1
|
Li H, Liu Y, Wang D, Wang YH, Sheng RC, Kong ZQ, Klosterman SJ, Chen JY, Subbarao KV, Chen FM, Zhang DD. The 24-kDa subunit of mitochondrial complex I regulates growth, microsclerotia development, stress tolerance, and virulence in Verticillium dahliae. BMC Biol 2024; 22:289. [PMID: 39696205 DOI: 10.1186/s12915-024-02084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The complete mitochondrial respiratory chain is a precondition for maintaining cellular energy supply, development, and metabolic balance. Due to the evolutionary differentiation of complexes and the semi-autonomy of mitochondria, respiratory chain subunits have become critical targets for crop improvement and fungal control. In fungi, mitochondrial complex I mediates growth and metabolism. However, the role of this complex in the pathogenesis of phytopathogenic fungi is largely unknown. RESULTS In this study, we identified the NADH: ubiquinone oxidoreductase 24-kDa subunit (VdNuo1) of complex in vascular wilt pathogen, Verticillium dahliae, and examined its functional conservation in phytopathogenic fungi. Based on the treatments with respiratory chain inhibitors, the mitochondria-localized VdNuo1 was confirmed to regulate mitochondrial morphogenesis and homeostasis. VdNuo1 was induced during the different developmental stages in V. dahliae, including hyphal growth, conidiation, and melanized microsclerotia development. The VdNuo1 mutants displayed variable sensitivity to stress factors and decreased pathogenicity in multiple hosts, indicating that VdNuo1 is necessary in stress tolerance and full virulence. Comparative transcriptome analysis demonstrated that VdNuo1 mediates global transcriptional effects, including oxidation and reduction processes, fatty acid, sugar, and energy metabolism. These defects are partly attributed to impairments of mitochondrial morphological integrity, complex assembly, and related functions. Its homologue (CgNuo1) functions in the vegetative growth, melanin biosynthesis, and pathogenicity of Colletotrichum gloeosporioides; however, CgNuo1 does not restore the VdNuo1 mutant to normal phenotypes. CONCLUSIONS Our results revealed that VdNuo1 plays important roles in growth, metabolism, microsclerotia development, stress tolerance, and virulence of V. dahliae, sharing novel insight into the function of complex I and a potential fungicide target for pathogenic fungi.
Collapse
Affiliation(s)
- Huan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ying Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ya-Hong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ruo-Cheng Sheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o Sam Farr United States Crop Improvement and Protection Research Center, University of California, Davis, Salinas, CA, USA.
| | - Feng-Mao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
2
|
Kors S, Schuster M, Maddison DC, Kilaru S, Schrader TA, Costello JL, Islinger M, Smith GA, Schrader M. New insights into the functions of ACBD4/5-like proteins using a combined phylogenetic and experimental approach across model organisms. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119843. [PMID: 39271061 DOI: 10.1016/j.bbamcr.2024.119843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
Acyl-CoA binding domain-containing proteins (ACBDs) perform diverse but often uncharacterised functions linked to cellular lipid metabolism. Human ACBD4 and ACBD5 are closely related peroxisomal membrane proteins, involved in tethering of peroxisomes to the ER and capturing fatty acids for peroxisomal β-oxidation. ACBD5 deficiency causes neurological abnormalities including ataxia and white matter disease. Peroxisome-ER contacts depend on an ACBD4/5-FFAT motif, which interacts with ER-resident VAP proteins. As ACBD4/5-like proteins are present in most fungi and all animals, we combined phylogenetic analyses with experimental approaches to improve understanding of their evolution and functions. Notably, all vertebrates exhibit gene sequences for both ACBD4 and ACBD5, while invertebrates and fungi possess only a single ACBD4/5-like protein. Our analyses revealed alterations in domain structure and FFAT sequences, which help understanding functional diversification of ACBD4/5-like proteins. We show that the Drosophila melanogaster ACBD4/5-like protein possesses a functional FFAT motif to tether peroxisomes to the ER via Dm_Vap33. Depletion of Dm_Acbd4/5 caused peroxisome redistribution in wing neurons and reduced life expectancy. In contrast, the ACBD4/5-like protein of the filamentous fungus Ustilago maydis lacks a FFAT motif and does not interact with Um_Vap33. Loss of Um_Acbd4/5 resulted in an accumulation of peroxisomes and early endosomes at the hyphal tip. Moreover, lipid droplet numbers increased, and mitochondrial membrane potential declined, implying altered lipid homeostasis. Our findings reveal differences between tethering and metabolic functions of ACBD4/5-like proteins across evolution, improving our understanding of ACBD4/5 function in health and disease. The need for a unifying nomenclature for ACBD proteins is discussed.
