1
|
Sharma U, Gupta S, Venkatesh S, Rai A, Dhariwal AC, Husain M. Comparative genetic variability in HIV-1 subtype C p24 Gene in early age groups of infants. Virus Genes 2018; 54:647-661. [PMID: 30022343 DOI: 10.1007/s11262-018-1588-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
It is important to study the molecular properties of vertically transmitted viruses in early infancy to understand disease progression. P24 having an important role in virus assembly and maturation was selected to explore the genotypic characteristics. Blood samples, obtained from 82 HIV-1 positive infants, were categorized into acute (≤ 6 months) and early (> 6-18 months) age groups. Of the 82 samples, 79 gave amplification results for p24, which were then sequenced and analysed. Amino acid heterogeneity analysis showed that substitutions were more frequent. Several substitution mutations were present in some of the sequences of both the age groups in the functional motifs of the gene namely Beta hairpin, CyPA binding loop, residues L136 and L190, linker region and major homology region. In the acute age group, an insertion of Asparagine residue (N5NL6) was observed in the β hairpin region in one of the sequences. This insertion was accompanied with analogous substitutions of N5Q, Q7L and G8R. In the early age group, a deletion of two residues; VK181-182, was observed at the C-terminal end in one of the sequences. These mutations may impair the structure of the protein leading to defective virus assembly. Protein variation effect analyzer software showed that deleterious mutations were more in the acute than the early age group. Variability analysis revealed that the amino acid heterogeneity was comparatively higher in the acute than the early age group. Variability in the virus was decreasing with the increasing age of the infants indicating that the virus is gradually evolving under positive selection pressure. HLA class 1 binding peptide analysis showed that the epitopes TPQDLNTML and RMYSPVSIL may be helpful in designing epitope based vaccine.
Collapse
Affiliation(s)
- Uma Sharma
- Molecular Virology Laboratory, Department of Biotechnology, Jamia Millia Islamia, Central University, New Delhi, 110025, India.,National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, 22-Sham Nath Marg, Delhi, 110054, India
| | - Sunil Gupta
- National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, 22-Sham Nath Marg, Delhi, 110054, India
| | - S Venkatesh
- National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, 22-Sham Nath Marg, Delhi, 110054, India
| | - Arvind Rai
- National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, 22-Sham Nath Marg, Delhi, 110054, India
| | - A C Dhariwal
- National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, 22-Sham Nath Marg, Delhi, 110054, India
| | - Mohammad Husain
- Molecular Virology Laboratory, Department of Biotechnology, Jamia Millia Islamia, Central University, New Delhi, 110025, India.
| |
Collapse
|
2
|
Mohammadzadeh S, Rajabibazl M, Fourozandeh M, Rasaee MJ, Rahbarizadeh F, Mohammadi M. Production of recombinant scFv against p24 of human immunodeficiency virus type 1 by phage display technology. Monoclon Antib Immunodiagn Immunother 2014; 33:28-33. [PMID: 24555933 DOI: 10.1089/mab.2013.0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Phage display has a fundamental role in protein isolation and engineering. Isolated proteins produced with this method can be modified for specific binding and affinity. P24 is the most produced protein during human immune deficiency virus (HIV) replication; especially in the early steps of HIV-1 infection, its evaluation may have diagnostic values. To test the HIV-1 infection, p24 antigen assay appears to be a very promising alternative to RNA assays. In this study, we have generated a recombinant mouse single chain antibody fragment against p24 of the HIV-1 with the use of phage display technology. After isolation of antibody variable-region (V) gene of B cells extracted from the spleen of an immunized mouse, a library of single chain Fv fragments (scFv) was constructed. The library was used in a series of bio-panning processes against recombinant p24 protein expressed from Escherichia coli. The isolated scFv antibody specifically recognizes the HIV-1 capsid protein p24. The affinity constant of the isolated scFv antibody (MF85) was found to be 2×10(-9) M. Our studies showed that the MF85 scFV antibody has similar properties as that of monoclonal antibodies produced by the hybridoma technology.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- 1 Medical Biotechnology Department, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | | | | | | | | | | |
Collapse
|
3
|
