1
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Tsai CM, Hajam IA, Caldera JR, Liu GY. Integrating complex host-pathogen immune environments into S. aureus vaccine studies. Cell Chem Biol 2022; 29:730-740. [PMID: 35594849 DOI: 10.1016/j.chembiol.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus (SA) is a leading cause of bacterial infection and antibiotic resistance globally. Therefore, development of an effective vaccine has been a major goal of the SA field for the past decades. With the wealth of understanding of pathogenesis, the failure of all SA vaccine trials has been a surprise. We argue that experimental SA vaccines have not worked because vaccines have been studied in naive laboratory animals, whereas clinical vaccine efficacy is tested in immune environments reprogrammed by SA. Here, we review the failed SA vaccines that have seemingly defied all principles of vaccinology. We describe major SA evasion strategies and suggest that they reshape the immune environment in a way that makes vaccines prone to failures. We propose that appropriate integration of concepts of host-pathogen interaction into vaccine study designs could lead to insight critical for the development of an effective SA vaccine.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Irshad A Hajam
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - J R Caldera
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - George Y Liu
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
3
|
Staphylococcal Infections: Host and Pathogenic Factors. Microorganisms 2021; 9:microorganisms9051080. [PMID: 34069873 PMCID: PMC8157358 DOI: 10.3390/microorganisms9051080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
|
4
|
Monoclonal Antibodies Targeting Surface-Exposed and Secreted Proteins from Staphylococci. Vaccines (Basel) 2021; 9:vaccines9050459. [PMID: 34064471 PMCID: PMC8147999 DOI: 10.3390/vaccines9050459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Staphylococci (specifically Staphylococcus aureus and Staphylococcus epidermidis) are the causative agents of diseases ranging from superficial skin and soft tissue infections to severe conditions such as fatal pneumonia, bacteremia, sepsis and endocarditis. The widespread and indiscriminate use of antibiotics has led to serious problems of resistance to staphylococcal disease and has generated a renewed interest in alternative therapeutic agents such as vaccines and antibodies. Staphylococci express a large repertoire of surface and secreted virulence factors, which provide mechanisms (adhesion, invasion and biofilm development among others) for both bacterial survival in the host and evasion from innate and adaptive immunity. Consequently, the development of antibodies that target specific antigens would provide an effective protective strategy against staphylococcal infections. In this review, we report an update on efforts to develop anti-staphylococci monoclonal antibodies (and their derivatives: minibodies, antibody–antibiotic conjugates) and the mechanism by which such antibodies can help fight infections. We also provide an overview of mAbs used in clinical trials and highlight their therapeutic potential in various infectious contexts.
Collapse
|
5
|
Muthukrishnan G, Wallimann A, Rangel-Moreno J, Bentley KLDM, Hildebrand M, Mys K, Kenney HM, Sumrall ET, Daiss JL, Zeiter S, Richards RG, Schwarz EM, Moriarty TF. Humanized Mice Exhibit Exacerbated Abscess Formation and Osteolysis During the Establishment of Implant-Associated Staphylococcus aureus Osteomyelitis. Front Immunol 2021; 12:651515. [PMID: 33815412 PMCID: PMC8012494 DOI: 10.3389/fimmu.2021.651515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is the predominant pathogen causing osteomyelitis. Unfortunately, no immunotherapy exists to treat these very challenging and costly infections despite decades of research, and numerous vaccine failures in clinical trials. This lack of success can partially be attributed to an overreliance on murine models where the immune correlates of protection often diverge from that of humans. Moreover, S. aureus secretes numerous immunotoxins with unique tropism to human leukocytes, which compromises the targeting of immune cells in murine models. To study the response of human immune cells during chronic S. aureus bone infections, we engrafted non-obese diabetic (NOD)-scid IL2Rγnull (NSG) mice with human hematopoietic stem cells (huNSG) and analyzed protection in an established model of implant-associated osteomyelitis. The results showed that huNSG mice have increases in weight loss, osteolysis, bacterial dissemination to internal organs, and numbers of Staphylococcal abscess communities (SACs), during the establishment of implant-associated MRSA osteomyelitis compared to NSG controls (p < 0.05). Flow cytometry and immunohistochemistry demonstrated greater human T cell numbers in infected versus uninfected huNSG mice (p < 0.05), and that T-bet+ human T cells clustered around the SACs, suggesting S. aureus-mediated activation and proliferation of human T cells in the infected bone. Collectively, these proof-of-concept studies underscore the utility of huNSG mice for studying an aggressive form of S. aureus osteomyelitis, which is more akin to that seen in humans. We have also established an experimental system to investigate the contribution of specific human T cells in controlling S. aureus infection and dissemination.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Alexandra Wallimann
- AO Research Institute Davos, Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Karen Mys
- AO Research Institute Davos, Davos, Switzerland
| | - H Mark Kenney
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | | | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | |
Collapse
|
6
|
Klimka A, Mertins S, Nicolai AK, Rummler LM, Higgins PG, Günther SD, Tosetti B, Krut O, Krönke M. Epitope-specific immunity against Staphylococcus aureus coproporphyrinogen III oxidase. NPJ Vaccines 2021; 6:11. [PMID: 33462229 PMCID: PMC7813823 DOI: 10.1038/s41541-020-00268-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus represents a serious infectious threat to global public health and a vaccine against S. aureus represents an unmet medical need. We here characterise two S. aureus vaccine candidates, coproporphyrinogen III oxidase (CgoX) and triose phosphate isomerase (TPI), which fulfil essential housekeeping functions in heme synthesis and glycolysis, respectively. Immunisation with rCgoX and rTPI elicited protective immunity against S. aureus bacteremia. Two monoclonal antibodies (mAb), CgoX-D3 and TPI-H8, raised against CgoX and TPI, efficiently provided protection against S. aureus infection. MAb-CgoX-D3 recognised a linear epitope spanning 12 amino acids (aa), whereas TPI-H8 recognised a larger discontinuous epitope. The CgoX-D3 epitope conjugated to BSA elicited a strong, protective immune response against S. aureus infection. The CgoX-D3 epitope is highly conserved in clinical S. aureus isolates, indicating its potential wide usability against S. aureus infection. These data suggest that immunofocusing through epitope-based immunisation constitutes a strategy for the development of a S. aureus vaccine with greater efficacy and better safety profile.