Collapse
Affiliation(s)
- Suzan Kors
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Martin Schuster
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daniel C Maddison
- School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Sreedhar Kilaru
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Tina A Schrader
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Joseph L Costello
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gaynor A Smith
- School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Michael Schrader
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
McCotter SW, Kretschmer M, Lee CWJ, Heimel K, Kronstad JW. The Monothiol Glutaredoxin Grx4 Influences Iron Homeostasis and Virulence in Ustilago maydis. J Fungi (Basel) 2023; 9:1112. [PMID: 37998917 PMCID: PMC10672361 DOI: 10.3390/jof9111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The corn smut fungus, Ustilago maydis, is an excellent model for studying biotrophic plant-pathogen interactions, including nutritional adaptation to the host environment. Iron acquisition during host colonization is a key aspect of microbial pathogenesis yet less is known about this process for fungal pathogens of plants. Monothiol glutaredoxins are central regulators of key cellular functions in fungi, including iron homeostasis, cell wall integrity, and redox status via interactions with transcription factors, iron-sulfur clusters, and glutathione. In this study, the roles of the monothiol glutaredoxin Grx4 in the biology of U. maydis were investigated by constructing strains expressing a conditional allele of grx4 under the control of the arabinose-inducible, glucose-repressible promoter Pcrg1. The use of conditional expression was necessary because Grx4 appeared to be essential for U. maydis. Transcriptome and genetic analyses with strains depleted in Grx4 revealed that the protein participates in the regulation of iron acquisition functions and is necessary for the ability of U. maydis to cause disease on maize seedlings. Taken together, this study supports the growing appreciation of monothiol glutaredoxins as key regulators of virulence-related phenotypes in pathogenic fungi.
Collapse
Affiliation(s)
- Sean W. McCotter
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 301-2185 East Mall, Vancouver, BC V6T 1Z4, Canada; (S.W.M.); (M.K.); (C.W.J.L.)
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 301-2185 East Mall, Vancouver, BC V6T 1Z4, Canada; (S.W.M.); (M.K.); (C.W.J.L.)
| | - Christopher W. J. Lee
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 301-2185 East Mall, Vancouver, BC V6T 1Z4, Canada; (S.W.M.); (M.K.); (C.W.J.L.)
| | - Kai Heimel
- Institute of Microbiology and Genetics, Department of Microbial Cell Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 301-2185 East Mall, Vancouver, BC V6T 1Z4, Canada; (S.W.M.); (M.K.); (C.W.J.L.)
| |
Collapse
|
4
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
5
|
Ianiri G, LeibundGut-Landmann S, Dawson TL. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annu Rev Microbiol 2022; 76:757-782. [PMID: 36075093 DOI: 10.1146/annurev-micro-040820-010114] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identified in the late nineteenth century as a single species residing on human skin, Malassezia is now recognized as a diverse genus comprising 18 species inhabiting not only skin but human gut, hospital environments, and even deep-sea sponges. All cultivated Malassezia species are lipid dependent, having lost genes for lipid synthesis and carbohydrate metabolism. The surging interest in Malassezia results from development of tools to improve sampling, culture, identification, and genetic engineering, which has led to findings implicating it in numerous skin diseases, Crohn disease, and pancreatic cancer. However, it has become clear that Malassezia plays a multifaceted role in human health, with mutualistic activity in atopic dermatitis and a preventive effect against other skin infections due to its potential to compete with skin pathogens such as Candida auris. Improved understanding of complex microbe-microbe and host-microbe interactions will be required to define Malassezia's role in human and animal health and disease so as to design targeted interventions.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental, and Food Sciences, University of Molise, Campobasso, Italy
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Faculty of Vetsuisse, and Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; .,Department of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
6
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
7
|
Mattila H, Österman-Udd J, Mali T, Lundell T. Basidiomycota Fungi and ROS: Genomic Perspective on Key Enzymes Involved in Generation and Mitigation of Reactive Oxygen Species. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:837605. [PMID: 37746164 PMCID: PMC10512322 DOI: 10.3389/ffunb.2022.837605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Our review includes a genomic survey of a multitude of reactive oxygen species (ROS) related intra- and extracellular enzymes and proteins among fungi of Basidiomycota, following their taxonomic classification within the systematic classes and orders, and focusing on different fungal lifestyles (saprobic, symbiotic, pathogenic). Intra- and extracellular ROS metabolism-involved enzymes (49 different protein families, summing 4170 protein models) were searched as protein encoding genes among 63 genomes selected according to current taxonomy. Extracellular and intracellular ROS metabolism and mechanisms in Basidiomycota are illustrated in detail. In brief, it may be concluded that differences between the set of extracellular enzymes activated by ROS, especially by H2O2, and involved in generation of H2O2, follow the differences in fungal lifestyles. The wood and plant biomass degrading white-rot fungi and the litter-decomposing species of Agaricomycetes contain the highest counts for genes encoding various extracellular peroxidases, mono- and peroxygenases, and oxidases. These findings further confirm the necessity of the multigene families of various extracellular oxidoreductases for efficient and complete degradation of wood lignocelluloses by fungi. High variations in the sizes of the extracellular ROS-involved gene families were found, however, among species with mycorrhizal symbiotic lifestyle. In addition, there are some differences among the sets of intracellular thiol-mediation involving proteins, and existence of enzyme mechanisms for quenching of intracellular H2O2 and ROS. In animal- and plant-pathogenic species, extracellular ROS enzymes are absent or rare. In these fungi, intracellular peroxidases are seemingly in minor role than in the independent saprobic, filamentous species of Basidiomycota. Noteworthy is that our genomic survey and review of the literature point to that there are differences both in generation of extracellular ROS as well as in mechanisms of response to oxidative stress and mitigation of ROS between fungi of Basidiomycota and Ascomycota.
