1
|
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020; 12:E276. [PMID: 32197542 PMCID: PMC7151026 DOI: 10.3390/pharmaceutics12030276] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug's action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g. magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.
Collapse
Affiliation(s)
- Larisa Koleva
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Elizaveta Bovt
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Fazoil Ataullakhanov
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Elena Sinauridze
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| |
Collapse
|
2
|
Rossi L, Fraternale A, Bianchi M, Magnani M. Red Blood Cell Membrane Processing for Biomedical Applications. Front Physiol 2019; 10:1070. [PMID: 31481901 PMCID: PMC6710399 DOI: 10.3389/fphys.2019.01070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023] Open
Abstract
Red blood cells (RBC) are actually exploited as innovative drug delivery systems with unconventional and convenient properties. Because of a long in vivo survival and a non-random removal from circulation, RBC can be loaded with drugs and/or contrasting agents without affecting these properties and maintaining the original immune competence. However, native or drug-loaded RBC, can be modified decorating the membrane with peptides, antibodies or small chemical entities so favoring the targeting of the processed RBC to specific cells or organs. Convenient modifications have been exploited to induce immune tolerance or immunogenicity, to deliver antibodies capable of targeting other cells, and to deliver a number of constructs that can recognize circulating pathogens or toxins. The methods used to induce membrane processing useful for biomedical applications include the use of crosslinking agents and bifunctional antibodies, biotinylation and membrane insertion. Another approach includes the expression of engineered membrane proteins upon ex vivo transfection of immature erythroid precursors with lentiviral vectors, followed by in vitro expansion and differentiation into mature erythrocytes before administration to a patient in need. Several applications have now reached the clinic and a couple of companies that take advantage from these properties of RBC are already in Phase 3 with selected applications. The peculiar properties of the RBC and the active research in this field by a number of qualified investigators, have opened new exciting perspectives on the use of RBC as carriers of drugs or as cellular therapeutics.
Collapse
Affiliation(s)
- Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,EryDel SpA, Bresso, Italy
| | | | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,EryDel SpA, Bresso, Italy
| |
Collapse
|
3
|
Fatima MT, Ahmad E, Hoque M. Effective antigen delivery via dual entrapment in erythrocytes and autologous plasma beads. J Drug Target 2017; 26:162-171. [DOI: 10.1080/1061186x.2017.1350859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Ejaj Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mehboob Hoque
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Phua KKL, Boczkowski D, Dannull J, Pruitt S, Leong KW, Nair SK. Whole blood cells loaded with messenger RNA as an anti-tumor vaccine. Adv Healthc Mater 2014; 3:837-42. [PMID: 24339387 DOI: 10.1002/adhm.201300512] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/18/2013] [Indexed: 01/07/2023]
Abstract
The use of a cell-based vaccine composed of autologous whole blood cells loaded with mRNA is described. Mice immunized with whole blood cells loaded with mRNA encoding antigen develop anti-tumor immunity comparable to DC-RNA immunization. This approach offers a simple and affordable alternative to RNA-based cellular therapy by circumventing complex, laborious and expensive ex vivo manipulations required for DC-based immunizations.
Collapse
Affiliation(s)
- Kyle K. L. Phua
- Department of Chemical & Biomolecular Engineering; National University of Singapore; Singapore 117576
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - David Boczkowski
- Department of Surgery; Duke University Medical Center; Durham NC 27710 USA
| | - Jens Dannull
- Department of Surgery; Duke University Medical Center; Durham NC 27710 USA
| | - Scott Pruitt
- Experimental Medicine; Merck Research Laboratories; Rahway NJ 07065 USA
| | - Kam W. Leong
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Smita K. Nair
- Department of Surgery; Duke University Medical Center; Durham NC 27710 USA
| |
Collapse
|
5
|
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
6
|
Samman A, Logan N, McMonagle EL, Ishida T, Mochizuki M, Willett BJ, Hosie MJ. Neutralization of feline immunodeficiency virus by antibodies targeting the V5 loop of Env. J Gen Virol 2009; 91:242-9. [PMID: 19776242 DOI: 10.1099/vir.0.015404-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neutralizing antibodies (NAbs) play a vital role in vaccine-induced protection against infection with feline immunodeficiency virus (FIV). However, little is known about the appropriate presentation of neutralization epitopes in order to induce NAbs effectively; the majority of the antibodies that are induced are directed against non-neutralizing epitopes. Here, we demonstrate that a subtype B strain of FIV, designated NG4, escapes autologous NAbs, but may be rendered neutralization-sensitive following the insertion of two amino acids, KT, at positions 556-557 in the fifth hypervariable (V5) loop of the envelope glycoprotein. Consistent with the contribution of this motif to virus neutralization, an additional three subtype B strains retaining both residues at the same position were also neutralized by the NG4 serum, and serum from an unrelated cat (TOT1) targeted the same sequence in V5. Moreover, when the V5 loop of subtype B isolate KNG2, an isolate that was moderately resistant to neutralization by NG4 serum, was mutated to incorporate the KT motif, the virus was rendered sensitive to neutralization. These data suggest that, even in a polyclonal serum derived from FIV-infected cats following natural infection, the primary determinant of virus-neutralizing activity may be represented by a single, dominant epitope in V5.