Collapse
Affiliation(s)
- Alexander Klimka
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Sonja Mertins
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Anne Kristin Nicolai
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Liza Marie Rummler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Saskia Diana Günther
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Bettina Tosetti
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Oleg Krut
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,Paul-Ehrlich Institute, Langen, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany. .,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany. .,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
| |
Collapse
|
7
|
Nishitani K, Ishikawa M, Morita Y, Yokogawa N, Xie C, de Mesy Bentley KL, Ito H, Kates SL, Daiss JL, Schwarz EM. IsdB antibody-mediated sepsis following S. aureus surgical site infection. JCI Insight 2020; 5:141164. [PMID: 33004694 PMCID: PMC7566716 DOI: 10.1172/jci.insight.141164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is prevalent in surgical site infections (SSI) and leads to death in approximately 1% of patients. Phase IIB/III clinical trial results have demonstrated that vaccination against the iron-regulated surface determinant protein B (IsdB) is associated with an increased mortality rate in patients with SSI. Thus, we hypothesized that S. aureus induces nonneutralizing anti-IsdB antibodies, which facilitate bacterial entry into leukocytes to generate "Trojan horse" leukocytes that disseminate the pathogen. Since hemoglobin (Hb) is the primary target of IsdB, and abundant Hb-haptoglobin (Hb-Hp) complexes in bleeding surgical wounds are normally cleared via CD163-mediated endocytosis by macrophages, we investigated this mechanism in vitro and in vivo. Our results demonstrate that active and passive IsdB immunization of mice renders them susceptible to sepsis following SSI. We also found that a multimolecular complex containing S. aureus protein A-anti-IsdB-IsdB-Hb-Hp mediates CD163-dependent bacterial internalization of macrophages in vitro. Moreover, IsdB-immunized CD163-/- mice are resistant to sepsis following S. aureus SSI, as are normal healthy mice given anti-CD163-neutralizing antibodies. These genetic and biologic CD163 deficiencies did not exacerbate local infection. Thus, anti-IsdB antibodies are a risk factor for S. aureus sepsis following SSI, and disruption of the multimolecular complex and/or CD163 blockade may intervene.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/adverse effects
- Antibodies, Monoclonal/adverse effects
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cation Transport Proteins/immunology
- Female
- Haptoglobins/immunology
- Haptoglobins/metabolism
- Hemoglobins/immunology
- Hemoglobins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Sepsis/etiology
- Sepsis/metabolism
- Sepsis/pathology
- Staphylococcal Infections/complications
- Staphylococcal Infections/immunology
- Staphylococcal Infections/microbiology
- Staphylococcus aureus/immunology
- Surgical Wound Infection/complications
- Surgical Wound Infection/immunology
- Surgical Wound Infection/microbiology
Collapse
Affiliation(s)
- Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Noriaki Yokogawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
| |
Collapse
|
8
|
Pietrocola G, Pellegrini A, Alfeo MJ, Marchese L, Foster TJ, Speziale P. The iron-regulated surface determinant B (IsdB) protein from Staphylococcus aureus acts as a receptor for the host protein vitronectin. J Biol Chem 2020; 295:10008-10022. [PMID: 32499371 DOI: 10.1074/jbc.ra120.013510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an important bacterial pathogen that can cause a wide spectrum of diseases in humans and other animals. S. aureus expresses a variety of virulence factors that promote infection with this pathogen. These include cell-surface proteins that mediate adherence of the bacterial cells to host extracellular matrix components, such as fibronectin and fibrinogen. Here, using immunoblotting, ELISA, and surface plasmon resonance analysis, we report that the iron-regulated surface determinant B (IsdB) protein, besides being involved in heme transport, plays a novel role as a receptor for the plasma and extracellular matrix protein vitronectin (Vn). Vn-binding activity was expressed by staphylococcal strains grown under iron starvation conditions when Isd proteins are expressed. Recombinant IsdB bound Vn dose dependently and specifically. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound Vn in a saturable manner, with KD values in the range of 16-18 nm Binding of Vn to IsdB was specifically blocked by heparin and reduced at high ionic strength. Furthermore, IsdB-expressing bacterial cells bound significantly higher amounts of Vn from human plasma than did an isdB mutant. Adherence to and invasion of epithelial and endothelial cells by IsdB-expressing S. aureus cells was promoted by Vn, and an αvβ3 integrin-blocking mAb or cilengitide inhibited adherence and invasion by staphylococci, suggesting that Vn acts as a bridge between IsdB and host αvβ3 integrin.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Angelica Pellegrini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Mariangela J Alfeo
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Bennett MR, Bombardi RG, Kose N, Parrish EH, Nagel MB, Petit RA, Read TD, Schey KL, Thomsen IP, Skaar EP, Crowe JE. Human mAbs to Staphylococcus aureus IsdA Provide Protection Through Both Heme-Blocking and Fc-Mediated Mechanisms. J Infect Dis 2020; 219:1264-1273. [PMID: 30496483 DOI: 10.1093/infdis/jiy635] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/17/2018] [Indexed: 11/13/2022] Open
Abstract
The nutrient metal iron plays a key role in the survival of microorganisms. The iron-regulated surface determinant (Isd) system scavenges heme-iron from the human host, enabling acquisition of iron in iron-deplete conditions in Staphylococcus aureus during infection. The cell surface receptors IsdB and IsdH bind hemoproteins and transfer heme to IsdA, the final surface protein before heme-iron is transported through the peptidoglycan. To define the human B-cell response to IsdA, we isolated human monoclonal antibodies (mAbs) specific to the surface Isd proteins and determined their mechanism of action. We describe the first isolation of fully human IsdA and IsdH mAbs, as well as cross-reactive Isd mAbs. Two of the identified IsdA mAbs worked in a murine septic model of infection to reduce bacterial burden during staphylococcal infection. Their protection was a result of both heme-blocking and Fc-mediated effector functions, underscoring the importance of targeting S. aureus using diverse mechanisms.
