1
|
Matos GS, Querobino SM, Brauer VS, Joffe LS, Pereira de Sa N, Fernandes CM, DaSilva D, da Silva VA, Cavalcanti Neto MP, Normile T, Zhu H, Bhatia SR, Tan L, Azadi P, Heiss C, Doering TL, Del Poeta M. Role of glucuronoxylomannan and steryl glucosides in protecting against cryptococcosis. mBio 2025:e0098425. [PMID: 40298449 DOI: 10.1128/mbio.00984-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
The development of vaccines for fungal diseases, including cryptococcosis, is an emergent line of research and development. In previous studies, we showed that a Cryptococcus mutant lacking the SGL1 gene (∆sgl1) accumulates certain glycolipids called steryl glucosides (SGs) on the fungal capsule, promoting an effective immunostimulation that totally protects the host from a secondary cryptococcal infection. However, this protection is lost when the cryptococcal capsule is absent in the ∆sgl1 background. The cryptococcal capsule is mainly composed of glucuronoxylomannan (GXM), a polysaccharide microfiber consisting of glucuronic acid, xylose, and mannose linked by glycosidic bonds forming specific triads. In this study, we engineered cells to lack each of the GXM components and tested the effect of these deletions on protection under the condition of SG accumulation. We found that glucuronic acid and xylose are required for protection, and their absence abrogates the production of IFNγ and IL-17A by γδ T cells, which are necessary stimulants for the protective phenotype of the ∆sgl1. We analyzed the structure of the GXM microfibers and found that although the deletion of SGL1 only slightly affects the size and distribution of these microfibers, it significantly changes the ratio of mannose to other components. In conclusion, this study identifies the structural modifications that the deletion of SGL1 and the consequent accumulation of SGs impart to the GXM structure of C. neoformans. This provides significant insights into the protective mechanisms mediated by SG accumulation on the capsule, with important implications for the future development of an efficacious cryptococcal vaccine.IMPORTANCECryptococcus neoformans is an encapsulated fungus that causes invasive fungal infections with high morbidity and mortality in susceptible patients. With increasing drug resistance and high toxicity of current antifungal drugs, there is a need for alternative therapeutic strategies, such as a cryptococcal vaccine. In this study, we identify the necessary capsular components and their structural organization required for a cryptococcal vaccine to protect the host against challenge with a virulent strain. These capsular components are glucuronic acid, xylose, and mannose, and they work together with certain glycolipids called steryl glucosides (SGs) to stimulate host immunity. Interestingly, SGs on the capsule may favor the formation of small capsular microfibers organized in specific mannose triads. Thus, the results of this paper are important because they identify a mechanism by which SGs affect the structure of the cryptococcal capsule, with important implications for the future development of a cryptococcal vaccine using capsular components and SGs.
Collapse
Affiliation(s)
- Gabriel Soares Matos
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Samyr M Querobino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Veronica S Brauer
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Luna S Joffe
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Deveney DaSilva
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Vanessa A da Silva
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | | | - Tyler Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Hengwei Zhu
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
2
|
Stempinski PR, Ramos Irizarry P, McConnell SA, Liporagi Lopes LC, Rodrigues Dos Santos Júnior S, Wear MP, Casadevall A. A Cryptococcus neoformans polysaccharide conjugate vaccine made with filtered polysaccharide elicits protective immunity in mice. Fungal Biol 2025; 129:101544. [PMID: 40023532 DOI: 10.1016/j.funbio.2025.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/04/2025]
Abstract
Diseases caused by the encapsulated fungus Cryptococcus neoformans are major causes of mortality and morbidity in immunocompromised patients. Two important cryptococcal virulence factors are the polysaccharide capsule (CPS) and the secreted exopolysaccharides (EPS), both of which contain predominantly glucuronoxylomannan (GXM) polymers. Here, we evaluated the efficacy of an experimental glycoconjugate vaccine generated by linking minimally processed cryptococcal EPS with the protein carrier CRM197. Two different adjuvants (aluminum hydroxide and Freund's adjuvant) were utilized to increase the immunogenicity and to evaluate the efficiency of vaccine protection in a mouse model of cryptococcosis. After a three-dose vaccination schedule, titers of GXM-specific antibodies and survival following lethal challenge were assessed. The protective efficacy of antibodies from sera of vaccinated mice was also evaluated in vitro, through the characterization of their enhancement of macrophage engulfment and opsonization patterns on cryptococcal cells. Antibodies elicited by the EPS-CRM197 vaccine formulated with Freund's adjuvant showed the best opsonic capabilities as shown by the macrophage engulfment analysis and cryptococcal capsule binding patterns, which was mirrored by longer survival of this vaccine group in our challenge studies. This study confirms that an EPS-protein conjugate vaccine can elicit a protective immune response in mice and provides encouragement for the development of polysaccharide-protein conjugates for the prevention of cryptococcosis.
Collapse
Affiliation(s)
- Piotr R Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Paola Ramos Irizarry
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Livia C Liporagi Lopes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Lends A, Lamon G, Delcourte L, Sturny-Leclere A, Grélard A, Morvan E, Abdul-Shukkoor MB, Berbon M, Vallet A, Habenstein B, Dufourc EJ, Schanda P, Aimanianda V, Loquet A. Molecular Distinction of Cell Wall and Capsular Polysaccharides in Encapsulated Pathogens by In Situ Magic-Angle Spinning NMR Techniques. J Am Chem Soc 2025; 147:6813-6824. [PMID: 39955787 DOI: 10.1021/jacs.4c16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Pathogenic fungal and bacterial cells are enveloped within a cell wall, a molecular barrier at their cell surface, and a critical architecture that constantly evolves during pathogenesis. Understanding the molecular composition, structural organization, and mobility of polysaccharides constituting this cell envelope is crucial to correlate cell wall organization with its role in pathogenicity and to identify potential antifungal targets. For the fungal pathogen Cryptococcus neoformans, the characterization of the cell envelope has been complexified by the presence of an additional external polysaccharide capsular shell. Here, we investigate how magic-angle spinning (MAS) solid-state NMR techniques increase the analytical capabilities to characterize the structure and dynamics of this encapsulated pathogen. The versatility of proton detection experiments, dynamic-based filters, and relaxation measurements facilitate the discrimination of the highly mobile external capsular structure from the internal rigid cell wall of C. neoformans. In addition, we report the in situ detection of triglyceride molecules from lipid droplets based on NMR dynamic filters. Together, we demonstrate a nondestructive technique to study the cell wall architecture of encapsulated microbes using C. neoformans as a model, an airborne opportunistic fungal pathogen that infects mainly immunocompromised but also competent hosts.
Collapse
Affiliation(s)
- Alons Lends
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France
| | - Gaelle Lamon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France
| | - Loic Delcourte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France
| | - Aude Sturny-Leclere
- Institut Pasteur, Unité Mycologie Moléculaire, Université Paris Cité, F-75015 Paris, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France
| | - Estelle Morvan
- Inserm, IECB, UAR3033, US01, Université de Bordeaux, CNRS, F-33607 Pessac, France
| | | | - Mélanie Berbon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France
| | - Alicia Vallet
- Institut de Biologie Structurale, CEA, Université Grenoble Alpes, CNRS, 71 avenue des martyrs, F-38000 Grenoble, France
| | - Birgit Habenstein
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France
| | - Erick J Dufourc
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France
| | - Paul Schanda
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Vishukumar Aimanianda
- Institut Pasteur, Unité Mycologie Moléculaire, Université Paris Cité, F-75015 Paris, France
| | - Antoine Loquet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France
- Inserm, IECB, UAR3033, US01, Université de Bordeaux, CNRS, F-33607 Pessac, France
| |
Collapse
|
4
|
Jimenez IA, Stempinski PR, Dragotakes Q, Greengo SD, Sanchez Ramirez L, Casadevall A. The buoyancy of cryptococcal cells and its implications for transport and persistence of Cryptococcus in aqueous environments. mSphere 2024; 9:e0084824. [PMID: 39601568 DOI: 10.1128/msphere.00848-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Cryptococcus is a genus of saprophytic fungi with global distribution. Two species complexes, Cryptococcus neoformans and Cryptococcus gattii, pose health risks to humans and animals. Cryptococcal infections result from inhalation of aerosolized spores and/or desiccated yeasts from terrestrial reservoirs such as soil and trees. More recently, C. gattii has been implicated in infections in marine mammals, suggesting that inhalation of cells from the air-water interface is also an important, yet understudied, mode of respiratory exposure. Based on historical records and epidemiological factors, water transport has been hypothesized to play a role in the spread of C. gattii from tropical to temperate environments. However, the dynamics of fungal persistence and transport in water have not been fully studied. The size of the cryptococcal capsule was previously shown to reduce cell density and increase buoyancy. Here, we demonstrate that cell buoyancy is also impacted by the salinity of the solution in which cells are suspended, with the formation of a halocline significantly slowing the rate of settling and resulting in persistence of C. neoformans within 1 cm of the water surface for over 60 min and C. gattii for 4-6 h. During the culture of three strains of C. gattii in yeast peptone dextrose media, we also identified aggregates of extracellular polysaccharide with complex structures, which we hypothesize from rafts that entrap cells and augment buoyancy. These findings illustrate new mechanisms by which cryptococcal cells may persist in aquatic environments, with important implications for aqueous transport and pathogen exposure. IMPORTANCE Cryptococcosis is a major fungal disease leading to morbidity and mortality worldwide. Cryptococcus neoformans is a major fungal species of public health concern, causing opportunistic systemic infections in immunocompromised patients. Cryptococcus gattii was traditionally a pathogenic fungus confined primarily to tropical regions, but in the 1990s, it emerged in the temperate climates of British Columbia, Canada and the Pacific Northwest of the United States. Outbreaks in these areas also led to the first host record of cryptococcosis in free-ranging cetaceans. C. gattii is particularly concerning as an emerging fungal pathogen due to its capacity to cause clinical disease in immunocompetent patients, its recent spread to a new ecological niche, and its higher resistance to antifungal therapies. Our research defines fungal characteristics that influence the transport of cryptococci through water and persistence of fungal cells near the water surface, improving our understanding of potential mechanisms for cryptococcal environmental transport.
