, USA
| | | |
Collapse
|
15
|
Johnson A, Burton A, Sweeney R. Utility of 2 Immunological Tests for Antemortem Diagnosis of Equine Protozoal Myeloencephalitis (Sarcocystis neurona Infection) in Naturally Occurring Cases. J Vet Intern Med 2010; 24:1184-9. [DOI: 10.1111/j.1939-1676.2010.0576.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Hosseininejad M, Hosseini F, Mosharraf M, Shahbaz S, Mahzounieh M, Schares G. Development of an indirect ELISA test using an affinity purified surface antigen (P38) for sero-diagnosis of canine Neospora caninum infection. Vet Parasitol 2010; 171:337-42. [DOI: 10.1016/j.vetpar.2010.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/26/2010] [Accepted: 04/01/2010] [Indexed: 11/25/2022]
|
17
|
Wendte JM, Miller MA, Nandra AK, Peat SM, Crosbie PR, Conrad PA, Grigg ME. Limited genetic diversity among Sarcocystis neurona strains infecting southern sea otters precludes distinction between marine and terrestrial isolates. Vet Parasitol 2009; 169:37-44. [PMID: 20071081 DOI: 10.1016/j.vetpar.2009.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/12/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
Sarcocystis neurona is an apicomplexan parasite identified as a cause of fatal neurological disease in the threatened southern sea otter (Enhydra lutris nereis). In an effort to characterize virulent S. neurona strains circulating in the marine ecosystem, this study developed a range of markers relevant for molecular genotyping. Highly conserved sequences within the 18S ribosomal gene array, the plastid-encoded RNA polymerase (RPOb) and the cytochrome c oxidase subunit 1 mitochondrial gene (CO1) were assessed for their ability to distinguish isolates at the genus and species level. For within-species comparisons, five surface antigens (SnSAG1-SnSAG5) and one high resolution microsatellite marker (Sn9) were developed as genotyping markers to evaluate intra-strain diversity. Molecular analysis at multiple loci revealed insufficient genetic diversity to distinguish terrestrial isolates from strains infecting marine mammals. Furthermore, SnSAG specific primers applied against DNA from the closely related species, Sarcocystis falcatula, lead to the discovery of highly similar orthologs to SnSAG2, 3, and 4, calling into question the specificity of diagnostic tests based on these antigens. The results of this study suggest a population genetic structure for S. neurona similar to that reported for the related parasite, Toxoplasma gondii, dominated by a limited number of successful genotypes.
Collapse
Affiliation(s)
- J M Wendte
- Molecular Parasitology Unit, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yeargan MR, Lyons ET, Kania SA, Patton S, Breathnach CC, Horohov DW, Howe DK. Incidental isolation of Setaria equina microfilariae in preparations of equine peripheral blood mononuclear cells. Vet Parasitol 2009; 161:142-5. [DOI: 10.1016/j.vetpar.2008.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/17/2008] [Accepted: 12/23/2008] [Indexed: 11/24/2022]
|
19
|
SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1. Vet Parasitol 2008; 158:36-43. [DOI: 10.1016/j.vetpar.2008.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 11/20/2022]
|
20
|
Zhang D, Howe DK. Investigation of SnSPR1, a novel and abundant surface protein of Sarcocystis neurona merozoites. Vet Parasitol 2008; 152:210-9. [PMID: 18291589 DOI: 10.1016/j.vetpar.2007.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/21/2007] [Accepted: 12/26/2007] [Indexed: 11/26/2022]
Abstract
An expressed sequence tag (EST) sequencing project has produced over 15,000 partial cDNA sequences from the equine pathogen Sarcocystis neurona. While many of the sequences are clear homologues of previously characterized genes, a significant number of the S. neurona ESTs do not exhibit similarity to anything in the extensive sequence databases that have been generated. In an effort to characterize parasite proteins that are novel to S. neurona, a seemingly unique gene was selected for further investigation based on its abundant representation in the collection of ESTs and the predicted presence of a signal peptide and glycolipid anchor addition on the encoded protein. The gene was expressed in E. coli, and monospecific polyclonal antiserum against the recombinant protein was produced by immunization of a rabbit. Characterization of the native protein in S. neurona merozoites and schizonts revealed that it is a low molecular weight surface protein that is expressed throughout intracellular development of the parasite. The protein was designated Surface Protein 1 (SPR1) to reflect its display on the outer surface of merozoites and to distinguish it from the ubiquitous SAG/SRS surface antigens of the heteroxenous Coccidia. Interestingly, infection assays in the presence of the polyclonal antiserum suggested that SnSPR1 plays some role in attachment and/or invasion of host cells by S. neurona merozoites. The work described herein represents a general template for selecting and characterizing the various unidentified gene sequences that are plentiful in the EST databases for S. neurona and other apicomplexans. Furthermore, this study illustrates the value of investigating these novel sequences since it can offer new candidates for diagnostic or vaccine development while also providing greater insight into the biology of these parasites.