Collapse
Affiliation(s)
- Ayman Samman
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Reggeti F, Bienzle D. Alloimmunity does not protect from challenge with the feline immunodeficiency virus. Vet Immunol Immunopathol 2008; 124:152-62. [PMID: 18471896 DOI: 10.1016/j.vetimm.2008.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/27/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
Immune responses against polymorphic host molecules incorporated into lentiviral envelopes during cell budding have induced protection against primate immunodeficiency virus infection. Dendritic cells (DCs) express high levels of MHC molecules and are infectable by lentiviruses. Therefore, in this pilot study we addressed the hypothesis that immunization of cats with allogeneic DC would induce immune responses that protect against challenge with the feline immunodeficiency virus. Two groups of 3 cats each received 3 subcutaneous injections of allogeneic or autologous DC, and were then challenged with viruses propagated in the immunizing DC. Infection status and lymphocyte parameters of cats were assessed during 6 weeks after challenge. MHC II antigens were incorporated into viral particles as identified by Western blot; and antibodies reactive with MHC class II antigens were detected in the serum of cats immunized with allogeneic but not autologous DC. After challenge, all cats had proviral DNA in blood leukocytes from 2 weeks post-challenge onward and seroconverted. Cats immunized with allogeneic DC maintained higher total and CD21(+) lymphocyte concentrations, and higher CD4(+)/CD8(+) lymphocyte ratios; however, these differences were not significantly different from cats that received autologous DC immunizations. Plasma viral load was not significantly different between groups of cats (p=0.204). These results suggest that immunization of cats with allogeneic DC does not induce protective immunity against FIV infection.
Collapse
Affiliation(s)
- F Reggeti
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
8
|
Abstract
Many experimental strategies have been adopted in experiments to protect cats from FIV infection by vaccination, and some have been successful. The interest in developing a vaccine arose both because FIV is a common cause of morbidity and mortality in pet cats and because the feline virus provides a model for its counterpart in man, human immunodeficiency virus (HIV), for which an effective vaccine is urgently required to halt the current tragic pandemic of acquired immunodeficiency syndrome (AIDS). Shortly after the discovery of FIV and its characterization as a lentivirus, attempts were made to produce a vaccine and success was soon achieved with relatively simple inactivated virus or inactivated virus-infected cell vaccines.82 Further development of this approach led to the introduction in 2002 of the first commercial vaccine against FIV.59 With an estimated prevalence of the infection of up to 25% in populations of pet cats, an effective FIV vaccine could have a significant influence on animal welfare. In addition, this success poses the question of whether a similar strategy might produce an effective vaccine against HIV.
Collapse
|
9
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
10
|
Boberg A, Dominici S, Brave A, Hallermalm K, Hinkula J, Magnani M, Wahren B. Immunization with HIV protease peptides linked to syngeneic erythrocytes. Infect Agent Cancer 2007; 2:9. [PMID: 17442099 PMCID: PMC1857698 DOI: 10.1186/1750-9378-2-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 04/18/2007] [Indexed: 11/10/2022] Open
Abstract
New potent vaccine adjuvants are desirable for increasing the efficacy of novel vaccine modalities such as DNA and peptides. We therefore tested if syngeneic erythrocytes could serve as delivery vectors for selected HIV peptides and compared the potency of these constructs to immunization with peptides in phosphate buffered saline or in incomplete Freunds adjuvant. Immunization of mice with peptides in a low dose (5 ng) coupled to erythrocytes induced a weak immune response in mice. These peptides alone (5 microg) gave no immune responses, while formulating the peptides (50 microg) in IFA induced strong homologous immunity as well as prominent cross reactivity to a related mutant epitope. Thus, vaccine delivery using syngeneic erythrocytes, although attractive for clinical use, might be of limited value due to the low amount of antigen that can be loaded per erythrocyte.