Collapse
Affiliation(s)
- Monique R Bennett
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Erica H Parrish
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcus B Nagel
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Isaac P Thomsen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee.,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
10
|
Schneewind O, Missiakas D. Sortases, Surface Proteins, and Their Roles in Staphylococcus aureus Disease and Vaccine Development. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0004-2018. [PMID: 30737913 PMCID: PMC6386163 DOI: 10.1128/microbiolspec.psib-0004-2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Sortases cleave short peptide motif sequences at the C-terminal end of secreted surface protein precursors and either attach these polypeptides to the peptidoglycan of Gram-positive bacteria or promote their assembly into pilus structures that are also attached to peptidoglycan. Sortase A, the enzyme first identified in the human pathogen Staphylococcus aureus, binds LPXTG motif sorting signals, cleaves between threonine (T) and glycine (G) residues, and forms an acyl enzyme between its active-site cysteine thiol and the carboxyl group of threonine (T). Sortase A acyl enzyme is relieved by the nucleophilic attack of the cross bridge amino group within lipid II, thereby generating surface protein linked to peptidoglycan precursor. Such products are subsequently incorporated into the cell wall envelope by enzymes of the peptidoglycan synthesis pathway. Surface proteins linked to peptidoglycan may be released from the bacterial envelope to diffuse into host tissues and fulfill specific biological functions. S. aureus sortase A is essential for host colonization and for the pathogenesis of invasive diseases. Staphylococcal sortase-anchored surface proteins fulfill key functions during the infectious process, and vaccine-induced antibodies targeting surface proteins may provide protection against S. aureus. Alternatively, small-molecule inhibitors of sortase may be useful agents for the prevention of S. aureus colonization and invasive disease.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
11
|
Speziale P, Rindi S, Pietrocola G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms 2018. [PMID: 29533985 PMCID: PMC5874639 DOI: 10.3390/microorganisms6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy.
| | - Simonetta Rindi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
12
|
Yu W, Yao D, Yu S, Wang X, Li X, Wang M, Liu S, Feng Z, Chen X, Li W, Wang L, Liu W, Ma J, Yu L, Tong C, Song B, Cui Y. Protective humoral and CD4 + T cellular immune responses of Staphylococcus aureus vaccine MntC in a murine peritonitis model. Sci Rep 2018; 8:3580. [PMID: 29483570 PMCID: PMC5832154 DOI: 10.1038/s41598-018-22044-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus can cause different types of diseases from mild skin infections to life-threatening sepsis worldwide. Owing to the emergence and transmission of multidrug-resistant strains, developing an impactful immunotherapy especially vaccine control approach against S. aureus infections is increasingly encouraged and supported. S. aureus manganese transport protein C (MntC), which is a highly-conserved cell surface protein, can elicit protective immunity against S. aureus and Staphylococcus epidermidis. In this study, we evaluated the humoral immune response and CD4+ T cell-mediated immune responses in a mouse peritonitis model. The results showed that MntC-specific antibodies conferred an essential protection for mice to reduce invasion of S. aureus, which was corroborated via the opsonophagocytic killing assay and passive immunization experiment in mice, and moreover MntC-induced Th17 played a remarkable part in preventing S. aureus infection since the MntC-induced protective immunity decreased after neutralization of IL-17 by antibody in vivo and the Th17 adoptive transferred-mice could partly resist S. aureus challenge. In conclusion, we considered that the MntC-specific antibodies and MntC-specific Th17 cells play cooperative roles in the prevention of S. aureus infection.
Collapse
Affiliation(s)
- Wei Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Di Yao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Simiao Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xintong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xiaoting Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Mengyao Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Shuo Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xiaoting Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Wanyu Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Wei Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China.
| |
Collapse
|
13
|
Missiakas D, Schneewind O. Staphylococcus aureus vaccines: Deviating from the carol. J Exp Med 2016; 213:1645-53. [PMID: 27526714 PMCID: PMC4995089 DOI: 10.1084/jem.20160569] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/29/2016] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus, a commensal of the human nasopharynx and skin, also causes invasive disease, most frequently skin and soft tissue infections. Invasive disease caused by drug-resistant strains, designated MRSA (methicillin-resistant S. aureus), is associated with failure of antibiotic therapy and elevated mortality. Here we review polysaccharide-conjugate and subunit vaccines that were designed to prevent S. aureus infection in patients at risk of bacteremia or surgical wound infection but failed to reach their clinical endpoints. We also discuss vaccines with ongoing trials for combinations of polysaccharide-conjugates and subunits. S. aureus colonization and invasive disease are not associated with the development of protective immune responses, which is attributable to a large spectrum of immune evasion factors. Two evasive strategies, assembly of protective fibrin shields via coagulases and protein A-mediated B cell superantigen activity, are discussed as possible vaccine targets. Although correlates for protective immunity are not yet known, opsonophagocytic killing of staphylococci by phagocytic cells offers opportunities to establish such criteria.