Collapse
Affiliation(s)
- Deqing Zhang
- Department of Veterinary Sciences, University of Kentucky, Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | | |
Collapse
|
21
|
Howe DK, Gaji RY, Marsh AE, Patil BA, Saville WJ, Lindsay DS, Dubey JP, Granstrom DE. Strains of Sarcocystis neurona exhibit differences in their surface antigens, including the absence of the major surface antigen SnSAG1. Int J Parasitol 2007; 38:623-31. [PMID: 17980881 DOI: 10.1016/j.ijpara.2007.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/17/2007] [Accepted: 09/24/2007] [Indexed: 12/01/2022]
Abstract
A gene family of surface antigens is expressed by merozoites of Sarcocystis neurona, the primary cause of equine protozoal myeloencephalitis (EPM). These surface proteins, designated SnSAGs, are immunodominant and therefore excellent candidates for development of EPM diagnostics or vaccines. Prior work had identified an EPM isolate lacking the major surface antigen SnSAG1, thus suggesting there may be some diversity in the SnSAGs expressed by different S. neurona isolates. Therefore, a bioinformatic, molecular and immunological study was conducted to assess conservation of the SnSAGs. Examination of an expressed sequence tag (EST) database revealed several notable SnSAG polymorphisms. In particular, the EST information implied that the EPM strain SN4 lacked the major surface antigen SnSAG1. The absence of this surface antigen from the SN4 strain was confirmed by both Western blot and Southern blot. To evaluate SnSAG polymorphisms in the S. neurona population, 14 strains were examined by Western blots using monospecific polyclonal antibodies against the four described SnSAGs. The results of these analyses demonstrated that SnSAG2, SnSAG3, and SnSAG4 are present in all 14 S. neurona strains tested, although some variance in SnSAG4 was observed. Importantly, SnSAG1 was not detected in seven of the strains, which included isolates from four cases of EPM and a case of fatal meningoencephalitis in a sea otter. Genetic analyses by PCR using gene-specific primers confirmed the absence of the SnSAG1 locus in six of these seven strains. Collectively, the data indicated that there is heterogeneity in the surface antigen composition of different S. neurona isolates, which is an important consideration for development of serological tests and prospective vaccines for EPM. Furthermore, the diversity reported herein likely extends to other phenotypes, such as strain virulence, and may have implications for the phylogeny of the various Sarcocystis spp. that undergo sexual stages of their life cycle in opossums.
Collapse
Affiliation(s)
- Daniel K Howe
- Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Elsheikha HM, Mansfield LS. Molecular typing of Sarcocystis neurona: current status and future trends. Vet Parasitol 2007; 149:43-55. [PMID: 17706872 DOI: 10.1016/j.vetpar.2007.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 11/26/2022]
Abstract
Sarcocystis neurona is an important protozoal pathogen because it causes the serious neurological disease equine protozoal myeloencephalitis (EPM). The capacity of this organism to cause a wide spectrum of neurological signs in horses and the broad geographic distribution of observed cases in the Americas drive the need for sensitive, reliable and rapid typing methods to characterize strains. Various molecular methods have been developed and used to diagnose EPM due to S. neurona, to identify S. neurona isolates and to determine the heterogeneity and evolutionary relatedness within this species and related Sarcocystis spp. These methods included sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immuno-fluorescent assay (IFA), slide agglutination test (SAT), SnSAG-specific ELISA, random amplified polymorphic DNA (RAPD), PCR-based restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) fingerprinting, and sequence analysis of surface protein genes, ribosomal genes, microsatellite alleles and other molecular markers. Here, the utility of these molecular methods is reviewed and evaluated with respect to the need for molecular approaches that utilize well-characterized polymorphic, simple, independent, and stable genetic markers. These tools have the potential to add to knowledge of the genetic population structure of S. neurona and to provide new insights into the pathogenesis of EPM and S. neurona epidemiology. In particular, these methods provide new tools to address the hypothesis that particular genetic variants are associated with adverse clinical outcomes (severe pathotypes). The ultimate goal is to utilize them in future studies to improve treatment and prevention strategies.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Division of Veterinary Medicine, The School of Veterinary Medicine and Science, The University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | | |
Collapse
|
23
|
Pellegrini-Masini A, Livesey LC. Meningitis and Encephalomyelitis in Horses. Vet Clin North Am Equine Pract 2006; 22:553-89, x. [PMID: 16882487 DOI: 10.1016/j.cveq.2006.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This article provides an overview of meningitis and encephalomyelitis in horses, including diagnostic tests, treatment developments, and preventative measures reported in the equine and human medical literature of the past few years.
Collapse
Affiliation(s)
- Alessandra Pellegrini-Masini
- Equine Section, Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | | |
Collapse
|
24
|
Hoane JS, Gennari SM, Dubey JP, Ribeiro MG, Borges AS, Yai LEO, Aguiar DM, Cavalcante GT, Bonesi GL, Howe DK. Prevalence of Sarcocystis neurona and Neospora spp. infection in horses from Brazil based on presence of serum antibodies to parasite surface antigen. Vet Parasitol 2005; 136:155-9. [PMID: 16310955 DOI: 10.1016/j.vetpar.2005.10.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/10/2005] [Accepted: 10/21/2005] [Indexed: 11/21/2022]
Abstract
Sera from 961 horses from Brazil were tested for antibodies against the major surface antigens SnSAG4 and NhSAG1 to determine the seroprevalence of Sarcocystis neurona and Neospora hughesi, respectively. Antibodies against SnSAG4 were detected in 669 (69.6%) of the horses, while antibodies against NhSAG1 were detected in only 24 (2.5%) of the horses. These serologic results suggest that there is a high concentration of S. neurona in the environment of Brazil, which results in marked exposure of horses to this parasite. Additionally, the data further confirm that infection with Neospora spp. is relatively uncommon in horses.
Collapse
Affiliation(s)
- Jessica S Hoane
- Department of Veterinary Science, University of Kentucky, 108 Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|