Collapse
Affiliation(s)
- Isabel A Jimenez
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Piotr R Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Seth D Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lia Sanchez Ramirez
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Dorokhova VS, Komarova BS, Previato JO, Mendonça Previato L, Krylov VB, Nifantiev NE. Synthesis of branched and linear galactooligosaccharides related to glucuronoxylomannogalactan of Cryptococcus neoformans. Front Chem 2024; 12:1501766. [PMID: 39611096 PMCID: PMC11602299 DOI: 10.3389/fchem.2024.1501766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
This study focuses on the synthesis of a series of oligo-α-(1→6)-D-galactopyranosides bearing β-D-galactofuranosyl residues at O-2 and/or O-3, which relate structurally to fragments of glucuronoxylomannogalactan (GXMGal) from the fungal pathogen Cryptococcus neoformans that causes severe diseases in immunocompromised patients. The preparation of target compounds is based on the use of a selectively O-protected N-phenyltrifluoroacetimidoyl galactopyranoside donor with an allyl group at O-2, levulinoyl group (Lev) at O-3, pentafluorobenzoyl (PFB) group at O-4, and fluorenylmethoxycarbonyl (Fmoc) group at O-6. The choice of protecting groups for this donor ensures the stereospecific formation of α-(1→6)-glycosidic bonds due to the stereodirecting effect of acyls at O-3, O-4, and O-6. At the same time, this combination of O-substituents permits the selective recovery of free OH groups at O-2, O-3, and O-6 for chain elongation via the introduction of β-D-galactofuranosyl and α-D-galactopyranosyl residues. The reported compounds are obtained as aminopropyl glycosides, which are transformed into biotinylated conjugates for further use as coating antigens in immunological studies. The obtained oligosaccharides were subjected to detailed 13C NMR analysis to show the spatial similarity of the obtained hexasaccharide with the corresponding fragment in the GXMGal chain, making this compound suitable for further immunological studies of C. neoformans.
Collapse
Affiliation(s)
- Vera S. Dorokhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Bozhena S. Komarova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - José O. Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lúcia Mendonça Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Crawford C, Liporagi-Lopes L, Coelho C, Santos Junior SR, Moraes Nicola A, Wear MP, Vij R, Oscarson S, Casadevall A. Semisynthetic Glycoconjugate Vaccine Candidates against Cryptococcus neoformans. ACS Infect Dis 2024; 10:2089-2100. [PMID: 38819951 PMCID: PMC11184550 DOI: 10.1021/acsinfecdis.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, which poses a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semisynthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semisynthetic glycoconjugate vaccines contain an identical synthetic decasaccharide (M2 motif) antigen. This antigen is present in serotype A strains, which constitute 95% of the clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity toward M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced weakly opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). These findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. This antigen could serve as a component in a multivalent GXM motif vaccine.
Collapse
Affiliation(s)
- Conor
J. Crawford
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Livia Liporagi-Lopes
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Carolina Coelho
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Samuel R. Santos Junior
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - André Moraes Nicola
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Maggie P. Wear
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Raghav Vij
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| | - Stefan Oscarson
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Arturo Casadevall
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, Maryland, United States
| |
Collapse
|
8
|
McConnell SA, Casadevall A. Immunoglobulin constant regions provide stabilization to the paratope and enforce epitope specificity. J Biol Chem 2024; 300:107397. [PMID: 38763332 PMCID: PMC11215335 DOI: 10.1016/j.jbc.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharides from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extended to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.
Collapse
Affiliation(s)
- Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Kadooka C, Tanaka Y, Hira D, Oka T. Identification of a putative α-galactoside β-(1 → 3)-galactosyltransferase involved in the biosynthesis of galactomannan side chain of glucuronoxylomannogalactan in Cryptococcus neoformans. Front Microbiol 2024; 15:1390371. [PMID: 38841067 PMCID: PMC11150766 DOI: 10.3389/fmicb.2024.1390371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The cell surface of Cryptococcus neoformans is covered by a thick capsular polysaccharide. The capsule is the most important virulence factor of C. neoformans; however, the complete mechanism of its biosynthesis is unknown. The capsule is composed of glucuronoxylomannan (GXM) and glucuronoxylomannogalactan (GXMGal). As GXM is the most abundant component of the capsule, many studies have focused on GXM biosynthesis. However, although GXMGal has an important role in virulence, studies on its biosynthesis are scarce. Herein, we have identified a GT31 family β-(1 → 3)-galactosyltransferase Ggt2, which is involved in the biosynthesis of the galactomannan side chain of GXMGal. Comparative analysis of GXMGal produced by a ggt2 disruption strain revealed that Ggt2 is a glycosyltransferase that catalyzes the initial reaction in the synthesis of the galactomannan side chain of GXMGal. The ggt2 disruption strain showed a temperature-sensitive phenotype at 37°C, indicating that the galactomannan side chain of GXMGal is important for high-temperature stress tolerance in C. neoformans. Our findings provide insights into complex capsule biosynthesis in C. neoformans.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
10
|
Jimenez IA, Stempinski PR, Dragotakes Q, Greengo SD, Ramirez LS, Casadevall A. The buoyancy of cryptococcal cells and its implications for transport and persistence of Cryptococcus in aqueous environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595024. [PMID: 38826196 PMCID: PMC11142132 DOI: 10.1101/2024.05.20.595024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cryptococcus is a genus of saprophytic fungi with global distribution. Two species complexes, C. neoformans and C. gattii, pose health risks to humans and animals. Cryptococcal infections result from inhalation of aerosolized spores and/or desiccated yeasts from terrestrial reservoirs such as soil, trees, and avian guano. More recently, C. gattii has been implicated in infections in marine mammals, suggesting that inhalation of liquid droplets or aerosols from the air-water interface is also an important, yet understudied, mode of respiratory exposure. Water transport has also been suggested to play a role in the spread of C. gattii from tropical to temperate environments. However, the dynamics of fungal survival, persistence, and transport via water have not been fully studied. The size of the cryptococcal capsule was previously shown to reduce cell density and increase buoyancy. Here, we demonstrate that cell buoyancy is also impacted by the salinity of the media in which cells are suspended, with formation of a halocline interface significantly slowing the rate of settling of cryptococcal cells through water, resulting in persistence of C. neoformans within 1 cm of the air-water interface for over 60 min and C. gattii for 4-6 h. Our data also showed that during culture in yeast peptone dextrose media (YPD), polysaccharide accumulating in the supernatant formed a raft that augmented buoyancy and further slowed settling of cryptococcal cells. These findings illustrate new mechanisms by which cryptococcal cells may persist in aquatic environments, with important implications for aqueous transport and pathogen exposure.
Collapse
Affiliation(s)
- Isabel A. Jimenez
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Piotr R. Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Seth D. Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lia Sanchez Ramirez
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Hargett AA, Azurmendi HF, Crawford CJ, Wear MP, Oscarson S, Casadevall A, Freedberg DI. The structure of a C. neoformans polysaccharide motif recognized by protective antibodies: A combined NMR and MD study. Proc Natl Acad Sci U S A 2024; 121:e2315733121. [PMID: 38330012 PMCID: PMC10873606 DOI: 10.1073/pnas.2315733121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/02/2023] [Indexed: 02/10/2024] Open
Abstract
Cryptococcus neoformans is a fungal pathogen responsible for cryptococcosis and cryptococcal meningitis. The C. neoformans' capsular polysaccharide and its shed exopolysaccharide function both as key virulence factors and to protect the fungal cell from phagocytosis. Currently, a glycoconjugate of these polysaccharides is being explored as a vaccine to protect against C. neoformans infection. In this study, NOE and J-coupling values from NMR experiments were consistent with a converged structure of the synthetic decasaccharide, GXM10-Ac3, calculated from MD simulations. GXM10-Ac3 was designed as an extension of glucuronoxylomannan (GXM) polysaccharide motif (M2) which is common in the clinically predominant serotype A strains and is recognized by protective forms of GXM-specific monoclonal antibodies. The M2 motif is a hexasaccharide with a three-residue α-mannan backbone, modified by β-(1→2)-xyloses (Xyl) on the first two mannoses (Man) and a β-(1→2)-glucuronic acid (GlcA) on the third Man. Combined NMR and MD analyses reveal that GXM10-Ac3 adopts an extended structure, with Xyl/GlcA branches alternating sides along the α-mannan backbone. O-acetyl esters also alternate sides and are grouped in pairs. MD analysis of a twelve M2-repeating unit polymer supports the notion that the GXM10-Ac3 structure is uniformly represented throughout the polysaccharide. This derived GXM model displays high flexibility while maintaining a structural identity, yielding insights to further explore intermolecular interactions between polysaccharides, interactions with anti-GXM mAbs, and the cryptococcal polysaccharide architecture.