Collapse
Affiliation(s)
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
14
|
Lacey KA, Geoghegan JA, McLoughlin RM. The Role of Staphylococcus aureus Virulence Factors in Skin Infection and Their Potential as Vaccine Antigens. Pathogens 2016; 5:pathogens5010022. [PMID: 26901227 PMCID: PMC4810143 DOI: 10.3390/pathogens5010022] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus (S. aureus) causes the vast majority of skin and soft tissue infections (SSTIs) in humans. S. aureus has become increasingly resistant to antibiotics and there is an urgent need for new strategies to tackle S. aureus infections. Vaccines offer a potential solution to this epidemic of antimicrobial resistance. However, the development of next generation efficacious anti-S. aureus vaccines necessitates a greater understanding of the protective immune response against S. aureus infection. In particular, it will be important to ascertain if distinct immune mechanisms are required to confer protection at distinct anatomical sites. Recent discoveries have highlighted that interleukin-17-producing T cells play a particularly important role in the immune response to S. aureus skin infection and suggest that vaccine strategies to specifically target these types of T cells may be beneficial in the treatment of S. aureus SSTIs. S. aureus expresses a large number of cell wall-anchored (CWA) proteins, which are covalently attached to the cell wall peptidoglycan. The virulence potential of many CWA proteins has been demonstrated in infection models; however, there is a paucity of information regarding their roles during SSTIs. In this review, we highlight potential candidate antigens for vaccines targeted at protection against SSTIs.
Collapse
Affiliation(s)
- Keenan A Lacey
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Joan A Geoghegan
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
15
|
Yang L, Cai C, Feng Q, Shi Y, Zuo Q, Yang H, Jing H, Wei C, Zhuang Y, Zou Q, Zeng H. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models. Sci Rep 2016; 6:20929. [PMID: 26865417 PMCID: PMC4750066 DOI: 10.1038/srep20929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/13/2016] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus causes serious sepsis and necrotic pneumonia worldwide. Due to the spread of multidrug-resistant strains, developing an effective vaccine is the most promising method for combating S. aureus infection. In this study, based on the immune-dominant areas of the iron surface determinant B (IsdB) and clumping factor A (ClfA), we designed the novel chimeric vaccine IsdB151-277ClfA33-213 (IC). IC formulated with the AlPO4 adjuvant induced higher protection in an S. aureus sepsis model compared with the single components alone and showed broad immune protection against several clinical S. aureus isolates. Immunisation with IC induced strong antibody responses. The protective effect of antibodies was demonstrated through the opsonophagocytic assay (OPA) and passive immunisation experiment. Moreover, this new chimeric vaccine induced Th1/Th17-skewed cellular immune responses based on cytokine profiles and CD4+ T cell stimulation tests. Neutralisation of IL-17A alone (but not IFN-γ) resulted in a significant decrease in vaccine immune protection. Finally, we found that IC showed protective efficacy in a pneumonia model. Taken together, these data provide evidence that IC is a potentially promising vaccine candidate for combating S. aureus sepsis and pneumonia.
Collapse
Affiliation(s)
- Liuyang Yang
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Changzhi Cai
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qiang Feng
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Yun Shi
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qianfei Zuo
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huijie Yang
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chao Wei
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
16
|
Delfani S, Mohabati Mobarez A, Imani Fooladi AA, Amani J, Emaneini M. Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate. Med Microbiol Immunol 2016; 205:47-55. [PMID: 26155981 DOI: 10.1007/s00430-015-0425-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus is one of the most important causes of nosocomial infections. An effective vaccine to prevent S. aureus infections is urgently required due to the dramatic increase in the number of antibiotic-resistant strains. In this report, we evaluated a newly recombinant protein composed of selected antigenic regions of clumping factor A (ClfA), iron surface determinant B (IsdB) and gamma hemolysin B (HlgB) of S. aureus and sequence coding for hydrophobic linkers between three domains. The recombinant gene was constructed in pET-28a (+) and expressed in Escherichia coli BL21. In addition, sequence coding for a His(6)-tag was added followed by a hybrid procedure of nickel chelate protein purification. Immunization of BALB/c mice with the recombinant protein ClfA-IsdB-Hlg evoked antigen-specific antibodies that could opsonize S. aureus cells, enhancing in vitro phagocytosis by macrophages. Vaccination with the recombinant protein also reduced the bacterial load recovered from mice spleen samples and increased survival following the intraperitoneal challenge with pathogenic S. aureus compared to the control mice. Our results showed that the recombinant protein ClfA-IsdB-Hlg is a promising vaccine candidate for the prevention of S. aureus bacteremia infections.
Collapse
Affiliation(s)
- Somayeh Delfani
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14111-115, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14111-115, Tehran, Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Vuong C, Yeh AJ, Cheung GYC, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs 2015; 25:73-93. [PMID: 26536498 DOI: 10.1517/13543784.2016.1109077] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries, a situation that calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. AREAS COVERED This review provides an overview of current investigational drugs and therapeutic antibodies against S. aureus in early clinical development (up to phase II clinical development). It includes a short description of the mechanism of action and a presentation of microbiological and clinical data. EXPERT OPINION Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and therapies, such as anti-virulence drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise.