Collapse
Affiliation(s)
| | | | | | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Wu B, Cox MP. Comparative genomics reveals a core gene toolbox for lifestyle transitions in Hypocreales fungi. Environ Microbiol 2021; 23:3251-3264. [PMID: 33939870 PMCID: PMC8360070 DOI: 10.1111/1462-2920.15554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Fungi have evolved diverse lifestyles and adopted pivotal new roles in both natural ecosystems and human environments. However, the molecular mechanisms underlying their adaptation to new lifestyles are obscure. Here, we hypothesize that genes shared across all species with the same lifestyle, but absent in genera with alternative lifestyles, are crucial to that lifestyle. By analysing dozens of species within four genera in a fungal order, with each genus following a different lifestyle, we find that genus-specific genes are typically few in number. Notably, not all genus-specific genes appear to derive from de novo birth, with most instead reflecting recurrent loss across the fungi. Importantly, however, a subset of these genus-specific genes are shared by fungi with the same lifestyle in quite different evolutionary orders, thus supporting the view that some genus-specific genes are necessary for specific lifestyles. These lifestyle-specific genes are enriched for key functional classes and often exhibit specialized expression patterns. Genus-specific selection also contributes to lifestyle transitions, and is especially associated with intensity of pathogenesis. Our study, therefore, suggests that fungal adaptation to new lifestyles often requires just a small number of core genes, with gene turnover and positive selection playing complementary roles.
Collapse
Affiliation(s)
- Baojun Wu
- Statistics and Bioinformatics Group, School of Fundamental SciencesMassey UniversityPalmerston North4410New Zealand
- Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| | - Murray P. Cox
- Statistics and Bioinformatics Group, School of Fundamental SciencesMassey UniversityPalmerston North4410New Zealand
- Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| |
Collapse
|
9
|
Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front Microbiol 2021; 12:670135. [PMID: 34122383 PMCID: PMC8192705 DOI: 10.3389/fmicb.2021.670135] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Phytopathogenic fungi decrease crop yield and quality and cause huge losses in agricultural production. To prevent the occurrence of crop diseases and insect pests, farmers have to use many synthetic chemical pesticides. The extensive use of these pesticides has resulted in a series of environmental and ecological problems, such as the increase in resistant weed populations, soil compaction, and water pollution, which seriously affect the sustainable development of agriculture. This review discusses the main advances in research on plant-pathogenic fungi in terms of their pathogenic factors such as cell wall-degrading enzymes, toxins, growth regulators, effector proteins, and fungal viruses, as well as their application as biocontrol agents for plant pests, diseases, and weeds. Finally, further studies on plant-pathogenic fungal resources with better biocontrol effects can help find new beneficial microbial resources that can control diseases.
Collapse
Affiliation(s)
- Yan Peng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shi J Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, Schools of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yong Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jian P Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - An J Gao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jing J Ruan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Bing L Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Tong Y, Wu H, Liu Z, Wang Z, Huang B. G-Protein Subunit Gα i in Mitochondria, MrGPA1, Affects Conidiation, Stress Resistance, and Virulence of Entomopathogenic Fungus Metarhizium robertsii. Front Microbiol 2020; 11:1251. [PMID: 32612588 PMCID: PMC7309505 DOI: 10.3389/fmicb.2020.01251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
G proteins are critical modulators or transducers in various transmembrane signaling systems. They play key roles in numerous biological processes in fungi, including vegetative growth, development of infection-related structures, asexual conidiation, and virulence. However, functions of G proteins in entomopathogenic fungi remain unclear. Here, we characterized the roles of MrGPA1, a G-protein subunit Gαi, in conidiation, stress resistance, and virulence in Metarhizium robertsii. MrGPA1 was localized in the mitochondria. MrGpa1 deletion resulted in a significant reduction (47%) in the conidiation capacity, and reduced expression of several key conidiation-related genes, including fluG, flbD, brlA, wetA, phiA, and stuA. Further, MrGpa1 disruption resulted in decreased fungal sensitivity to UV irradiation and thermal stress, as determined based on conidial germination of ΔMrGpa1 and wild-type (WT) strains. Chemical stress analysis indicated that MrGpa1 contributes to fungal antioxidant capacity and cell wall integrity, but is not involved in tolerance to antifungal drug and osmotic stress. Importantly, insect bioassays involving (topical inoculation and injection) of Galleria mellonella larvae revealed decreased virulence of ΔMrGpa1 strain after cuticle infection. This was accompanied by decreased rates of appressorium formation and reduced expression of several cuticle penetration-related genes. Further assays showed that MrGpa1 regulated intracellular cyclic AMP (cAMP) levels, but feeding with cAMP could not recover the appressorium formation rate of ΔMrGpa1. These observations suggest that MrGpa1 contributes to the regulation of conidiation, UV irradiation, thermal stress response, antioxidant capacity, and cell wall integrity in M. robertsii. This gene is also involved in insect cuticle penetration during infection. These findings raise the possibility of designing powerful strategies for genetic improvement of M. robertsii conidiation capacity and virulence for killing pests.