Collapse
Affiliation(s)
- Audra A. Hargett
- Laboratory of Bacterial Polysaccharides, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Hugo F. Azurmendi
- Laboratory of Bacterial Polysaccharides, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Conor J. Crawford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
- Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - Maggie P. Wear
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
| | - Darón I. Freedberg
- Laboratory of Bacterial Polysaccharides, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| |
Collapse
|
12
|
Wang Z, Teixeira SCM, Strother C, Bowen A, Casadevall A, Cordero RJB. Neutron Scattering Analysis of Cryptococcus neoformans Polysaccharide Reveals Solution Rigidity and Repeating Fractal-like Structural Patterns. Biomacromolecules 2024; 25:690-699. [PMID: 38157431 PMCID: PMC10922810 DOI: 10.1021/acs.biomac.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cryptococcus neoformans is a fungal pathogen that can cause life-threatening brain infections in immunocompromised individuals. Unlike other fungal pathogens, it possesses a protective polysaccharide capsule that is crucial for its virulence. During infections, Cryptococcus cells release copious amounts of extracellular polysaccharides (exo-PS) that interfere with host immune responses. Both exo-PS and capsular-PS play pivotal roles in Cryptococcus infections and serve as essential targets for disease diagnosis and vaccine development strategies. However, understanding their structure is complicated by their polydispersity, complexity, sensitivity to sample isolation and processing, and scarcity of methods capable of isolating and analyzing them while preserving their native structure. In this study, we employ small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) for the first time to investigate both fungal cell suspensions and extracellular polysaccharides in solution. Our data suggests that exo-PS in solution exhibits collapsed chain-like behavior and demonstrates mass fractal properties that indicate a relatively condensed pore structure in aqueous environments. This observation is also supported by scanning electron microscopy (SEM). The local structure of the polysaccharide is characterized as a rigid rod, with a length scale corresponding to 3-4 repeating units. This research not only unveils insights into exo-PS and capsular-PS structures but also demonstrates the potential of USANS for studying changes in cell dimensions and the promise of contrast variation in future neutron scattering studies.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Susana C. M. Teixeira
- NIST Center of Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Camilla Strother
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Anthony Bowen
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Radamés JB Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| |
Collapse
|
13
|
Crawford C, Guazzelli L, McConnell SA, McCabe O, d’Errico C, Greengo SD, Wear MP, Jedlicka AE, Casadevall A, Oscarson S. Synthetic Glycans Reveal Determinants of Antibody Functional Efficacy against a Fungal Pathogen. ACS Infect Dis 2024; 10:475-488. [PMID: 37856427 PMCID: PMC10862557 DOI: 10.1021/acsinfecdis.3c00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Antibodies play a vital role in the immune response to infectious diseases and can be administered passively to protect patients. In the case of Cryptococcus neoformans, a WHO critical priority fungal pathogen, infection results in antibodies targeting capsular glucuronoxylomannan (GXM). These antibodies yield protective, non-protective, and disease-enhancing outcomes when administered passively. However, it was unknown how these distinct antibodies recognized their antigens at the molecular level, leading to the hypothesis that they may target different GXM epitopes. To test this hypothesis, we constructed a microarray containing 26 glycans representative of those found in highly virulent cryptococcal strains and utilized it to study 16 well-characterized monoclonal antibodies. Notably, we found that protective and non-protective antibodies shared conserved reactivity to the M2 motif of GXM, irrespective of the strain used in infection or GXM-isolated to produce a conjugate vaccine. Here, only two antibodies, 12A1 and 18B7, exhibited diverse trivalent GXM motif reactivity. IgG antibodies associated with protective responses showed cross-reactivity to at least two GXM motifs. This molecular understanding of antibody binding epitopes was used to map the antigenic diversity of two Cryptococcus neoformans strains, which revealed the exceptional complexity of fungal capsular polysaccharides. A multi-GXM motif vaccine holds the potential to effectively address this antigenic diversity. Collectively, these findings underscore the context-dependent nature of antibody function and challenge the classification of anti-GXM epitopes as either "protective" or "non-protective".
Collapse
Affiliation(s)
- Conor
J. Crawford
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield D04 V1W8, Dublin 4, Ireland
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Lorenzo Guazzelli
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield D04 V1W8, Dublin 4, Ireland
| | - Scott A. McConnell
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Orla McCabe
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield D04 V1W8, Dublin 4, Ireland
| | - Clotilde d’Errico
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield D04 V1W8, Dublin 4, Ireland
| | - Seth D. Greengo
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Maggie P. Wear
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Anne E. Jedlicka
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Arturo Casadevall
- Department
of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Stefan Oscarson
- Centre
for Synthesis and Chemical Biology, University
College Dublin, Belfield D04 V1W8, Dublin 4, Ireland
| |
Collapse
|
14
|
Crawford CJ, Liporagi-Lopes L, Coelho C, Santos SR, Nicola AM, Wear MP, Vij R, Oscarson S, Casadevall A. Semi-synthetic glycoconjugate vaccine candidate against Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578725. [PMID: 38352552 PMCID: PMC10862886 DOI: 10.1101/2024.02.02.578725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, posing a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semi-synthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semi-synthetic glycoconjugate vaccines contain the identical synthetic decasaccharide (M2 motif) antigen. This motif is present in serotype A strains, which constitute 95% of clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity towards M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). While these findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. It could serve as a component in a multi-valent GXM motif vaccine, enhancing both strength and breadth of immune responses.
Collapse
Affiliation(s)
- Conor J Crawford
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: Max Planck Institute of Colloids and Interfaces, Am Mühlenberg1, 14476 Potsdam, Germany
| | - Livia Liporagi-Lopes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: MRC Centre for Medical Mycology, University of Exeter, Exeter Devon UK
| | - Samuel R Santos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - André Moraes Nicola
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present Address: Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Raghav Vij
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
- Present address: Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Boodwa-Ko D, Doering TL. A Quick reCAP: Discovering Cryptococcus neoformans Capsule Mutants. J Fungi (Basel) 2024; 10:114. [PMID: 38392786 PMCID: PMC10889740 DOI: 10.3390/jof10020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that can cause severe meningoencephalitis in immunocompromised hosts and is a leading cause of death in HIV/AIDS patients. This pathogenic yeast is surrounded by a polysaccharide capsule that is critical for virulence and plays important roles in host-pathogen interactions. Understanding capsule biosynthesis is therefore key to defining the biology of C. neoformans and potentially discovering novel therapeutic targets. By exploiting methods to identify mutants deficient in capsule, June Kwon-Chung and other investigators have discovered numerous genes involved in capsule biosynthesis and regulation. Successful approaches have incorporated combinations of techniques including mutagenesis and systematic gene deletion; complementation and genetic screens; morphological examination, physical separation, and antibody binding; and computational modeling based on gene expression analysis. In this review, we discuss these methods and how they have been used to identify capsule mutants.
Collapse
Affiliation(s)
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA;
| |
Collapse
|
16
|
Wear MP, McConnell SA, Greengo SD, Lopes LL, Casadevall A. Methods of Cryptococcal Polysaccharide Analysis Using ELISA. Methods Mol Biol 2024; 2775:239-255. [PMID: 38758322 DOI: 10.1007/978-1-0716-3722-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
One of the standard assays for the fungal pathogen Cryptococcus neoformans is the glucuronoxylomannan (GXM) ELISA. This assay utilizes monoclonal antibodies targeted against the critical virulence factor, the polysaccharide (PS) capsule. GXM ELISA is one of the most used assays in the field used for diagnosis of cryptococcal infection, quantification of PS content, and determination of binding specificity for antibodies. Here we present three variations of the GXM ELISA used by our group-indirect, capture, and competition ELISAs. We have also provided some history, perspective, and notes on these methods, which we hope will help the reader choose, and implement, the best assay for their research.While it has long been referred to as the GXM ELISA, we also suggest a name update to better reflect our updated understanding of the polysaccharide antigens targeted by this assay. The Cryptococcal PS ELISA is a more accurate description of this set of methodologies and the antigens they measure. Finally, we discuss the limitations of this assay and put forth future plans for expanding the antigens assayed by ELISA.
Collapse
Affiliation(s)
- Maggie P Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Seth D Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Livia Liporagi Lopes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
17
|
Machado MP, dos Santos MH, Guimarães JG, de Campos GY, Oliveira Brito PKM, Ferreira CMG, Rezende CP, Frota NF, Soares SG, Kumaresan PR, Lourenzoni MR, da Silva TA. GXMR-CAR containing distinct GXM-specific single-chain variable fragment (scFv) mediated the cell activation against Cryptococcus spp. And had difference in the strength of tonic signaling. Bioengineered 2023; 14:2281059. [PMID: 37978838 PMCID: PMC10761124 DOI: 10.1080/21655979.2023.2281059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Cryptococcus spp. has a polysaccharide capsule composed of glucuronoxylomannan-GXM, a major virulence factor that can prevent the recognition of fungi by immune cells. Chimeric Antigen Receptor (CAR) redirects T cells to target Cryptococcus spp. as previously demonstrated by a CAR specific to GXM, GXMR-CAR. The current study evaluated the strength of the signal transduction triggered by GXMR-CAR, composed of a distinct antigen-binding domain sourced from a single-chain variable fragment (scFv). GXM-specific scFv derived from mAbs 2H1 and 18B7, 2H1-GXMR-CAR and 18B7-GXMR-CAR, respectively, were designed to express CD8 molecule as hinge/transmembrane, and the costimulatory molecule CD137 (4-1BB) coupled to CD3ζ. The 2H1-GXMR-CAR or 18B7-GXMR-CAR Jurkat cells recognized soluble GXM from C. gattii and C. neoformans, and the levels of IL-2 released by the modified cells did not differ between the GXMR-CAR constructs after exposure to Cryptococcus spp. 18B7-GXMR-CAR triggered tonic signaling was more pronounced in modified Jurkat cells, and a protein kinase inhibitor of the Src family (dasatinib) significantly reduced GXMR-CAR tonic signaling and inhibited cell activation against ligands. 18B7 scFv showed a structural modification of the variable heavy (VH) chain that clarified the difference in the strength of tonic signaling and the level of cell activation between 2H1-GXMR-CAR and 18B7-GXMR-CAR. GXMR-CAR constructs induced T-cell activation against clinical isolates of Cryptococcus spp. and serum from patients with cryptococcosis induced high levels of IL-2, mainly in cells modified with 18B7-GXMR-CAR. Thus, 18B7-GXMR-CAR and 2H1-GXMR-CAR mediated T cell activation against Cryptococcus spp. and 18B7 and 2H1 scFv influenced the strength of tonic signaling.