Collapse
Affiliation(s)
- Cuong Vuong
- a Principal Scientist/Laboratory Head, Bacteriology , AiCuris GmbH & Co. KG, Friedrich-Ebert-Str. 475/Geb. 302, 42117 Wuppertal , Germany
| | - Anthony J Yeh
- b Post-baccalaureate IRTA, Laboratory of Bacteriology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Gordon Y C Cheung
- c Staff Scientist, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Michael Otto
- d Senior Investigator, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| |
Collapse
|
18
|
Irani V, Guy AJ, Andrew D, Beeson JG, Ramsland PA, Richards JS. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol Immunol 2015; 67:171-82. [DOI: 10.1016/j.molimm.2015.03.255] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
|
19
|
Yu S, Zhang H, Yao D, Liu W, Wang X, Chen X, Wei Y, Zhang Z, Wang J, Yu L, Sun H, Wu Z, Yu Y, Song B, Ma J, Tong C, Cui Y. Identification of CD4+ T-cell epitopes on iron-regulated surface determinant B of Staphylococcus aureus. Microb Pathog 2015; 89:108-13. [PMID: 26423555 DOI: 10.1016/j.micpath.2015.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 11/30/2022]
Abstract
Iron-regulated surface determinant B (IsdB) of Staphylococcus aureus (S. aureus) is a highly conserved surface protein that can induce protective CD4(+) T-cell immune response. A pivotal role of CD4(+) T-cells in effective immunity against S. aureus infection has been proved, but CD4(+) T-cell epitopes on the S. aureus IsdB have not been well identified. In this study, MHC binding assay was firstly used to predict CD4(+) T-cell epitopes on S. aureus IsdB protein, and six peptides were synthesized to validate the probable epitopes. Two novel IsdB CD4(+) T-cell epitopes, P1 (residues 159-178) and P4 (residues 287-306), were for the first time identified using CD4(+) T-cells obtained from IsdB-immunized C57BL/6 (H-2(b)) and BALB/c (H-2(d)) mice spleen based on cell proliferation and cytokines response. The results showed that P1 and P4 emulsified in Freund's adjuvant (FA) induced much higher cell proliferation compared with PBS emulsified in FA. CD4(+) T-cells stimulated with peptides P1 and P4 secreted significantly higher levels of IFN-γ and IL-17A. However, the level of the cytokine IL-4 almost remained unchanged, suggesting that P1 and P4 preferentially elicited polarized Th1-type responses. In addition, BALB/c mice just respond to P4 not P1, while C57BL/6 mice respond to P1 not P4, implying that epitope P1 and P4 were determined as H-2(b) and H-2(d) restricted epitope, respectively. Taken together, our data may provide an explanation of the IsdB-induced protection against S. aureus and highlight the possibility of developing the epitope-based vaccine against the S. aureus.
Collapse
Affiliation(s)
- Simiao Yu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Hua Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Di Yao
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Wei Liu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xintong Wang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xiaoting Chen
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yuhua Wei
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Zhenghai Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Jiannan Wang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liquan Yu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Hunan Sun
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Zhijun Wu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yongzhong Yu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Baifen Song
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Chunyu Tong
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yudong Cui
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| |
Collapse
|
20
|
Four-component Staphylococcus aureus vaccine 4C-staph enhances Fcγ receptor expression in neutrophils and monocytes and mitigates S. aureus infection in neutropenic mice. Infect Immun 2015; 83:3157-63. [PMID: 26015481 DOI: 10.1128/iai.00258-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug-resistant strains of Staphylococcus aureus underlines the need for a vaccine. Defining immune correlates of protection may support the design of an effective vaccine. We used a murine Staphylococcus aureus infection model, in which bacteria were inoculated in an air pouch generated on the back of the animal. Analysis of the air-pouch content in mice immunized or not with an adjuvanted multiantigen vaccine formulation, four-component S. aureus vaccine (4C-Staph), prior to infection allowed us to measure bacteria, cytokines, and 4C-Staph-specific antibodies and to analyze host immune cells recruited to the infection site. Immunization with 4C-Staph resulted in accumulation of antigen-specific antibodies in the pouch and mitigated the infection. Neutrophils were the most abundant cells in the pouch, and they showed the upregulation of Fcγ receptor (FcγR) following immunization with 4C-Staph. Reduction of the infection was also obtained in mice immunized with 4C-Staph and depleted of neutrophils; these mice showed an increase in monocytes and macrophages. Upregulation of the FcγR and the presence of antigen-specific antibodies induced by immunization with 4C-Staph may contribute to increase bacterial opsonophagocytosis. Protection in neutropenic mice indicated that an effective vaccine could activate alternative protection mechanisms compensating for neutropenia, a condition often occurring in S. aureus-infected patients.
Collapse
|
21
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
22
|
Delfani S, Imani Fooladi AA, Mobarez AM, Emaneini M, Amani J, Sedighian H. In silico analysis for identifying potential vaccine candidates against Staphylococcus aureus. Clin Exp Vaccine Res 2015; 4:99-106. [PMID: 25649548 PMCID: PMC4313115 DOI: 10.7774/cevr.2015.4.1.99] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
Purpose Staphylococcus aureus is one of the most important causes of nosocomial and community-acquired infections. The increasing incidence of multiple antibiotic-resistant S. aureus strains and the emergence of vancomycin resistant S. aureus strains have placed renewed interest on alternative means of prevention and control of infection. S. aureus produces a variety of virulence factors, so a multi-subunit vaccine will be more successful for preventing S. aureus infections than a mono-subunit vaccine. Materials and Methods We selected three important virulence factors of S. aureus, clumping factor A (ClfA), iron-regulated surface determinant (IsdB), and gamma hemolysin (Hlg) that are potential candidates for vaccine development. We designed synthetic genes encoding the clfA, isdB, and hlg and used bioinformatics tools to predict structure of the synthetic construct and its stabilities. VaxiJen analysis of the protein showed a high antigenicity. Linear and conformational B-cell epitopes were identified. Results The proteins encoded by these genes were useful as vaccine candidates against S. aureus infections. Conclusion In silico tools are highly suited to study, design, and evaluate vaccine strategies.