Collapse
Affiliation(s)
- Youmin Tong
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Hao Wu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Zhenbang Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhangxun Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Xu X, Cao X, Yang J, Chen L, Liu B, Liu T, Jin Q. Proteome-Wide Identification of Lysine Propionylation in the Conidial and Mycelial Stages of Trichophyton rubrum. Front Microbiol 2019; 10:2613. [PMID: 31798556 PMCID: PMC6861857 DOI: 10.3389/fmicb.2019.02613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 01/05/2023] Open
Abstract
Posttranslational modifications (PTMs) exist in a wide variety of organisms and play key roles in regulating various essential biological processes. Lysine propionylation is a newly discovered PTM that has rarely been identified in fungi. Trichophyton rubrum (T. rubrum) is one of the most common fungal pathogens in the world and has been studied as an important model organism of anthropic pathogenic filamentous fungi. In this study, we performed a proteome-wide propionylation analysis in the conidial and mycelial stages of T. rubrum. A total of 157 propionylated sites on 115 proteins were identified, and the high confidence of propionylation identification was validated by parallel reaction monitoring (PRM) assay. The results show that the propionylated proteins were mostly involved in various metabolic pathways. Histones and 15 pathogenicity-related proteins were also targets for propionylation modification, suggesting their roles in epigenetic regulation and pathogenicity. A comparison of the conidial and mycelial stages revealed that most propionylated proteins and sites were growth-stage specific and independent of protein abundance. Based on the function classifications, the propionylated proteins had a similar distribution in both stages; however, some differences were also identified. Furthermore, our results show that the concentration of propionyl-CoA had a significant influence on the propionylation level. In addition to the acetylation, succinylation and propionylation identified in T. rubrum, 26 other PTMs were also found to exist in this fungus. Overall, our study provides the first global propionylation profile of a pathogenic fungus. These results would be a foundation for further research on the regulation mechanism of propionylation in T. rubrum, which will enhance our understanding of the physiological features of T. rubrum and provide some clues for the exploration of improved therapies to treat this medically important fungus.
Collapse
Affiliation(s)
- Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingwei Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Simaan H, Shalaby S, Hatoel M, Karinski O, Goldshmidt-Tran O, Horwitz BA. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Curr Genet 2019; 66:187-203. [PMID: 31312934 DOI: 10.1007/s00294-019-01012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Samer Shalaby
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.,Rockefeller University, New York, NY, 10065, USA
| | - Maor Hatoel
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Olga Karinski
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
13
|
Schmitz L, McCotter S, Kretschmer M, Kronstad JW, Heimel K. Transcripts and tumors: regulatory and metabolic programming during biotrophic phytopathogenesis. F1000Res 2018; 7. [PMID: 30519451 PMCID: PMC6248262 DOI: 10.12688/f1000research.16404.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 01/05/2023] Open
Abstract
Biotrophic fungal pathogens of plants must sense and adapt to the host environment to complete their life cycles. Recent transcriptome studies of the infection of maize by the biotrophic pathogen
Ustilago maydis are providing molecular insights into an ordered program of changes in gene expression and the deployment of effectors as well as key features of nutrient acquisition. In particular, the transcriptome data provide a deeper appreciation of the complexity of the transcription factor network that controls the biotrophic program of invasion, proliferation, and sporulation. Additionally, transcriptome analysis during tumor formation, a key late stage in the life cycle, revealed features of the remodeling of host and pathogen metabolism that may support the formation of tremendous numbers of spores. Transcriptome studies are also appearing for other smut species during interactions with their hosts, thereby providing opportunities for comparative approaches to understand biotrophic adaptation.
Collapse
Affiliation(s)
- Lara Schmitz
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University-Göttingen, Göttingen, Lower Saxony, D-37077, Germany
| | - Sean McCotter
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Kai Heimel
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University-Göttingen, Göttingen, Lower Saxony, D-37077, Germany
| |
Collapse
|
14
|
Krombach S, Reissmann S, Kreibich S, Bochen F, Kahmann R. Virulence function of the Ustilago maydis sterol carrier protein 2. THE NEW PHYTOLOGIST 2018; 220:553-566. [PMID: 29897130 DOI: 10.1111/nph.15268] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 05/06/2023]
Abstract
The peroxisomal sterol carrier protein 2 (Scp2) of the biotrophic maize pathogen Ustilago maydis was detected in apoplastic fluid, suggesting that it might function as a secreted effector protein. Here we analyze the role of the scp2 gene during plant colonization. We used reverse genetics approaches to delete the scp2 gene, determined stress sensitivity and fatty acid utilization of mutants, demonstrated secretion of Scp2, used quantitative reverse transcription polymerase chain reaction for expression analysis and expressed GFP-Scp2 fusion proteins for protein localization. scp2 mutants were strongly attenuated in virulence and this defect manifested itself during penetration. Scp2 localized to peroxisomes and peroxisomal targeting was necessary for its virulence function. Deletion of scp2 in U. maydis interfered neither with growth nor with peroxisomal β-oxidation. Conventionally secreted Scp2 protein could not rescue the virulence defect. scp2 mutants displayed an altered localization of peroxisomes. Our results show a virulence function for Scp2 during penetration that is probably carried out by Scp2 in peroxisomes. We speculate that Scp2 affects the lipid composition of membranes and in this way ensures the even cellular distribution of peroxisomes.