Collapse
Affiliation(s)
- Michele Procópio Machado
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao, Sao Paulo, Brazil
| | - Matheus Henrique dos Santos
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao, Sao Paulo, Brazil
| | - Júlia Garcia Guimarães
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao, Sao Paulo, Brazil
| | - Gabriela Yamazaki de Campos
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao, Sao Paulo, Brazil
| | | | - Camilly Melo Garcia Ferreira
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao, Sao Paulo, Brazil
| | - Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao, Sao Paulo, Brazil
| | | | | | - Pappanaicken R. Kumaresan
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos Roberto Lourenzoni
- Fundação Oswaldo Cruz Ceará (Fiocruz-CE), Research Group on Protein Engineering and Health Solutions (GEPeSS), Eusébio, Ceara, Brazil
| | - Thiago Aparecido da Silva
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao, Sao Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences in Araraquara, Sao Paulo State University, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
18
|
Wang Z, Teixeira SCM, Strother C, Bowen A, Casadevall A, Cordero RJB. Neutron Scattering Analysis of Cryptococcus neoformans Polysaccharide Reveals Solution Rigidity and Repeating Fractal-like Structural Patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559017. [PMID: 37790378 PMCID: PMC10542156 DOI: 10.1101/2023.09.22.559017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that can cause life-threatening brain infections in immunocompromised individuals. Unlike other fungal pathogens, it possesses a protective polysaccharide capsule that is crucial for its virulence. During infections, Cryptococcus cells release copious amounts of extracellular polysaccharides (exo-PS) that interfere with host immune responses. Both exo-PS and capsular-PS play pivotal roles in Cryptococcus infections and serve as essential targets for disease diagnosis and vaccine development strategies. However, understanding their structure is complicated by their polydispersity, complexity, sensitivity to sample isolation and processing, and scarcity of methods capable of isolating and analyzing them while preserving their native structure. In this study, we employ small-angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) for the first time to investigate both fungal cell suspensions and extracellular polysaccharides in solution. Our data suggests that exo-PS in solution exhibits collapsed chain-like behavior and demonstrates mass fractal properties that indicate a relatively condensed pore structure in aqueous environments. This observation is also supported by scanning electron microscopy (SEM). The local structure of the polysaccharide is characterized as a rigid rod, with a length-scale corresponding to 3 to 4 repeating units. This research not only unveils insights into exo-PS and capsular-PS structures but also demonstrates the potential of USANS for studying changes in cell dimensions and the promise of contrast variation in future neutron scattering studies.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Susana C. M. Teixeira
- NIST Center of Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Camilla Strother
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Anthony Bowen
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Radamés JB Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| |
Collapse
|
19
|
Hargett AA, Azurmendi HF, Crawford CJ, Wear MP, Oscarson S, Casadevall A, Freedberg DI. The structure of a C. neoformans polysaccharide motif recognized by protective antibodies: A combined NMR and MD study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556507. [PMID: 37732210 PMCID: PMC10508755 DOI: 10.1101/2023.09.06.556507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen responsible for cryptococcosis and cryptococcal meningitis. The C. neoformans capsular polysaccharide and shed exopolysaccharide functions both as a key virulence factor and to protect the fungal cell from phagocytosis. Currently, a glycoconjugate of these polysaccharides is being explored as a vaccine to protect against C. neoformans infection. In this combined NMR and MD study, experimentally determined NOEs and J-couplings support a structure of the synthetic decasaccharide, GXM10-Ac3, obtained by MD. GXM10-Ac3 was designed as an extension of glucuronoxylomannan (GXM) polysaccharide motif (M2) which is common in the clinically predominant serotype A strains and is recognized by protective forms of GXM-specific monoclonal antibodies. The M2 motif is characterized by a 6-residue α-mannan backbone repeating unit, consisting of a triad of α-(1→3)-mannoses, modified by β-(1→2)-xyloses on the first two mannoses and a β-(1→2)-glucuronic acid on the third mannose. The combined NMR and MD analyses reveal that GXM10-Ac3 adopts an extended structure, with xylose/glucuronic acid branches alternating sides along the α-mannan backbone. O-acetyl esters also alternate sides and are grouped in pairs. MD analysis of a twelve M2-repeating unit polymer supports the notion that the GXM10-Ac3 structure is uniformly represented throughout the polysaccharide. This experimentally consistent GXM model displays high flexibility while maintaining a structural identity, yielding new insights to further explore intermolecular interactions between polysaccharides, interactions with anti-GXM mAbs, and the cryptococcal polysaccharide architecture.
Collapse
Affiliation(s)
- Audra A. Hargett
- Laboratory of Bacterial Polysaccharides, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Hugo F. Azurmendi
- Laboratory of Bacterial Polysaccharides, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Conor J. Crawford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
- Current address: Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Maggie P. Wear
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Darόn I. Freedberg
- Laboratory of Bacterial Polysaccharides, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
20
|
Sephton-Clark P, McConnell SA, Grossman N, Baker RP, Dragotakes Q, Fan Y, Fu MS, Gerbig G, Greengo S, Hardwick JM, Kulkarni M, Levitz SM, Nosanchuk JD, Shoham S, Smith DFQ, Stempinski P, Timp W, Wear MP, Cuomo CA, Casadevall A. Similar evolutionary trajectories in an environmental Cryptococcus neoformans isolate after human and murine infection. Proc Natl Acad Sci U S A 2023; 120:e2217111120. [PMID: 36603033 PMCID: PMC9926274 DOI: 10.1073/pnas.2217111120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
A pet cockatoo was the suspected source of Cryptococcus neoformans recovered from an immunocompromised patient with cryptococcosis based on molecular analyses available in 2000. Here, we report whole genome sequence analysis of the clinical and cockatoo strains. Both are closely related MATα strains belonging to the VNII lineage, confirming that the human infection likely originated from pet bird exposure. The two strains differ by 61 single nucleotide polymorphisms, including eight nonsynonymous changes involving seven genes. To ascertain whether changes in these genes are selected for during mammalian infection, we passaged the cockatoo strain in mice. Remarkably, isolates obtained from mouse tissue possess a frameshift mutation in one of the seven genes altered in the human sample (LQVO5_000317), a gene predicted to encode an SWI-SNF chromatin-remodeling complex protein. In addition, both cockatoo and patient strains as well as mouse-passaged isolates obtained from brain tissue had a premature stop codon in a homologue of ZFC3 (LQVO5_004463), a predicted single-zinc finger containing protein, which is associated with larger capsules when deleted and reverted to a full-length protein in the mouse-passaged isolates obtained from lung tissue. The patient strain and mouse-passaged isolates show variability in virulence factors, with differences in capsule size, melanization, rates of nonlytic expulsion from macrophages, and amoeba predation resistance. Our results establish that environmental strains undergo genomic and phenotypic changes during mammalian passage, suggesting that animal virulence can be a mechanism for genetic change and that the genomes of clinical isolates may provide a readout of mutations acquired during infection.
Collapse
Affiliation(s)
| | - Scott A. McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Nina Grossman
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Rosanna P. Baker
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Gracen Gerbig
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Seth Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - J. Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Stuart M. Levitz
- Department of Medicine, UMass Chan Medical School, Worcester, MA01605
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA01605
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Daniel F. Q. Smith
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Piotr Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Maggie P. Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | | | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| |
Collapse
|
21
|
Extension of O-Linked Mannosylation in the Golgi Apparatus Is Critical for Cell Wall Integrity Signaling and Interaction with Host Cells in Cryptococcus neoformans Pathogenesis. mBio 2022; 13:e0211222. [PMID: 36409123 PMCID: PMC9765558 DOI: 10.1128/mbio.02112-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human-pathogenic yeast Cryptococcus neoformans assembles two types of O-linked glycans on its proteins. In this study, we identified and functionally characterized the C. neoformans CAP6 gene, encoding an α1,3-mannosyltransferase responsible for the second mannose addition to minor O-glycans containing xylose in the Golgi apparatus. Two cell surface sensor proteins, Wml1 (WSC/Mid2-like) and Wml2, were found to be independent substrates of Cap6-mediated minor or Ktr3-mediated major O-mannosylation, respectively. The double deletion of KTR3 and CAP6 (ktr3Δ cap6Δ) completely blocked the mannose addition at the second position of O-glycans, resulting in the accumulation of proteins with O-glycans carrying only a single mannose. Tunicamycin (TM)-induced phosphorylation of the Mpk1 mitogen-activated protein kinase (MAPK) was greatly decreased in both ktr3Δ cap6Δ and wml1Δ wml2Δ strains. Transcriptome profiling of the ktr3Δ cap6Δ strain upon TM treatment revealed decreased expression of genes involved in the Mpk1-dependent cell wall integrity (CWI) pathway. Consistent with its defective growth under several stress conditions, the ktr3Δ cap6Δ strain was avirulent in a mouse model of cryptococcosis. Associated with this virulence defect, the ktr3Δ cap6Δ strain showed decreased adhesion to lung epithelial cells, decreased proliferation within macrophages, and reduced transcytosis of the blood-brain barrier (BBB). Notably, the ktr3Δ cap6Δ strain showed reduced induction of the host immune response and defective trafficking of ergosterol, an immunoreactive fungal molecule. In conclusion, O-glycan extension in the Golgi apparatus plays critical roles in various pathobiological processes, such as CWI signaling and stress resistance and interaction with host cells in C. neoformans. IMPORTANCE Cryptococcus neoformans assembles two types of O-linked glycans on its surface proteins, the more abundant major O-glycans that do not contain xylose residues and minor O-glycans containing xylose. Here, we demonstrate the role of the Cap6 α1,3-mannosyltransferase in the synthesis of minor O-glycans. Previously proposed to be involved in capsule biosynthesis, Cap6 works with the related Ktr3 α1,2-mannosyltransferase to synthesize O-glycans on their target proteins. We also identified two novel C. neoformans stress sensors that require Ktr3- and Cap6-mediated posttranslational modification for full function. Accordingly, the ktr3Δ cap6Δ double O-glycan mutant strain displays defects in stress signaling pathways, CWI, and ergosterol trafficking. Furthermore, the ktr3Δ cap6Δ strain is completely avirulent in a mouse infection model. Together, these results demonstrate critical roles for O-glycosylation in fungal pathogenesis. As there are no human homologs for Cap6 or Ktr3, these fungus-specific mannosyltransferases are novel targets for antifungal therapy.
Collapse
|
22
|
Zhong H, Lu RY, Wang Y. Neutrophil extracellular traps in fungal infections: A seesaw battle in hosts. Front Immunol 2022; 13:977493. [PMID: 36189199 PMCID: PMC9515532 DOI: 10.3389/fimmu.2022.977493] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fungal infections are a growing health care challenge. Neutrophils play a key role in defense against fungal infections. There are many effective ways for neutrophils to eliminate fungal invaders, such as phagocytosis, oxidative bursts, and the formation of extracellular traps. This process has received considerable attention and has made rapid progress since neutrophil extracellular traps (NETs) formation was described. Here, we describe the formation, induction, and function of NETs, as well as fungal strategies against NETs hunting. We highlight the effects of NETs on common fungal pathogens and how these pathogens survive.