Collapse
Affiliation(s)
- Somayeh Delfani
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Scully IL, Liberator PA, Jansen KU, Anderson AS. Covering all the Bases: Preclinical Development of an Effective Staphylococcus aureus Vaccine. Front Immunol 2014; 5:109. [PMID: 24715889 PMCID: PMC3970019 DOI: 10.3389/fimmu.2014.00109] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/04/2014] [Indexed: 01/19/2023] Open
Abstract
A key aspect of the pathogenesis of the Gram positive bacterium Staphylococcus aureus is its ability to rapidly adapt to the host environment during the course of an infection. To successfully establish infection, the organism deploys a variety of survival and immune evasion strategies, ranging from the acquisition of essential nutrients and expression of adhesins, which promote colonization and survival, to the elaboration of virulence factors such as capsule, which aids host immune evasion. The ability of S. aureus to deploy different virulence factors must be taken into account for S. aureus vaccine design. Here, we present a strategy for designing an effective vaccine against S. aureus disease by evaluating vaccine candidate performance in multiple in vivo models targeted to mimic aspects of human disease, and by co-development of functional in vitro immunoassays that measure the neutralization of relevant S. aureus virulence factors.
Collapse
Affiliation(s)
- Ingrid L Scully
- Pfizer Vaccine Research and Development Unit , Pearl River, NY , USA
| | - Paul A Liberator
- Pfizer Vaccine Research and Development Unit , Pearl River, NY , USA
| | - Kathrin U Jansen
- Pfizer Vaccine Research and Development Unit , Pearl River, NY , USA
| | | |
Collapse
|
24
|
Broughan J, Anderson R, Anderson AS. Strategies for and advances in the development ofStaphylococcus aureusprophylactic vaccines. Expert Rev Vaccines 2014; 10:695-708. [DOI: 10.1586/erv.11.54] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Zorman JK, Esser M, Raedler M, Kreiswirth BN, Ala'Aldeen DAA, Kartsonis N, Smugar SS, Anderson AS, McNeely T, Arduino JM. Naturally occurring IgG antibody levels to the Staphylococcus aureus protein IsdB in humans. Hum Vaccin Immunother 2013; 9:1857-64. [PMID: 23778314 DOI: 10.4161/hv.25253] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is a well-recognized, clinically important cause of nosocomial infections, and as such, a vaccine to prevent S. aureus infections would be an important achievement. A Phase IIB/III study of V710, a vaccine containing iron-regulated surface determinant B (IsdB), demonstrated significant sero-conversion rates in cardiovascular surgery patients following a single pre-surgery immunization. However, the vaccine was not efficacious in preventing bacteremia or deep sternal wound infection post-surgery, thus raising the possibility that IsdB might not be available for immune recognition during infection. The purpose of the work described herein was to evaluate and quantify the naturally occurring anti-IsdB levels at baseline and over time during infection, to understand whether IsdB is expressed during a S. aureus infection in hospitalized non-vaccinated patients. We evaluated baseline and follow-up titers in 3 populations: (1) healthy subjects, (2) hospitalized patients with non-S. aureus infections, and (3) hospitalized patients with S. aureus infections. Baseline anti-IsdB levels generally overlapped between the 3 groups, but were highly variable within each group. In healthy subjects, baseline and follow-up levels were highly correlated (Spearman's rho = 0.93), and the geometric mean fold-rise (GMFR) in anti-IsdB levels between study entry and last value was 0.9-fold (95% confidence interval (CI): 0.8 to 1.0 ; p = 0.09), showing no trend over time. The convalescent GMFR in anti-IsdB levels from baseline was 1.7-fold (95% CI: 1.3 to 2.2, p = 0.0008) during S. aureus infection, significantly different from the 1.0-fold GMFR (95% CI: 0.9-1.2, p = 0.60) in non-S. aureus infection, p = 0.005. Additionally, S. aureus isolates (51) obtained from the hospitalized patient group expressed the IsdB protein in vitro. Collectively, these data suggest that IsdB expression levels rise substantially following infection with S. aureus, but not with other pathogens, and IsdB is likely well-conserved across S. aureus strains.
Collapse
|
26
|
Jansen KU, Girgenti DQ, Scully IL, Anderson AS. Vaccine review: "Staphyloccocus aureus vaccines: problems and prospects". Vaccine 2013; 31:2723-30. [PMID: 23624095 DOI: 10.1016/j.vaccine.2013.04.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is a leading cause of both healthcare- and community-associated infections globally. S. aureus exhibits diverse clinical presentations, ranging from benign carriage and superficial skin and soft tissue infections to deep wound and organ/space infections, biofilm-related prosthesis infections, life-threatening bacteremia and sepsis. This broad clinical spectrum, together with the high incidence of these disease manifestations and magnitude of the diverse populations at risk, presents a high unmet medical need and a substantial burden to the healthcare system. With the increasing propensity of S. aureus to develop resistance to essentially all classes of antibiotics, alternative strategies, such as prophylactic vaccination to prevent S. aureus infections, are actively being pursued in healthcare settings. Within the last decade, the S. aureus vaccine field has witnessed two major vaccine failures in phase 3 clinical trials designed to prevent S. aureus infections in either patients undergoing cardiothoracic surgery or patients with end-stage renal disease undergoing hemodialysis. This review summarizes the potential underlying reasons why these two approaches may have failed, and proposes avenues that may provide successful vaccine approaches to prevent S. aureus disease in the future.