Collapse
Affiliation(s)
- Sina Krombach
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Stefanie Reissmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Saskia Kreibich
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Florian Bochen
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| |
Collapse
|
15
|
Schweizer G, Münch K, Mannhaupt G, Schirawski J, Kahmann R, Dutheil JY. Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum. Genome Biol Evol 2018; 10:629-645. [PMID: 29390140 PMCID: PMC5811872 DOI: 10.1093/gbe/evy023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Plants and fungi display a broad range of interactions in natural and agricultural ecosystems ranging from symbiosis to parasitism. These ecological interactions result in coevolution between genes belonging to different partners. A well-understood example is secreted fungal effector proteins and their host targets, which play an important role in pathogenic interactions. Biotrophic smut fungi (Basidiomycota) are well-suited to investigate the evolution of plant pathogens, because several reference genomes and genetic tools are available for these species. Here, we used the genomes of Sporisorium reilianum f. sp. zeae and S. reilianum f. sp. reilianum, two closely related formae speciales infecting maize and sorghum, respectively, together with the genomes of Ustilago hordei, Ustilago maydis, and Sporisorium scitamineum to identify and characterize genes displaying signatures of positive selection. We identified 154 gene families having undergone positive selection during species divergence in at least one lineage, among which 77% were identified in the two investigated formae speciales of S. reilianum. Remarkably, only 29% of positively selected genes encode predicted secreted proteins. We assessed the contribution to virulence of nine of these candidate effector genes in S. reilianum f. sp. zeae by deleting individual genes, including a homologue of the effector gene pit2 previously characterized in U. maydis. Only the pit2 deletion mutant was found to be strongly reduced in virulence. Additional experiments are required to understand the molecular mechanisms underlying the selection forces acting on the other candidate effector genes, as well as the large fraction of positively selected genes encoding predicted cytoplasmic proteins.
Collapse
Affiliation(s)
- Gabriel Schweizer
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Karin Münch
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gertrud Mannhaupt
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan Schirawski
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen, Aachen, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Julien Y Dutheil
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Institute of Evolutionary Sciences of Montpellier, “Genome” Department, CNRS, University of Montpellier 2, France
- Research Group Molecular Systems Evolution, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
16
|
Kretschmer M, Lambie S, Croll D, Kronstad JW. Acetate provokes mitochondrial stress and cell death in Ustilago maydis. Mol Microbiol 2018; 107:488-507. [PMID: 29235175 DOI: 10.1111/mmi.13894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The fungal pathogen Ustilago maydis causes disease on maize by mating to establish an infectious filamentous cell type that invades the host and induces tumours. We previously found that β-oxidation mutants were defective in virulence and did not grow on acetate. Here, we demonstrate that acetate inhibits filamentation during mating and in response to oleic acid. We therefore examined the influence of different carbon sources by comparing the transcriptomes of cells grown on acetate, oleic acid or glucose, with expression changes for the fungus during tumour formation in planta. Guided by the transcriptional profiling, we found that acetate negatively influenced resistance to stress, promoted the formation of reactive oxygen species, triggered cell death in stationary phase and impaired virulence on maize. We also found that acetate induced mitochondrial stress by interfering with mitochondrial functions. Notably, the disruption of oxygen perception or inhibition of the electron transport chain also influenced filamentation and mating. Finally, we made use of the connections between acetate and β-oxidation to test metabolic inhibitors for an influence on growth and virulence. These experiments identified diclofenac as a potential inhibitor of virulence. Overall, these findings support the possibility of targeting mitochondrial metabolic functions to control fungal pathogens.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Scott Lambie
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Croll
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
17
|
Freitag J, Stehlik T, Stiebler AC, Bölker M. The Obvious and the Hidden: Prediction and Function of Fungal Peroxisomal Matrix Proteins. Subcell Biochem 2018; 89:139-155. [PMID: 30378022 DOI: 10.1007/978-981-13-2233-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungal peroxisomes are characterized by a number of specific biological functions. To understand the physiology and biochemistry of these organelles knowledge of the proteome content is crucial. Here, we address different strategies to predict peroxisomal proteins by bioinformatics approaches. These tools range from simple text searches to network based learning strategies. A complication of this analysis is the existence of cryptic peroxisomal proteins, which are overlooked in conventional bioinformatics queries. These include proteins where targeting information results from transcriptional and posttranscriptional alterations. But also proteins with low efficiency targeting motifs that are predominantly localized in the cytosol, and proteins lacking any canonical targeting information, can play important roles within peroxisomes. Many of these proteins are so far unpredictable. Detection and characterization of these cryptic peroxisomal proteins revealed the presence of novel peroxisomal enzymatic reaction networks in fungi.