Collapse
|
23
|
Lyophilization induces physicochemical alterations in cryptococcal exopolysaccharide. Carbohydr Polym 2022; 291:119547. [PMID: 35698377 PMCID: PMC10064552 DOI: 10.1016/j.carbpol.2022.119547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Microbial polysaccharide characterization requires purification that often involves detergent precipitation and lyophilization. Here we examined physicochemical changes following lyophilization of Cryptococcus neoformans exopolysaccharide (EPS). Solution 1H Nuclear Magnetic Resonance (NMR) reveals significant anomeric signal attenuation following lyophilization of native EPS while 1H solid-state Nuclear Magnetic Resonance (ssNMR) shows few changes, suggesting diminished molecular motion and consequent broadening of 1H NMR polysaccharide resonances. 13C ssNMR, dynamic light scattering, and transmission electron microscopy show that, while native EPS has rigid molecular characteristics and contains small, loosely packed polysaccharide assemblies, lyophilized and resuspended EPS is disordered and contains larger dense aggregates, suggesting that structural water molecules in the interior of the polysaccharide assemblies are removed during extensive lyophilization. Importantly, mAbs to C. neoformans polysaccharide bind native EPS more strongly than lyophilized EPS. Together, these observations argue for caution when interpreting the biological and immunological attributes of polysaccharides that have been lyophilized to dryness.
Collapse
|
24
|
Abstract
Cryptococcosis is a disease caused by the pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii, both environmental fungi that cause severe pneumonia and may even lead to cryptococcal meningoencephalitis. Although C. neoformans affects more fragile individuals, such as immunocompromised hosts through opportunistic infections, C. gattii causes a serious indiscriminate primary infection in immunocompetent individuals. Typically seen in tropical and subtropical environments, C. gattii has increased its endemic area over recent years, largely due to climatic factors that favor contagion in warmer climates. It is important to point out that not only C. gattii, but the Cryptococcus species complex produces a polysaccharidic capsule with immunomodulatory properties, enabling the pathogenic species of Cryptococccus to subvert the host immune response during the establishment of cryptococcosis, facilitating its dissemination in the infected organism. C. gattii causes a more severe and difficult-to-treat infection, with few antifungals eliciting an effective response during chronic treatment. Much of the immunopathology of this cryptococcosis is still poorly understood, with most studies focusing on cryptococcosis caused by the species C. neoformans. C. gattii became more important in the epidemiological scenario with the outbreaks in the Pacific Northwest of the United States, which resulted in phylogenetic studies of the virulent variant responsible for the severe infection in the region. Since then, the study of cryptococcosis caused by C. gattii has helped researchers understand the immunopathological aspects of different variants of this pathogen.
Collapse
|
25
|
Berguson HP, Caulfield LW, Price MS. Influence of Pathogen Carbon Metabolism on Interactions With Host Immunity. Front Cell Infect Microbiol 2022; 12:861405. [PMID: 35372116 PMCID: PMC8968422 DOI: 10.3389/fcimb.2022.861405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous opportunistic fungal pathogen typically causing disease in immunocompromised individuals and is globally responsible for about 15% of AIDS-related deaths annually. C. neoformans first causes pulmonary infection in the host and then disseminates to the brain, causing meningoencephalitis. The yeast must obtain and metabolize carbon within the host in order to survive in the central nervous system and cause disease. Communication between pathogen and host involves recognition of multiple carbon-containing compounds on the yeast surface: polysaccharide capsule, fungal cell wall, and glycosylated proteins comprising the major immune modulators. The structure and function of polysaccharide capsule has been studied for the past 70 years, emphasizing its role in virulence. While protected by the capsule, fungal cell wall has likewise been a focus of study for several decades for its role in cell integrity and host recognition. Associated with both of these major structures are glycosylated proteins, which exhibit known immunomodulatory effects. While many studies have investigated the role of carbon metabolism on virulence and survival within the host, the precise mechanism(s) affecting host-pathogen communication remain ill-defined. This review summarizes the current knowledge on mutants in carbon metabolism and their effect on the host immune response that leads to changes in pathogen recognition and virulence. Understanding these critical interactions will provide fresh perspectives on potential treatments and the natural history of cryptococcal disease.
Collapse
Affiliation(s)
- Hannah P. Berguson
- Department of Anatomical Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
| | - Lauren W. Caulfield
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, United States
| | - Michael S. Price
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Michael S. Price,
| |
Collapse
|
26
|
Wear MP, Jacobs E, Wang S, McConnell S, Bowen A, Strother C, Cordero RJB, Crawford CJ, Casadevall A. Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture. J Biol Chem 2022; 298:101769. [PMID: 35218774 PMCID: PMC8942833 DOI: 10.1016/j.jbc.2022.101769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
The polysaccharide capsule of fungal pathogen Cryptococcus neoformans is a critical virulence factor that has historically evaded complete characterization. Cryptococcal polysaccharides are known to either remain attached to the cell as capsular polysaccharides (CPS) or to be shed into the extracellular space as exopolysaccharides (EPS). While many studies have examined the properties of EPS, far less is known about CPS. In this work, we detail the development of a new physical and enzymatic method for the isolation of CPS which can be used to explore the architecture of the capsule and isolated capsular material. We show that sonication or Glucanex enzyme cocktail digestion yields soluble CPS preparations, while use of a French pressure cell press and Glucanex digestion followed by cell disruption removed the capsule and produced cell wall-associated polysaccharide aggregates that we call 'capsule ghosts', implying an inherent organization that allows the CPS to exist independent of the cell wall surface. Since sonication and Glucanex digestion were non-cytotoxic, it was also possible to observe the cryptococcal cells rebuilding their capsule, revealing the presence of reducing-end glycans throughout the capsule. Finally, analysis of DMSO-extracted and sonicated CPS preparations revealed the conservation of previously identified GXM motifs only in the sonicated CPS. Together, these observations provide new insights into capsule architecture and synthesis, consistent with a model in which the capsule is assembled from the cell wall outwards using smaller polymers, which are then compiled into larger ones.
Collapse
Affiliation(s)
- Maggie P Wear
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Ella Jacobs
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Siqing Wang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Scott McConnell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anthony Bowen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Camilla Strother
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Radames J B Cordero
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Conor J Crawford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
27
|
Inositol Metabolism Regulates Capsule Structure and Virulence in the Human Pathogen Cryptococcus neoformans. mBio 2021; 12:e0279021. [PMID: 34724824 PMCID: PMC8561382 DOI: 10.1128/mbio.02790-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The environmental yeast Cryptococcus neoformans is the most common cause of deadly fungal meningitis in primarily immunocompromised populations. A number of factors contribute to cryptococcal pathogenesis. Among them, inositol utilization has been shown to promote C. neoformans development in nature and invasion of central nervous system during dissemination. The mechanisms of the inositol regulation of fungal virulence remain incompletely understood. In this study, we analyzed inositol-induced capsule growth and the contribution of a unique inositol catabolic pathway in fungal development and virulence. We found that genes involved in the inositol catabolic pathway are highly induced by inositol, and they are also highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. This pathway in C. neoformans contains three genes encoding myo-inositol oxygenases that convert myo-inositol into d-glucuronic acid, a substrate of the pentose phosphate cycle and a component of the polysaccharide capsule. Our mutagenesis analysis demonstrates that inositol catabolism is required for C. neoformans virulence and deletion mutants of myo-inositol oxygenases result in altered capsule growth as well as the polysaccharide structure, including O-acetylation. Our study indicates that the ability to utilize the abundant inositol in the brain may contribute to fungal pathogenesis in this neurotropic fungal pathogen. IMPORTANCE The human pathogen Cryptococcus neoformans is the leading cause of fungal meningitis in primarily immunocompromised populations. Understanding how this environmental organism adapts to the human host to cause deadly infection will guide our development of novel disease control strategies. Our recent studies revealed that inositol utilization by the fungus promotes C. neoformans development in nature and invasion of the central nervous system during infection. The mechanisms of the inositol regulation in fungal virulence remain incompletely understood. In this study, we found that C. neoformans has three genes encoding myo-inositol oxygenase, a key enzyme in the inositol catabolic pathway. Expression of these genes is highly induced by inositol, and they are highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. Our mutagenesis analysis indeed demonstrates that inositol catabolism is required for C. neoformans virulence by altering the growth and structure of polysaccharide capsule, a major virulence factor. Considering the abundance of free inositol and inositol-related metabolites in the brain, our study reveals an important mechanism of host inositol-mediated fungal pathogenesis for this neurotropic fungal pathogen.
Collapse
|
28
|
Crawford CJ, Wear MP, Smith DFQ, d'Errico C, McConnell SA, Casadevall A, Oscarson S. A glycan FRET assay for detection and characterization of catalytic antibodies to the Cryptococcus neoformans capsule. Proc Natl Acad Sci U S A 2021; 118:e2016198118. [PMID: 33514659 PMCID: PMC7865134 DOI: 10.1073/pnas.2016198118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Classic antibody functions include opsonization, complement activation, and enhancement of cellular antimicrobial function. Antibodies can also have catalytic activity, although the contribution of catalysis to their biological functions has been more difficult to establish. With the ubiquity of catalytic antibodies against glycans virtually unknown, we sought to advance this knowledge. The use of a glycan microarray allowed epitope mapping of several monoclonal antibodies (mAbs) against the capsule of Cryptococcus neoformans From this, we designed and synthesized two glycan-based FRET probes, which we used to discover antibodies with innate glycosidase activity and analyze their enzyme kinetics, including mAb 2H1, the most efficient identified to date. The validity of the FRET assay was confirmed by demonstrating that the mAbs mediate glycosidase activity on intact cryptococcal capsules, as observed by a reduction in capsule diameter. Furthermore, the mAb 18B7, a glycosidase hydrolase, resulted in the appearance of reducing ends in the capsule as labeled by a hydroxylamine-armed fluorescent (HAAF) probe. Finally, we demonstrate that exposing C. neoformans cells to catalytic antibodies results in changes in complement deposition and increased phagocytosis by macrophages, suggesting that the antiphagocytic properties of the capsule have been impaired. Our results raise questions over the ubiquity of antibodies with catalytic activity against glycans and establish the utility of glycan-based FRET and HAAF probes as tools for investigating this activity.