Gonzalez-Rabade N, McGowan EG, Zhou F, McCabe MS, Bock R, Dix PJ, Gray JC, Ma JKC. Immunogenicity of chloroplast-derived HIV-1 p24 and a p24-Nef fusion protein following subcutaneous and oral administration in mice. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:629-38. [PMID: 21443546 DOI: 10.1111/j.1467-7652.2011.00609.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High-level expression of foreign proteins in chloroplasts of transplastomic plants provides excellent opportunities for the development of oral vaccines against a range of debilitating or fatal diseases. The HIV-1 capsid protein p24 and a fusion of p24 with the negative regulatory protein Nef (p24-Nef) accumulate to ∼4% and ∼40% of the total soluble protein of leaves of transplastomic tobacco (Nicotiana tabacum L.) plants. This study has investigated the immunogenicity in mice of these two HIV-1 proteins, using cholera toxin B subunit as an adjuvant. Subcutaneous immunization with purified chloroplast-derived p24 elicited a strong antigen-specific serum IgG response, comparable to that produced by Escherichia coli-derived p24. Oral administration of a partially purified preparation of chloroplast-derived p24-Nef fusion protein, used as a booster after subcutaneous injection with either p24 or Nef, also elicited strong antigen-specific serum IgG responses. Both IgG1 and IgG2a subtypes, associated with cell-mediated Th1 and humoral Th2 responses, respectively, were found in sera after subcutaneous and oral administration. These results indicate that chloroplast-derived HIV-1 p24-Nef is a promising candidate as a component of a subunit vaccine delivered by oral boosting, after subcutaneous priming by injection of p24 and/or Nef.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Chloroplasts/genetics
- Chloroplasts/immunology
- Female
- HIV Core Protein p24/administration & dosage
- HIV Core Protein p24/genetics
- HIV Core Protein p24/immunology
- Immunity, Humoral/immunology
- Immunization, Secondary
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nicotine/toxicity
- Plants, Genetically Modified/genetics
- Nicotiana/genetics
- nef Gene Products, Human Immunodeficiency Virus/administration & dosage
- nef Gene Products, Human Immunodeficiency Virus/genetics
- nef Gene Products, Human Immunodeficiency Virus/immunology
Collapse
|
4
|
Andersson E, Horal P, Vahlne A, Svennerholm B. No cross-resistance or selection of HIV-1 resistant mutants in vitro to the antiretroviral tripeptide glycyl-prolyl-glycine-amide. Antiviral Res 2004; 61:119-24. [PMID: 14670585 DOI: 10.1016/j.antiviral.2003.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chemically modified tripeptide glycyl-prolyl-glycine-amide (GPG-NH(2)) inhibits replication of HIV-1 in vitro, probably by interfering with capsid formation. This study was aimed at determining cross-resistance between antiretroviral drugs and GPG-NH(2), and whether resistance to GPG-NH(2) can be induced in vitro. Fifty-five clinical HIV-1 isolates with different resistance-related mutations were tested for susceptibility to GPG-NH(2). No correlation between NRTI-, NNRTI- or PI-resistance and efficacy of GPG-NH(2) was found, indicating the lack of cross-resistance. Serial passages were performed with GPG-NH(2), and with lamivudine, and genotypic or phenotypic changes were determined. Resistance to lamivudine was detected after six passages. No resistance to GPG-NH(2) was generated after 30 passages in two parallel series. However, one mutation (T107I) in the p24 gene was detected in both series, but this mutation was not associated with decreased sensitivity to GPG-NH(2).
Collapse
Affiliation(s)
- Elin Andersson
- Department of Clinical Virology, University of Göteborg, 413-46, Göteborg, Sweden.
| | | | | | | |
Collapse
|
5
|
Frelin L, Alheim M, Chen A, Söderholm J, Rozell B, Barnfield C, Liljeström P, Sällberg M. Low dose and gene gun immunization with a hepatitis C virus nonstructural (NS) 3 DNA-based vaccine containing NS4A inhibit NS3/4A-expressing tumors in vivo. Gene Ther 2003; 10:686-99. [PMID: 12692597 DOI: 10.1038/sj.gt.3301933] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus (HCV) protease and helicase encompasses the nonstructural (NS) 3 protein and the cofactor NS4A, which targets the NS3/4A-complex to intracellular membranes. We here evaluate the importance of NS4A in NS3-based genetic immunogens. A full-length genotype 1 NS3/4A gene was cloned into a eucaryotic expression vector in the form of NS3/4A and NS3 alone. Transient transfections revealed that the inclusion of NS4A increased the expression levels of NS3. Subsequently, immunization with the NS3/4A gene primed 10- to 100-fold higher levels of NS3-specific antibodies as compared to immunization with the NS3 gene. Humoral responses primed by the NS3/4A gene had a higher IgG2a/IgG1 ratio (>20) as compared to the NS3 gene (3.0), suggesting a T helper 1-skewed response. Low dose i.m. (10 microg) immunization with the NS3/4A gene inhibited the growth of NS3/4A-expressing tumor cells in vivo, whereas the NS3 gene alone or NS3 protein did not. We then evaluated the efficiency of the NS3/4A gene administered by the gene gun, at the same doses used for humans, in priming cytotoxic T lymphocyte (CTL) responses. Three to four 4 microg doses of the NS3/4A gene primed CTL at a precursor frequency of 2-4%, which inhibited the growth of NS3/4A-expressing tumor cells in vivo. Thus, NS4A enhances the expression levels and immunogenicity of NS3, and an NS3/4A gene delivered transdermally could be a therapeutic vaccine candidate.
Collapse
Affiliation(s)
- L Frelin
- Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|