Collapse
Affiliation(s)
- Andreas Boberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Sabrina Dominici
- Institute of Biochemistry "G. Fornaini", University of Urbino, Urbino, Italy
| | - Andreas Brave
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Kristian Hallermalm
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Jorma Hinkula
- Department for Molecular Virology, IMK, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Mauro Magnani
- Institute of Biochemistry "G. Fornaini", University of Urbino, Urbino, Italy
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| |
Collapse
|
11
|
Hamidi M, Zarrin A, Foroozesh M, Mohammadi-Samani S. Applications of carrier erythrocytes in delivery of biopharmaceuticals. J Control Release 2006; 118:145-60. [PMID: 17270305 DOI: 10.1016/j.jconrel.2006.06.032] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 06/20/2006] [Indexed: 11/25/2022]
Abstract
Carrier erythrocytes, resealed erythrocytes loaded by a drug or other therapeutic agents, have been exploited extensively in recent years for both temporally and spatially controlled delivery of a wide variety of drugs and other bioactive agents owing to their remarkable degree of biocompatibility, biodegradability and a series of other potential advantages. Biopharmaceuticals, therapeutically significant peptides and proteins, nucleic acid-based biologicals, antigens and vaccines, are among the recently focused pharmaceuticals for being delivered using carrier erythrocytes. In this article, the potential applications of erythrocytes in drug delivery have been reviewed with a particular stress on the studies and laboratory experiences on successful erythrocyte loading and characterization of the different classes of biopharmaceuticals.
Collapse
Affiliation(s)
- Mehrdad Hamidi
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, P.O. BOX 71345-1583, Shiraz, Iran.
| | | | | | | |
Collapse
|
12
|
Uhl E, Heaton-Jones T, Pu R, Yamamoto J. FIV vaccine development and its importance to veterinary and human medicine: a review FIV vaccine 2002 update and review. Vet Immunol Immunopathol 2002; 90:113-32. [PMID: 12459160 PMCID: PMC7119750 DOI: 10.1016/s0165-2427(02)00227-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 08/05/2002] [Accepted: 08/14/2002] [Indexed: 10/27/2022]
Abstract
Feline immunodeficiency virus (FIV) is a natural infection of domestic cats that results in acquired immunodeficiency syndrome resembling human immunodeficiency virus (HIV) infection in humans. The worldwide prevalence of FIV infection in domestic cats has been reported to range from 1 to 28%. Hence, an effective FIV vaccine will have an important impact on veterinary medicine in addition to being used as a small animal AIDS model for humans. Since the discovery of FIV reported in 1987, FIV vaccine research has pursued both molecular and conventional vaccine approaches toward the development of a commercial product. Published FIV vaccine trial results from 1998 to the present have been compiled to update the veterinary clinical and research communities on the immunologic and experimental efficacy status of these vaccines. A brief report is included on the outcome of the 10 years of collaborative work between industry and academia which led to recent USDA approval of the first animal lentivirus vaccine, the dual-subtype FIV vaccine. The immunogenicity and efficacy of the experimental prototype, dual-subtype FIV vaccine and the efficacy of the currently approved commercial, dual-subtype FIV vaccine (Fel-O-Vax FIV) are discussed. Potential cross-reactivity complications between commercial FIV diagnostic tests, Idexx Snap Combo Test and Western blot assays, and sera from previously vaccinated cats are also discussed. Finally, recommendations are made for unbiased critical testing of new FIV vaccines, the currently USDA approved vaccine, and future vaccines in development.
Collapse
Affiliation(s)
- E.W Uhl
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - T.G Heaton-Jones
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - R Pu
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - J.K Yamamoto
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| |
Collapse
|
13
|
Corinti S, Chiarantini L, Dominici S, Laguardia ME, Magnani M, Girolomoni G. Erythrocytes deliver Tat to interferon‐γ‐treated human dendritic cells for efficient initiation of specific type 1 immune responses in vitro. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.4.652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Silvia Corinti
- Laboratory of Immunology, Istituto Dermopatico dell’Immacolata, IRCCS, Rome, Italy; and
| | - Laura Chiarantini
- Institute of Biochemistry Giorgio Fornaini, University of Urbino, Italy
| | - Sabrina Dominici
- Institute of Biochemistry Giorgio Fornaini, University of Urbino, Italy
| | | | - Mauro Magnani
- Institute of Biochemistry Giorgio Fornaini, University of Urbino, Italy
| | - Giampiero Girolomoni
- Laboratory of Immunology, Istituto Dermopatico dell’Immacolata, IRCCS, Rome, Italy; and
| |
Collapse
|