Collapse
Affiliation(s)
- Conor J Crawford
- Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Daniel F Q Smith
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Clotilde d'Errico
- Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - Scott A McConnell
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland;
| |
Collapse
|
29
|
García-Carnero LC, Martínez-Álvarez JA, Salazar-García LM, Lozoya-Pérez NE, González-Hernández SE, Tamez-Castrellón AK. Recognition of Fungal Components by the Host Immune System. Curr Protein Pept Sci 2021; 21:245-264. [PMID: 31889486 DOI: 10.2174/1389203721666191231105546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.
Collapse
Affiliation(s)
- Laura C García-Carnero
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A Martínez-Álvarez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Luis M Salazar-García
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | - Nancy E Lozoya-Pérez
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - Alma K Tamez-Castrellón
- Department of Biology, Exact and Natural Sciences Division, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
30
|
Crawford CJ, Oscarson S. Convergent total synthesis of Cryptococcus neoformans serotype B capsule repeating motif. Carbohydr Res 2020; 497:108150. [PMID: 32932031 DOI: 10.1016/j.carres.2020.108150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen, which is a frequent cause of a life-threatening meningitis in immunocompromised individuals. We report the first total synthesis of the serotype B heptasaccharide repeating motif. The use of di- and trisaccharide building blocks enabled a concise convergent synthesis of the protected 6-O-acetylated repeating motif in three steps. Glycosylations gave total 1,2-trans selectivity, despite the absence of a neighboring participating group. Using our recently disclosed catalyst pre-tuning strategy global deprotection gave the desired 6-O-acetylated heptasaccharide with no saturation by-products, overall in four steps 31% yield. The serotype B glucuronoxylomannan (GXM) glycans accessed in this study will increase the structurally diversity of our GXM microarray, allowing further steps towards the development of semi-synthetic vaccines against cryptococcal infections.
Collapse
Affiliation(s)
- Conor J Crawford
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland.
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
31
|
Guazzelli L, Crawford CJ, Ulc R, Bowen A, McCabe O, Jedlicka AJ, Wear MP, Casadevall A, Oscarson S. A synthetic glycan array containing Cryptococcus neoformans glucuronoxylomannan capsular polysaccharide fragments allows the mapping of protective epitopes. Chem Sci 2020; 11:9209-9217. [PMID: 34123169 PMCID: PMC8163368 DOI: 10.1039/d0sc01249a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
A convergent synthetic strategy to Cryptococcus neoformans glucuronoxylomannan (GXM) capsular polysaccharide part structures was developed based on di-, tri-, tetra-, penta- and hexasaccharide thioglycoside building blocks. The approach permitted the synthesis of a library of spacer-containing serotype A and D related GXM oligosaccharide structures, ranging from di- to octadecasaccharides. Ten deprotected GXM compounds (mono- to decasaccharide) were printed onto microarray plates and screened with seventeen mouse monoclonal antibodies (mAbs) to GXM. For the first time a GXM oligosaccharide structure (a serotype A decasaccharide), capable of being recognized by neutralizing forms of these GXM-specific mAbs, has been identified, offering insight into the binding epitopes of a range of protective monoclonal antibodies and furthering our efforts to develop semi-synthetic conjugate vaccine candidates against C. neoformans.
Collapse
Affiliation(s)
- Lorenzo Guazzelli
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Conor J Crawford
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Rebecca Ulc
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Anthony Bowen
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University 615 N. Wolfe St., Rm. E5132 Baltimore MD 21205 USA
| | - Orla McCabe
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Anne J Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University 615 N. Wolfe St., Rm. E5132 Baltimore MD 21205 USA
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University 615 N. Wolfe St., Rm. E5132 Baltimore MD 21205 USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University 615 N. Wolfe St., Rm. E5132 Baltimore MD 21205 USA
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
32
|
Cryptococcus neoformans Evades Pulmonary Immunity by Modulating Xylose Precursor Transport. Infect Immun 2020; 88:IAI.00288-20. [PMID: 32423915 DOI: 10.1128/iai.00288-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that kills almost 200,000 people each year and is distinguished by abundant and unique surface glycan structures that are rich in xylose. A mutant strain of C. neoformans that cannot transport xylose precursors into the secretory compartment is severely attenuated in virulence in mice yet surprisingly is not cleared. We found that this strain failed to induce the nonprotective T helper cell type 2 (Th2) responses characteristic of wild-type infection, instead promoting sustained interleukin 12p40 (IL-12p40) induction and increased IL-17A (IL-17) production. It also stimulated dendritic cells to release high levels of proinflammatory cytokines, a behavior we linked to xylose expression. We further discovered that inducible bronchus-associated lymphoid tissue (iBALT) forms in response to infection with either wild-type cryptococci or the mutant strain with reduced surface xylose; although iBALT formation is slowed in the latter case, the tissue is better organized. Finally, our temporal studies suggest that lymphoid structures in the lung restrict the spread of mutant fungi for at least 18 weeks after infection, which is in contrast to ineffective control of the pathogen after infection with wild-type cells. These studies demonstrate the role of xylose in modulation of host response to a fungal pathogen and show that cryptococcal infection triggers iBALT formation.
Collapse
|
33
|
Dragotakes Q, Stouffer KM, Fu MS, Sella Y, Youn C, Yoon OI, De Leon-Rodriguez CM, Freij JB, Bergman A, Casadevall A. Macrophages use a bet-hedging strategy for antimicrobial activity in phagolysosomal acidification. J Clin Invest 2020; 130:3805-3819. [PMID: 32298242 PMCID: PMC7346583 DOI: 10.1172/jci133938] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Microbial ingestion by a macrophage results in the formation of an acidic phagolysosome but the host cell has no information on the pH susceptibility of the ingested organism. This poses a problem for the macrophage and raises the fundamental question of how the phagocytic cell optimizes the acidification process to prevail. We analyzed the dynamical distribution of phagolysosomal pH in murine and human macrophages that had ingested live or dead Cryptococcus neoformans cells, or inert beads. Phagolysosomal acidification produced a range of pH values that approximated normal distributions, but these differed from normality depending on ingested particle type. Analysis of the increments of pH reduction revealed no forbidden ordinal patterns, implying that the phagosomal acidification process was a stochastic dynamical system. Using simulation modeling, we determined that by stochastically acidifying a phagolysosome to a pH within the observed distribution, macrophages sacrificed a small amount of overall fitness to gain the benefit of reduced variation in fitness. Hence, chance in the final phagosomal pH introduces unpredictability to the outcome of the macrophage-microbe, which implies a bet-hedging strategy that benefits the macrophage. While bet hedging is common in biological systems at the organism level, our results show its use at the organelle and cellular level.
Collapse
Affiliation(s)
- Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Kaitlin M. Stouffer
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Yehonatan Sella
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christine Youn
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Olivia Insun Yoon
- Johns Hopkins University, Krieger School of Arts and Sciences, Baltimore, Maryland, USA
| | - Carlos M. De Leon-Rodriguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Joudeh B. Freij
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Kuttel MM, Casadevall A, Oscarson S. Cryptococcus neoformans Capsular GXM Conformation and Epitope Presentation: A Molecular Modelling Study. Molecules 2020; 25:E2651. [PMID: 32517333 PMCID: PMC7321252 DOI: 10.3390/molecules25112651] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
The pathogenic encapsulated Cryptococcus neoformans fungus causes serious disease in immunosuppressed hosts. The capsule, a key virulence factor, consists primarily of the glucuronoxylomannan polysaccharide (GXM) that varies in composition according to serotype. While GXM is a potential vaccine target, vaccine development has been confounded by the existence of epitopes that elicit non-protective antibodies. Although there is evidence for protective antibodies binding conformational epitopes, the secondary structure of GXM remains an unsolved problem. Here an array of molecular dynamics simulations reveal that the GXM mannan backbone is consistently extended and relatively inflexible in both C. neoformans serotypes A and D. Backbone substitution does not alter the secondary structure, but rather adds structural motifs: β DGlcA and β DXyl side chains decorate the mannan backbone in two hydrophillic fringes, with mannose-6-O-acetylation forming a hydrophobic ridge between them. This work provides mechanistic rationales for clinical observations-the importance of O-acetylation for antibody binding; the lack of binding of protective antibodies to short GXM fragments; the existence of epitopes that elicit non-protective antibodies; and the self-aggregation of GXM chains-indicating that molecular modelling can play a role in the rational design of conjugate vaccines.
Collapse
Affiliation(s)
- Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Cape Town 7701, South Africa
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA;
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
35
|
Crawford C, Oscarson S. Optimized Conditions for the Palladium-Catalyzed Hydrogenolysis of Benzyl and Naphthylmethyl Ethers: Preventing Saturation of Aromatic Protecting Groups. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Conor Crawford
- School of Chemistry; University College Dublin; Belfield 4 Dublin Ireland
| | - Stefan Oscarson
- School of Chemistry; University College Dublin; Belfield 4 Dublin Ireland
| |
Collapse
|
36
|
Variation in Cell Surface Hydrophobicity among Cryptococcus neoformans Strains Influences Interactions with Amoebas. mSphere 2020; 5:5/2/e00310-20. [PMID: 32350094 PMCID: PMC7193044 DOI: 10.1128/msphere.00310-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are pathogenic fungi that cause significant morbidity and mortality. Cell surface hydrophobicity (CSH) is a biophysical parameter that influences the adhesion of fungal cells or spores to biotic and abiotic surfaces. C. neoformans is encased by polysaccharide capsule that is highly hydrophilic and is a critical determinant of virulence. In this study, we report large differences in the CSH of some C. neoformans and C. gattii strains. The capsular polysaccharides of C. neoformans strains differ in repeating motifs and therefore vary in the number of hydroxyl groups, which, along with higher-order structure of the capsule, may contribute to the variation in hydrophobicity that we observed. We found that cell wall composition, in the context of chitin-chitosan content, does not influence CSH. For C. neoformans, CSH correlated with phagocytosis by natural soil predator Acanthamoeba castellanii Furthermore, capsular binding of the protective antibody (18B7), but not the nonprotective antibody (13F1), altered the CSH of C. neoformans strains. Variability in CSH could be an important characteristic in comparing the biological properties of cryptococcal strains.IMPORTANCE The interaction of a microbial cell with its environment is influenced by the biophysical properties of a cell. The affinity of the cell surface for water, defined by the cell surface hydrophobicity (CSH), is a biophysical parameter that varies among different strains of Cryptococcus neoformans The CSH influences the phagocytosis of the yeast by its natural predator in the soil, the amoeba. Studying variation in biophysical properties like CSH gives us insight into the dynamic host-predator interaction and host-pathogen interaction in a damage-response framework.