Collapse
|
27
|
Towne V, Zhao Q, Brown M, Finnefrock AC. Pairwise antibody footprinting using surface plasmon resonance technology to characterize human papillomavirus type 16 virus-like particles with direct anti-HPV antibody immobilization. J Immunol Methods 2012; 388:1-7. [PMID: 23159495 DOI: 10.1016/j.jim.2012.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 10/28/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
This paper describes an approach to surface plasmon resonance (SPR) based epitope mapping, also referred to as pairwise antibody footprinting, involving the direct immobilization of an antigen-specific primary mAb to the surface of an SPR interface. This technique offers a more straightforward approach than indirect capture (e.g., via rabbit anti-mouse Fc) as it does not require additional steps to block the unoccupied immobilized anti-Fc to prevent non-specific antibody binding. This is also an alternative to the direct immobilization of an antigen of interest, which may cause conformational changes in the antigen or epitope degradation upon chemical immobilization, particularly in successive regeneration cycles. It is particularly suitable for highly multivalent targets such as virus-like particles (VLPs). Using this technique, we assessed a panel of eight monoclonal antibodies against HPV (human papilloma virus) L1 protein VLPs expressed by Saccharomyces cerevisiae. In the antibody epitope screening studies, HPV16 L1-directed conformational mAbs were clearly distinguished from the linear mAbs and consistent with known epitope information. Additional studies using a linear mAb and a conformational mAb demonstrate the practical application of this technique for characterizing the result of process changes and the consistency of recombinant HPV16 VLPs. The method is readily extensible to other VLPs and VLP-based vaccines.
Collapse
Affiliation(s)
- Victoria Towne
- Vaccine Manufacturing Sciences and Commercialization, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | |
Collapse
|
28
|
Pancari G, Fan H, Smith S, Joshi A, Haimbach R, Clark D, Li Y, Hua J, McKelvey T, Ou Y, Drummond J, Cope L, Montgomery D, McNeely T. Characterization of the mechanism of protection mediated by CS-D7, a monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB). Front Cell Infect Microbiol 2012; 2:36. [PMID: 22919628 PMCID: PMC3417506 DOI: 10.3389/fcimb.2012.00036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/03/2012] [Indexed: 11/13/2022] Open
Abstract
We previously reported the development of a human monoclonal antibody (CS-D7, IgG1) with specificity and affinity for the iron regulated surface determinant B (IsdB) of Staphylococcus aureus. CS-D7 mediates opsonophagocytic killing in vitro and protection in a murine sepsis model. In light of recent data indicating that IsdB specific T cells (CD4+, Th17), not Ab, mediate protection after vaccination with IsdB, it is important to investigate the mechanism of protection mediated by CS-D7. The mAb was examined to determine if it blocked heme binding to IsdB in vitro. The mAb was not found to have heme blocking activity, nor did it prevent bacterial growth under in vivo conditions, in an implanted growth chamber. To assess the role of the mAb Fc a point mutation was introduced at aa 297 (CS-D7·N297A). This point mutation removes Fc effector functions. In vitro analysis of the mutein confirmed that it lacked measurable binding to FcγR, and that it did not fix complement. The mutein had dramatically reduced in vitro opsonic OP activity compared to CS-D7. Nonetheless, the mutein conferred protection equivalent to the wild type mAb in the murine sepsis model. Both wild type and mutein mAbs were efficacious in FcγR deletion mice (including both FcγRII−/− mice and FcγRIII−/− mice), indicating that these receptors were not essential for mAb mediated protection in vivo. Protection mediated by CS-D7 was lost in Balb/c mice depleted of C3 with cobra venom factor (CFV), was lost in mice depleted of superoxide dismutase (SOD) in P47phox deletion mice, and as previously reported, was absent in SCID mice (Joshi et al., 2012). Enhanced clearance of S. aureus in the liver of CS-D7 treated mice and enhanced production of IFN-γ, but not of IL17, may play a role in the mechanism of protection mediated by the mAb. CS-D7 apparently mediates survival in challenged mice through a mechanism involving complement, phagocytes, and lymphocytes, but which does not depend on interaction with FcγR, or on blocking heme uptake.
Collapse
Affiliation(s)
- Gregory Pancari
- Department of Vaccine Basic Research, Merck Research Labs, Merck/MSD, West Point PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
DeDent A, Kim HK, Missiakas D, Schneewind O. Exploring Staphylococcus aureus pathways to disease for vaccine development. Semin Immunopathol 2012; 34:317-33. [PMID: 22130613 PMCID: PMC3539746 DOI: 10.1007/s00281-011-0299-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is a commensal of the human skin or nares and a pathogen that frequently causes skin and soft tissue infections as well as bacteremia and sepsis. Recent efforts in understanding the molecular mechanisms of pathogenesis revealed key virulence strategies of S. aureus in host tissues: bacterial scavenging of iron, induction of coagulation pathways to promote staphylococcal agglutination in the vasculature, and suppression of innate and adaptive immune responses. Advances in all three areas have been explored for opportunities in vaccine design in an effort to identify the critical protective antigens of S. aureus. Human clinical trials with specific subunit vaccines have failed, yet provide important insights for the design of future trials that must address the current epidemic of S. aureus infections with drug-resistant isolates (MRSA, methicillin-resistant S. aureus).
Collapse
Affiliation(s)
- Andrea DeDent
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
30
|
Abstract
This review considers the reasons why the staphylococcal vaccine trials may have failed, based on new information about protective immunity against Staphylococcus aureus. The clinical trials and future vaccine candidate antigens are reviewed. Challenges facing the development of a universal S. aureus vaccine are also considered. The lack of a biomarker that is able to predict protection is a major stumbling block in the development of a staphylococcal vaccine. The major new information involves the role of cell-mediated immunity, specifically T-helper 17 cells and interleukin 17, as well as the lack of protection afforded by specific antibodies. This has major implications for future vaccine development and planning of clinical trials.