Collapse
Affiliation(s)
- Johannes Freitag
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Alina C Stiebler
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
18
|
Verma S, Shakya VPS, Idnurm A. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi. Virulence 2018; 9:426-446. [PMID: 29261004 PMCID: PMC5955198 DOI: 10.1080/21505594.2017.1414133] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are best known for their role in the production of ATP; however, recent research implicates other mitochondrial functions in the virulence of human pathogenic fungi. Inhibitors of mitochondrial succinate dehydrogenase or the electron transport chain are successfully used to combat plant pathogenic fungi, but similar inhibition of mitochondrial functions has not been pursued for applications in medical mycology. Advances in understanding mitochondrial function relevant to human pathogenic fungi are in four major directions: 1) the role of mitochondrial morphology in virulence, 2) mitochondrial genetics, with a focus on mitochondrial DNA recombination and mitochondrial inheritance 3) the role of mitochondria in drug resistance, and 4) the interaction of mitochondria with other organelles. Collectively, despite the similarities in mitochondrial functions between fungi and animals, this organelle is currently an under-explored potential target to treat medical mycoses. Future research could define and then exploit those mitochondrial components best suited as drug targets.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Viplendra P. S. Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Grice EA, Dawson TL. Host–microbe interactions: Malassezia and human skin. Curr Opin Microbiol 2017; 40:81-87. [DOI: 10.1016/j.mib.2017.10.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
|
20
|
Kretschmer M, Croll D, Kronstad JW. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation. MOLECULAR PLANT PATHOLOGY 2017; 18:1222-1237. [PMID: 27564861 PMCID: PMC6638311 DOI: 10.1111/mpp.12486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 05/03/2023]
Abstract
The ability of biotrophic fungi to metabolically adapt to the host environment is a critical factor in fungal diseases of crop plants. In this study, we analysed the transcriptome of maize tumours induced by Ustilago maydis to identify key features underlying metabolic shifts during disease. Among other metabolic changes, this analysis highlighted modifications during infection in the transcriptional regulation of carbohydrate allocation and starch metabolism. We confirmed the relevance of these changes by establishing that symptom development was altered in an id1 (indeterminate1) mutant that showed increased accumulation of sucrose as well as being defective in the vegetative to reproductive transition. We further established the relevance of specific metabolic functions related to carbohydrate allocation by assaying disease in su1 (sugary1) mutant plants with altered starch metabolism and in plants treated with glucose, sucrose and silver nitrate during infection. We propose that specific regulatory and metabolic changes influence the balance between susceptibility and resistance by altering carbon allocation to promote fungal growth or to influence plant defence. Taken together, these studies reveal key aspects of metabolism that are critical for biotrophic adaptation during the maize-U. maydis interaction.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Daniel Croll
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Present address:
Institute of Integrative BiologyETH Zürich8092 ZürichSwitzerland
| | - James W. Kronstad
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
21
|
Kretschmer M, Croll D, Kronstad JW. Chloroplast-associated metabolic functions influence the susceptibility of maize to Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2017; 18:1210-1221. [PMID: 27564650 PMCID: PMC6638283 DOI: 10.1111/mpp.12485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 05/10/2023]
Abstract
Biotrophic fungal pathogens must evade or suppress plant defence responses to establish a compatible interaction in living host tissue. In addition, metabolic changes during disease reflect both the impact of nutrient acquisition by the fungus to support proliferation and the integration of metabolism with the plant defence response. In this study, we used transcriptome analyses to predict that the chloroplast and associated functions are important for symptom formation by the biotrophic fungus Ustilago maydis on maize. We tested our prediction by examining the impact on disease of a genetic defect (whirly1) in chloroplast function. In addition, we examined whether disease was influenced by inhibition of glutamine synthetase by glufosinate (impacting amino acid biosynthesis) or inhibition of 3-phosphoshikimate 1-carboxyvinyltransferase by glyphosate (influencing secondary metabolism). All of these perturbations increased the severity of disease, thus suggesting a contribution to resistance. Overall, these findings provide a framework for understanding the components of host metabolism that benefit the plant versus the pathogen during a biotrophic interaction. They also reinforce the emerging importance of the chloroplast as a mediator of plant defence.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Daniel Croll
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Present address:
Institute of Integrative BiologyETH Zürich8092 ZürichSwitzerland
| | - James W. Kronstad
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
22
|
Gessler NN, Filippovich SY, Bachurina GP, Kharchenko EA, Groza NV, Belozerskaya TA. Oxylipins and oxylipin synthesis pathways in fungi. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
24
|
Lambie SC, Kretschmer M, Croll D, Haslam TM, Kunst L, Klose J, Kronstad JW. The putative phospholipase Lip2 counteracts oxidative damage and influences the virulence of Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2017; 18:210-221. [PMID: 26950180 PMCID: PMC6638309 DOI: 10.1111/mpp.12391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Ustilago maydis is an obligate biotrophic fungal pathogen which causes common smut disease of corn. To proliferate in host tissue, U. maydis must gain access to nutrients and overcome plant defence responses, such as the production of reactive oxygen species. The elucidation of the mechanisms by which U. maydis meets these challenges is critical for the development of strategies to combat smut disease. In this study, we focused on the contributions of phospholipases (PLs) to the pathogenesis of corn smut disease. We identified 11 genes encoding putative PLs and characterized the transcript levels for these genes in the fungus grown in culture and during infection of corn tissue. To assess the contributions of specific PLs, we focused on two genes, lip1 and lip2, which encode putative phospholipase A2 (PLA2 ) enzymes with similarity to platelet-activating factor acetylhydrolases. PLA2 enzymes are known to counteract oxidative damage to lipids in other organisms. Consistent with a role in the mitigation of oxidative damage, lip2 mutants were sensitive to oxidative stress provoked by hydrogen peroxide and by increased production of reactive oxygen species caused by inhibitors of mitochondrial functions. Importantly, mutants defective in lip2, but not lip1, were attenuated for virulence in corn seedlings. Finally, a comparative analysis of fatty acid and cardiolipin profiles in the wild-type strain and a lip2 mutant revealed differences consistent with a protective role for Lip2 in maintaining lipid homeostasis and mitochondrial health during proliferation in the hostile host environment.