Collapse
|
37
|
Crawford CJ, Cordero RJB, Guazzelli L, Wear MP, Bowen A, Oscarson S, Casadevall A. Exploring Cryptococcus neoformans capsule structure and assembly with a hydroxylamine-armed fluorescent probe. J Biol Chem 2020; 295:4327-4340. [PMID: 32005661 PMCID: PMC7105310 DOI: 10.1074/jbc.ra119.012251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Indexed: 11/06/2022] Open
Abstract
Chemical biology is an emerging field that enables the study and manipulation of biological systems with probes whose reactivities provide structural insights. The opportunistic fungal pathogen Cryptococcus neoformans possesses a polysaccharide capsule that is a major virulence factor, but is challenging to study. We report here the synthesis of a hydroxylamine-armed fluorescent probe that reacts with reducing glycans and its application to study the architecture of the C. neoformans capsule under a variety of conditions. The probe signal localized intracellularly and at the cell wall-membrane interface, implying the presence of reducing-end glycans at this location where the capsule is attached to the cell body. In contrast, no fluorescence signal was detected in the capsule body. We observed vesicle-like structures containing the reducing-end probe, both intra- and extracellularly, consistent with the importance of vesicles in capsular assembly. Disrupting the capsule with DMSO, ultrasound, or mechanical shear stress resulted in capsule alterations that affected the binding of the probe, as reducing ends were exposed and cell membrane integrity was compromised. Unlike the polysaccharides in the assembled capsule, isolated exopolysaccharides contained reducing ends. The reactivity of the hydroxylamine-armed fluorescent probe suggests a model for capsule assembly whereby reducing ends localize to the cell wall surface, supporting previous findings suggesting that this is an initiation point for capsular assembly. We propose that chemical biology is a promising approach for studying the C. neoformans capsule and its associated polysaccharides to unravel their roles in fungal virulence.
Collapse
Affiliation(s)
- Conor J Crawford
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Lorenzo Guazzelli
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Anthony Bowen
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205.
| |
Collapse
|
38
|
Chung KY, Brown JCS. Biology and function of exo-polysaccharides from human fungal pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:1-11. [PMID: 33042730 DOI: 10.1007/s40588-020-00137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Environmental fungi such as Cryptococcus neoformans and Aspergillus fumigatus must survive many different and changing environments as they transition from their environmental niches to human lungs and other organs. Fungi alter their cell surfaces and secreted macromolecules to respond to and manipulate their surroundings. Recent findings This review focuses on exo-polysaccharides, chains of sugars that transported out of the cell and spread to the local environment. Major exo-polysaccharides for C. neoformans and A. fumigatus are glucuronylxylomannan (GXM) and galactosaminogalactan (GAG), respectively, which accumulate at high concentrations in growth medium and infected patients. Summary Here we discuss GXM and GAG synthesis and export, their immunomodulatory properties, and their roles in biofilm formation. We also propose areas of future research to address outstanding questions in the field that could facilitate development of new disease treatments.
Collapse
Affiliation(s)
- Krystal Y Chung
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
39
|
|
40
|
Tanno D, Yokoyama R, Kawamura K, Kitai Y, Yuan X, Ishii K, De Jesus M, Yamamoto H, Sato K, Miyasaka T, Shimura H, Shibata N, Adachi Y, Ohno N, Yamasaki S, Kawakami K. Dectin-2-mediated signaling triggered by the cell wall polysaccharides of Cryptococcus neoformans. Microbiol Immunol 2019; 63:500-512. [PMID: 31544981 DOI: 10.1111/1348-0421.12746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is rich in polysaccharides of the cell wall and capsule. Dectin-2 recognizes high-mannose polysaccharides and plays a central role in the immune response to fungal pathogens. Previously, we demonstrated Dectin-2 was involved in the activation of dendritic cells upon stimulation with C. neoformans, suggesting the existence of a ligand recognized by Dectin-2. In the present study, we examined the cell wall structures of C. neoformans contributing to the Dectin-2-mediated activation of immune cells. In a NFAT-GFP reporter assay of the reported cells expressing Dectin-2, the lysates, but not the whole yeast cells, of an acapsular strain of C. neoformans (Cap67) delivered Dectin-2-mediated signaling. This activity was detected in the supernatant of β-glucanase-treated Cap67 and more strongly in the semi-purified polysaccharides of this supernatant using ConA-affinity chromatography (ConA-bound fraction), in which a large amount of saccharides, but not protein, were detected. Treatment of this supernatant with periodic acid and the addition of excessive mannose, but not glucose or galactose, strongly inhibited this activity. The ConA-bound fraction of the β-glucanase-treated Cap67 supernatant was bound to Dectin-2-Fc fusion protein in a dose-dependent manner and strongly induced the production of interleukin-12p40 and tumour necrosis factor-α by dendritic cells; this was abrogated under the Dectin-2-deficient condition. Finally, 98 kDa mannoprotein (MP98) derived from C. neoformans showed activation of the reporter cells expressing Dectin-2. These results suggested that a ligand with mannose moieties may exist in the cell walls and play a critical role in the activation of dendritic cells during infection with C. neoformans.
Collapse
Affiliation(s)
- Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaoliang Yuan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Respiratory Medicine, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Magdia De Jesus
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Center for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Niigata, Japan
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroki Shimura
- Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
41
|
de S Araújo GR, Viana NB, Pontes B, Frases S. Rheological properties of cryptococcal polysaccharide change with fiber size, antibody binding and temperature. Future Microbiol 2019; 14:867-884. [PMID: 31340660 DOI: 10.2217/fmb-2018-0320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: Cryptococcus neoformans is the major agent of cryptococcosis. The main virulence factor is the polysaccharide (PS) capsule. Changes in cryptococcal PS properties have been poorly elucidated. Materials & methods: We analyzed the mechanical properties of secreted PS and intact capsules, using dynamic light scattering and optical tweezers. Results: Storage and loss moduli showed that secreted PS behaves as a viscoelastic liquid, while capsular PS behaves as a viscoelastic solid. The secreted PS remains as a viscoelastic fluid at different temperatures with thermal hysteresis after 85°C. Antibody binding altered the viscoelastic behavior of both secreted and capsular PS. Conclusion: Deciphering the mechanical aspects of these structures could reveal features that may have consequences in novel therapies against cryptococcosis.
Collapse
Affiliation(s)
- Glauber R de S Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Nathan B Viana
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Pontes
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
42
|
Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Sci Rep 2019; 9:6438. [PMID: 31015652 PMCID: PMC6478838 DOI: 10.1038/s41598-019-42896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we characterized Cryptococcus gattii biofilm formation in vitro. There was an increase in the density of metabolically active sessile cells up to 72 h of biofilm formation on polystyrene and glass surfaces. Scanning electron microscopy and confocal laser scanning microscopy analysis revealed that in the early stage of biofilm formation, yeast cells adhered to the abiotic surface as a monolayer. After 12 h, extracellular fibrils were observed projecting from C. gattii cells, connecting the yeast cells to each other and to the abiotic surface; mature biofilm consisted of a dense network of cells deeply encased in an extracellular polymeric matrix. These features were also observed in biofilms formed on polyvinyl chloride and silicone catheter surfaces. We used RNA-Seq-based transcriptome analysis to identify changes in gene expression associated with C. gattii biofilm at 48 h compared to the free-floating planktonic cells. Differential expression analysis showed that 97 and 224 transcripts were up-regulated and down-regulated in biofilm, respectively. Among the biological processes, the highest enriched term showed that the transcripts were associated with cellular metabolic processes, macromolecule biosynthetic processes and translation.
Collapse
|
43
|
Probert M, Zhou X, Goodall M, Johnston SA, Bielska E, Ballou ER, May RC. A Glucuronoxylomannan Epitope Exhibits Serotype-Specific Accessibility and Redistributes towards the Capsule Surface during Titanization of the Fungal Pathogen Cryptococcus neoformans. Infect Immun 2019; 87:IAI.00731-18. [PMID: 30670549 PMCID: PMC6434129 DOI: 10.1128/iai.00731-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/23/2018] [Indexed: 11/20/2022] Open
Abstract
Disseminated infections with the fungal species Cryptococcus neoformans or, less frequently, Cryptococcus gattii are an important cause of mortality in immunocompromised individuals. Central to the virulence of both species is an elaborate polysaccharide capsule that consists predominantly of glucuronoxylomannan (GXM). Due to its abundance, GXM is an ideal target for host antibodies, and several monoclonal antibodies (mAbs) have previously been derived using purified GXM or whole capsular preparations as antigens. In addition to their application in the diagnosis of cryptococcosis, anti-GXM mAbs are invaluable tools for studying capsule structure. In this study, we report the production and characterization of a novel anti-GXM mAb, Crp127, that unexpectedly reveals a role for GXM remodeling during the process of fungal titanization. We show that Crp127 recognizes a GXM epitope in an O-acetylation-dependent, but xylosylation-independent, manner. The epitope is differentially expressed by the four main serotypes of Cryptococcus neoformans and C. gattii, is heterogeneously expressed within clonal populations of C. gattii serotype B strains, and is typically confined to the central region of the enlarged capsule. Uniquely, however, this epitope redistributes to the capsular surface in titan cells, a recently characterized morphotype where haploid 5-μm cells convert to highly polyploid cells of >10 μm with distinct but poorly understood capsular characteristics. Titan cells are produced in the host lung and critical for successful infection. Crp127 therefore advances our understanding of cryptococcal morphological change and may hold significant potential as a tool to differentially identify cryptococcal strains and subtypes.