Collapse
Affiliation(s)
- Richard A Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health School, Madison, USA.
| |
Collapse
|
31
|
Joshi A, Pancari G, Cope L, Bowman EP, Cua D, Proctor RA, McNeely T. Immunization with Staphylococcus aureus iron regulated surface determinant B (IsdB) confers protection via Th17/IL17 pathway in a murine sepsis model. Hum Vaccin Immunother 2012; 8:336-46. [PMID: 22327491 PMCID: PMC3426080 DOI: 10.4161/hv.18946] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have previously shown that IsdB, a conserved protein expressed by Staphylococcus aureus, induces a robust antibody response which correlates with protection in a murine challenge model. Here we investigate the role of cellular immunity in IsdB mediated protection using lymphocyte deficient SCID mice. As opposed to WT CB-17 mice the CB-17 SCID mice were not protected against a lethal challenge of S. aureus after active and passive immunizations with IsdB. Adoptive transfer of in vitro isolated lymphocyte subsets revealed that reconstituting mice with IsdB specific CD3+ or CD4+ T-cells conferred antigen specific protection while CD8+ T-cells, CD19+ B-cells and plasma cells (CD138highB220intCD19lo) alone were not protective. A combination of CD3+ T-cells plus CD19+ B-cells conferred protection in CB-17 SCID mice, whereas bovine serum albumin (BSA) immune lymphocytes did not confer protection. Active immunization experiments indicated that IsdB immunized Jh mice (B-cell deficient) were protected against lethal challenge, while nude (T-cell deficient) mice were not. In vitro assays indicated that isolated IsdB specific splenocytes from immunized mice produced abundant IL-17A, much less IFN-γ and no detectable IL-4. IL-23 deficient mice were not protected from a lethal challenge by IsdB vaccination, pointing to a critical role for CD4+ Th17 in IsdB-mediated vaccination. Neutralizing IL-17A, but not IL-22 in vivo significantly increased mortality in IsdB immunized mice; whereas, neutralizing IFN-γ did not alter IsdB-mediated protection. These findings suggest that IL-17A producing Th17 cells play an essential role in IsdB vaccine-mediated defense against invasive S. aureus infection in mice.
Collapse
Affiliation(s)
- Amita Joshi
- Merck Research Labs, Merck and Co. Inc., West Point, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hurd AF, Garcia-Lara J, Rauter Y, Cartron M, Mohamed R, Foster SJ. The iron-regulated surface proteins IsdA,IsdB, and IsdH are not required for heme iron utilization in Staphylococcus aureus. FEMS Microbiol Lett 2012; 329:93-100. [DOI: 10.1111/j.1574-6968.2012.02502.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 01/29/2023] Open
Affiliation(s)
- Alexander F. Hurd
- Krebs Institute, Department of Molecular Biology and Biotechnology; University of Sheffield; Sheffield; UK
| | - Jorge Garcia-Lara
- Krebs Institute, Department of Molecular Biology and Biotechnology; University of Sheffield; Sheffield; UK
| | - Yvonne Rauter
- Krebs Institute, Department of Molecular Biology and Biotechnology; University of Sheffield; Sheffield; UK
| | - Michaël Cartron
- Krebs Institute, Department of Molecular Biology and Biotechnology; University of Sheffield; Sheffield; UK
| | - Ramlan Mohamed
- Krebs Institute, Department of Molecular Biology and Biotechnology; University of Sheffield; Sheffield; UK
| | - Simon J. Foster
- Krebs Institute, Department of Molecular Biology and Biotechnology; University of Sheffield; Sheffield; UK
| |
Collapse
|
33
|
Fighting bacterial infections—Future treatment options. Drug Resist Updat 2011; 14:125-39. [DOI: 10.1016/j.drup.2011.02.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 12/13/2022]
|
34
|
Bremel RD, Homan EJ. An integrated approach to epitope analysis II: A system for proteomic-scale prediction of immunological characteristics. Immunome Res 2010; 6:8. [PMID: 21044290 PMCID: PMC2991286 DOI: 10.1186/1745-7580-6-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/02/2010] [Indexed: 11/25/2022] Open
Abstract
Background Improving our understanding of the immune response is fundamental to developing strategies to combat a wide range of diseases. We describe an integrated epitope analysis system which is based on principal component analysis of sequences of amino acids, using a multilayer perceptron neural net to conduct QSAR regression predictions for peptide binding affinities to 35 MHC-I and 14 MHC-II alleles. Results The approach described allows rapid processing of single proteins, entire proteomes or subsets thereof, as well as multiple strains of the same organism. It enables consideration of the interface of diversity of both microorganisms and of host immunogenetics. Patterns of binding affinity are linked to topological features, such as extracellular or intramembrane location, and integrated into a graphical display which facilitates conceptual understanding of the interplay of B-cell and T-cell mediated immunity. Patterns which emerge from application of this approach include the correlations between peptides showing high affinity binding to MHC-I and to MHC-II, and also with predicted B-cell epitopes. These are characterized as coincident epitope groups (CEGs). Also evident are long range patterns across proteins which identify regions of high affinity binding for a permuted population of diverse and heterozygous HLA alleles, as well as subtle differences in reactions with MHCs of individual HLA alleles, which may be important in disease susceptibility, and in vaccine and clinical trial design. Comparisons are shown of predicted epitope mapping derived from application of the QSAR approach with experimentally derived epitope maps from a diverse multi-species dataset, from Staphylococcus aureus, and from vaccinia virus. Conclusions A desktop application with interactive graphic capability is shown to be a useful platform for development of prediction and visualization tools for epitope mapping at scales ranging from individual proteins to proteomes from multiple strains of an organism. The possible functional implications of the patterns of peptide epitopes observed are discussed, including their implications for B-cell and T-cell cooperation and cross presentation.
Collapse
Affiliation(s)
- Robert D Bremel
- 1ioGenetics LLC, 3591 Anderson Street, Madison, WI 53704, USA.
| | | |
Collapse
|