Collapse
Affiliation(s)
- Scott C. Lambie
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouver V6T 1Z3BCCanada
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Matthias Kretschmer
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Daniel Croll
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
- Present address:
Institute of Integrative Biology, ETH Zürich8092 ZürichSwitzerland
| | - Tegan M. Haslam
- Department of BotanyUniversity of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Ljerka Kunst
- Department of BotanyUniversity of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Jana Klose
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouver V6T 1Z3BCCanada
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| | - James W. Kronstad
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouver V6T 1Z3BCCanada
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| |
Collapse
|
25
|
Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Appl Microbiol Biotechnol 2016; 100:9393-9405. [PMID: 27678117 DOI: 10.1007/s00253-016-7815-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 10/20/2022]
Abstract
Natural lipids can be used to make biodiesel and many other value-added compounds. In this work, we explored a number of different metabolic engineering strategies for increasing lipid production in the oleaginous yeast Rhodosporidium toruloides IFO0880. These included increasing the expression of enzymes involved in different aspects of lipid biosynthesis-malic enzyme (ME), pyruvate carboxylase (PYC1), glycerol-3-P dehydrogenase (GPD), and stearoyl-CoA desaturase (SCD)-and deleting the gene PEX10, required for peroxisome biogenesis. Only malic enzyme and stearoyl-CoA desaturase, when overexpressed, were found to significantly increase lipid production. Only stearoyl-CoA desaturase, when overexpressed, further increased lipid production in a strain previously engineered to overexpress acetyl-CoA carboxylase (ACC1) and diacylglycerol acyltransferase (DGA1). Our best strain produced 27.4 g/L lipid with an average productivity of 0.31 g/L/h during batch growth on glucose and 89.4 g/L lipid with an average productivity of 0.61 g/L/h during fed-batch growth on glucose. These results further establish R. toruloides as a platform organism for the production of lipids and potentially other lipid-derived compounds from sugars.
Collapse
|
26
|
Lakshman DK, Roberts DP, Garrett WM, Natarajan SS, Darwish O, Alkharouf N, Pain A, Khan F, Jambhulkar PP, Mitra A. Proteomic Investigation of Rhizoctonia solani AG 4 Identifies Secretome and Mycelial Proteins with Roles in Plant Cell Wall Degradation and Virulence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3101-3110. [PMID: 27019116 DOI: 10.1021/acs.jafc.5b05735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. This study used a proteomics approach to characterize both intracellular proteins and the secretome of R. solani AG 4 isolate Rs23A under several growth conditions, the secretome being highly important in pathogenesis. From over 500 total secretome and soluble intracellular protein spots from 2-D gels, 457 protein spots were analyzed and 318 proteins positively matched with fungal proteins of known function by comparison with available R. solani genome databases specific for anastomosis groups 1-IA, 1-IB, and 3. These proteins were categorized to possible cellular locations and functional groups and for some proteins their putative roles in plant cell wall degradation and virulence. The majority of the secreted proteins were grouped to extracellular regions and contain hydrolase activity.
Collapse
Affiliation(s)
- Dilip K Lakshman
- Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Daniel P Roberts
- Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Wesley M Garrett
- Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Savithiry S Natarajan
- Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | - Omar Darwish
- Computer and Information Sciences, Towson University , Towson, Maryland 21252, United States
| | - Nadim Alkharouf
- Computer and Information Sciences, Towson University , Towson, Maryland 21252, United States
| | - Arnab Pain
- Pathogen Genomics, KAUST , Thuwal, Saudi Arabia 23955
| | - Farooq Khan
- Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | | | - Amitava Mitra
- Department of Plant Pathology, University of Nebraska , Lincoln, Nebraska 68583, United States
| |
Collapse
|
27
|
Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis. Nat Commun 2015; 6:8137. [PMID: 26310111 PMCID: PMC4552083 DOI: 10.1038/ncomms9137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 07/22/2015] [Indexed: 12/12/2022] Open
Abstract
To support growth, tumour cells reprogramme their metabolism to simultaneously upregulate macromolecular biosynthesis while maintaining energy production. Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial respiration that is uncoupled from ATP synthesis, resulting in nutrient wasting. Here using a UCP3 transgene targeted to the basal epidermis, we show that forced mitochondrial uncoupling inhibits skin carcinogenesis by blocking Akt activation. Similarly, Akt activation is markedly inhibited in UCP3 overexpressing primary human keratinocytes. Mechanistic studies reveal that uncoupling increases fatty acid oxidation and membrane phospholipid catabolism, and impairs recruitment of Akt to the plasma membrane. Overexpression of Akt overcomes metabolic regulation by UCP3, rescuing carcinogenesis. These findings demonstrate that mitochondrial uncoupling is an effective strategy to limit proliferation and tumorigenesis through inhibition of Akt, and illuminate a novel mechanism of crosstalk between mitochondrial metabolism and growth signalling.