Collapse
Affiliation(s)
- Mark Probert
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xin Zhou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ewa Bielska
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robin C May
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
44
|
Characterization of the 6-O-acetylated lipoglucuronomannogalactan a novel Cryptococcus neoformans cell wall polysaccharide. Carbohydr Res 2019; 475:1-10. [PMID: 30742969 DOI: 10.1016/j.carres.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Glucuronoxylomannogalactans (GXMGals) are characteristic capsular polysaccharides produced by the opportunistic fungus C. neoformans, which are implicated in cryptococcal virulence, via impairment of the host immune response. We determined for the first time the structure of a lipoglucuronomannogalactan (LGMGal), isolated from the surface of a mutant C. neoformans carrying a deletion in the UDP-GlcA decarboxylase gene. Monosaccharide composition and methylation analyses, as well as nuclear magnetic resonance spectroscopy were employed in discerning the structure. Our results show that the polysaccharide structure of the LGMGal differs from GXMGal by the absence of xylose and 2-O-acetylated mannose residues. LGMGal consists of a galactan main chain -[-6-α-Gal-]-, where every second Gal residue is substituted at O-3 with an oligosaccharide α-Man6OAc-3-α-Man-4-(β-GlcA-3)-β-Gal-; components in italic being non-stoichiometric. The substitution rate of β-Galp units by GlcpA is 35%. Additionally, we determined that the glycolipid anchor of the LGMGal is based on an myo-inositol phosphoceramide composed of C18-phytosphingosine and monohydroxylated lignoceric acid (2OHC24:0 fatty acid).
Collapse
|
45
|
Wang ZA, Li LX, Doering TL. Unraveling synthesis of the cryptococcal cell wall and capsule. Glycobiology 2019; 28:719-730. [PMID: 29648596 DOI: 10.1093/glycob/cwy030] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/28/2018] [Indexed: 11/15/2022] Open
Abstract
Fungal pathogens cause devastating infections in millions of individuals each year, representing a huge but underappreciated burden on human health. One of these, the opportunistic fungus Cryptococcus neoformans, kills hundreds of thousands of patients annually, disproportionately affecting people in resource-limited areas. This yeast is distinguished from other pathogenic fungi by a polysaccharide capsule that is displayed on the cell surface. The capsule consists of two complex polysaccharide polymers: a mannan substituted with xylose and glucuronic acid, and a galactan with galactomannan side chains that bear variable amounts of glucuronic acid and xylose. The cell wall, with which the capsule is associated, is a matrix of alpha and beta glucans, chitin, chitosan, and mannoproteins. In this review, we focus on synthesis of the wall and capsule, both of which are critical for the ability of this microbe to cause disease and are distinct from structures found in either model yeasts or the mammals afflicted by this infection. Significant research effort over the last few decades has been applied to defining the synthetic machinery of these two structures, including nucleotide sugar metabolism and transport, glycosyltransferase activities, polysaccharide export, and assembly and association of structural elements. Discoveries in this area have elucidated fundamental biology and may lead to novel targets for antifungal therapy. In this review, we summarize the progress made in this challenging and fascinating area, and outline future research questions.
Collapse
Affiliation(s)
- Zhuo A Wang
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, USA
| | - Lucy X Li
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, USA
| |
Collapse
|
46
|
Huang HR, Li F, Han H, Xu X, Li N, Wang S, Xu JF, Jia XM. Dectin-3 Recognizes Glucuronoxylomannan of Cryptococcus neoformans Serotype AD and Cryptococcus gattii Serotype B to Initiate Host Defense Against Cryptococcosis. Front Immunol 2018; 9:1781. [PMID: 30131805 PMCID: PMC6090260 DOI: 10.3389/fimmu.2018.01781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/19/2018] [Indexed: 01/07/2023] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii cause life-threatening meningoencephalitis or lung diseases in immunocompetent individuals or immunocompromised ones. C. neoformans and C. gattii are subdivided into five serotypes based on their capsular glucuronoxylomannan (GXM). C. neoformans consists of serotypes A, D, and AD hybrid, and C. gattii consists of serotypes B and C. Given structural differences of GXM between C. neoformans and C. gattii, it remains unclear that how innate immune system recognizes GXM. Here, we report that C-type lectin receptor Dectin-3 (MCL encoded by Clec4d) is a direct receptor for GXMs from C. neoformans serotype AD (C.n-AD) and C. gattii serotype B (C.g-B). GXMs from C.n-AD and C.g-B activated NF-κB and ERK pathways to induce pro-inflammatory cytokine production, whereas it was completely abolished due to deficiency of Dectin-3 or caspase recruitment domain family member 9 (CARD9). Upon pulmonary C.n-AD and C.g-B infection, Dectin-3- and CARD9-deficient mice were highly susceptible and showed augmented lung injury due to impairment of alveolar macrophage accumulation and killing activities. Our study provides the first biological and genetic evidence demonstrating that Dectin-3 recognizes GXM of C.n-AD and C.g-B to initiate host defense against cryptococcosis.
Collapse
Affiliation(s)
- Hua-Rong Huang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fan Li
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Han
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Xu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ning Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunchun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin-Ming Jia
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Casadevall A, Coelho C, Cordero RJB, Dragotakes Q, Jung E, Vij R, Wear MP. The capsule of Cryptococcus neoformans. Virulence 2018; 10:822-831. [PMID: 29436899 PMCID: PMC6779390 DOI: 10.1080/21505594.2018.1431087] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The capsule of Cryptococcus neoformans is its dominant virulence factor and plays a key role in the biology of this fungus. In this essay, we focus on the capsule as a cellular structure and note the limitations inherent in the current methodologies available for its study. Given that no single method can provide the structure of the capsule, our notions of what is the cryptococcal capsule must be arrived at by synthesizing information gathered from very different methodological approaches including microscopy, polysaccharide chemistry and physical chemistry of macromolecules. The emerging picture is one of a carefully regulated dynamic structure that is constantly rearranged as a response to environmental stimulation and cellular replication. In the environment, the capsule protects the fungus against desiccation and phagocytic predators. In animal hosts the capsule functions in both offensive and defensive modes, such that it interferes with immune responses while providing the fungal cell with a defensive shield that is both antiphagocytic and capable of absorbing microbicidal oxidative bursts from phagocytic cells. Finally, we delineate a set of unsolved problems in the cryptococcal capsule field that could provide fertile ground for future investigations.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Radames J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Eric Jung
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Raghav Vij
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| |
Collapse
|
48
|
Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J Fungi (Basel) 2018; 4:jof4030088. [PMID: 30060601 PMCID: PMC6162697 DOI: 10.3390/jof4030088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| |
Collapse
|
49
|
Previato JO, Vinogradov E, Maes E, Fonseca LM, Guerardel Y, Oliveira PAV, Mendonça-Previato L. Distribution of the O-acetyl groups and β-galactofuranose units in galactoxylomannans of the opportunistic fungus Cryptococcus neoformans. Glycobiology 2018; 27:582-592. [PMID: 27986834 DOI: 10.1093/glycob/cww127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/09/2016] [Indexed: 01/07/2023] Open
Abstract
Galactoxylomannans (GalXMs) are a mixture of neutral and acidic capsular polysaccharides produced by the opportunistic fungus Cryptococcus neoformans that exhibit potent suppressive effects on the host immune system. Previous studies describing the chemical structure of C. neoformans GalXMs have reported species without O-acetyl substituents. Herein we describe that C. neoformans grown in capsule-inducing medium produces highly O-acetylated GalXMs. The location of the O-acetyl groups was determined by nuclear magnetic resonance (NMR) spectroscopy. In the neutral GalXM (NGalXM), 80% of 3-linked mannose (α-Manp) residues present in side chains are acetylated at the O-2 position. In the acidic GalXM also termed glucuronoxylomannogalactan (GXMGal), 85% of the 3-linked α-Manp residues are acetylated either in the O-2 (75%) or in the O-6 (25%) position, but O-acetyl groups are not present at both positions simultaneously. In addition, NMR spectroscopy and methylation analysis showed that β-galactofuranose (β-Galf) units are linked to O-2 and O-3 positions of nonbranched α-galactopyranose (α-Galp) units present in the GalXMs backbone chain. These findings highlight new structural features of C. neoformans GalXMs. Among these features, the high degree of O-acetylation is of particular interest, since O-acetyl group-containing polysaccharides are known to possess a range of immunobiological activities.
Collapse
Affiliation(s)
- Jose O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941902Rio de Janeiro, Brazil
| | | | - Emmanuel Maes
- Université Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle,F 59000Lille, France
| | - Leonardo M Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941902Rio de Janeiro, Brazil
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle,F 59000Lille, France
| | - Priscila A V Oliveira
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941902Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941902Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Agustinho DP, Miller LC, Li LX, Doering TL. Peeling the onion: the outer layers of Cryptococcus neoformans. Mem Inst Oswaldo Cruz 2018; 113:e180040. [PMID: 29742198 PMCID: PMC5951675 DOI: 10.1590/0074-02760180040] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen
that is ubiquitous in the environment. It causes a deadly meningitis that is
responsible for over 180,000 deaths worldwide each year, including 15% of all
AIDS-related deaths. The high mortality rates for this infection, even with
treatment, suggest a need for improved therapy. Unique characteristics of
C. neoformans may suggest directions for drug discovery.
These include features of three structures that surround the cell: the plasma
membrane, the cell wall around it, and the outermost polysaccharide capsule. We
review current knowledge of the fundamental biology of these fascinating
structures and highlight open questions in the field, with the goal of
stimulating further investigation that will advance basic knowledge and human
health.
Collapse
Affiliation(s)
- Daniel P Agustinho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Liza C Miller
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucy X Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|