Collapse
|
28
|
Fan Y, Ortiz-Urquiza A, Garrett T, Pei Y, Keyhani NO. Involvement of a caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic filamentous fungus,Beauveria bassiana. Environ Microbiol 2015; 17:4600-14. [DOI: 10.1111/1462-2920.12990] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Yanhua Fan
- Biotechnology Research Center; Southwest University; Chongqing Beibei China
- Department of Microbiology and Cell Science; Institute of Food and Agricultural Sciences; University of Florida; Gainesville FL 32611 USA
| | - Almudena Ortiz-Urquiza
- Department of Microbiology and Cell Science; Institute of Food and Agricultural Sciences; University of Florida; Gainesville FL 32611 USA
| | - Timothy Garrett
- Department of Pathology, Immunology, and Laboratory Medicine; College of Medicine; University of Florida; Gainesville FL 32610 USA
| | - Yan Pei
- Biotechnology Research Center; Southwest University; Chongqing Beibei China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science; Institute of Food and Agricultural Sciences; University of Florida; Gainesville FL 32611 USA
| |
Collapse
|
29
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
30
|
Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:111-25. [DOI: 10.1016/j.bbamcr.2014.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022]
|
31
|
Are mitochondria the Achilles’ heel of the Kingdom Fungi? Curr Opin Microbiol 2014; 20:49-54. [DOI: 10.1016/j.mib.2014.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/03/2014] [Accepted: 05/02/2014] [Indexed: 01/17/2023]
|
32
|
Freitag J, Ast J, Linne U, Stehlik T, Martorana D, Bölker M, Sandrock B. Peroxisomes contribute to biosynthesis of extracellular glycolipids in fungi. Mol Microbiol 2014; 93:24-36. [DOI: 10.1111/mmi.12642] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Johannes Freitag
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
- Senckenberg Gesellschaft für Naturforschung; Cluster for Integrative Fungal Research; Georg-Voigt-Str. 14-16 60325 Frankfurt am Main Germany
| | - Julia Ast
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Uwe Linne
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Str. 2 35032 Marburg Germany
- SYNMIKRO; Philipps-Universität Marburg; Hans-Meerwein-Str. 35032 Marburg Germany
| | - Thorsten Stehlik
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Domenica Martorana
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Michael Bölker
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
- SYNMIKRO; Philipps-Universität Marburg; Hans-Meerwein-Str. 35032 Marburg Germany
- LOEWE Excellence Cluster for Integrative Fungal Research (IPF); Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Björn Sandrock
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| |
Collapse
|
33
|
Talhinhas P, Azinheira HG, Vieira B, Loureiro A, Tavares S, Batista D, Morin E, Petitot AS, Paulo OS, Poulain J, Da Silva C, Duplessis S, Silva MDC, Fernandez D. Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection. FRONTIERS IN PLANT SCIENCE 2014; 5:88. [PMID: 24672531 PMCID: PMC3953675 DOI: 10.3389/fpls.2014.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/24/2014] [Indexed: 05/06/2023]
Abstract
Hemileia vastatrix is the causal agent of coffee leaf rust, the most important disease of coffee Arabica. In this work, a 454-pyrosequencing transcriptome analysis of H. vastatrix germinating urediniospores (gU) and appressoria (Ap) was performed and compared to previously published in planta haustoria-rich (H) data. A total of 9234 transcripts were identified and annotated. Ca. 50% of these transcripts showed no significant homology to international databases. Only 784 sequences were shared by the three conditions, and 75% were exclusive of either gU (2146), Ap (1479) or H (3270). Relative transcript abundance and RT-qPCR analyses for a selection of genes indicated a particularly active metabolism, translational activity and production of new structures in the appressoria and intense signaling, transport, secretory activity and cellular multiplication in the germinating urediniospores, suggesting the onset of a plant-fungus dialogue as early as at the germ tube stage. Gene expression related to the production of carbohydrate-active enzymes and accumulation of glycerol in germinating urediniospores and appressoria suggests that combined lytic and physical mechanisms are involved in appressoria-mediated penetration. Besides contributing to the characterization of molecular processes leading to appressoria-mediated infection by rust fungi, these results point toward the identification of new H. vastatrix candidate virulence factors, with 516 genes predicted to encode secreted proteins.
Collapse
Affiliation(s)
- Pedro Talhinhas
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Helena G. Azinheira
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Bruno Vieira
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de LisboaLisboa, Portugal
| | - Andreia Loureiro
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Sílvia Tavares
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Dora Batista
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismesChampenoux, France
- Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismes, Faculté des Sciences et TechnologiesVandoeuvre-lès-Nancy, France
| | - Anne-Sophie Petitot
- Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux BioagresseursMontpellier, France
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de LisboaLisboa, Portugal
| | - Julie Poulain
- Genoscope, Centre National de Séquençage, Commissariat à l'Energie Atomique, Institut de GénomiqueEvry, France
| | - Corinne Da Silva
- Genoscope, Centre National de Séquençage, Commissariat à l'Energie Atomique, Institut de GénomiqueEvry, France
| | - Sébastien Duplessis
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismesChampenoux, France
- Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismes, Faculté des Sciences et TechnologiesVandoeuvre-lès-Nancy, France
| | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Diana Fernandez
- Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux BioagresseursMontpellier, France
| |
Collapse
|
34
|
Peraza-Reyes L, Berteaux-Lecellier V. Peroxisomes and sexual development in fungi. Front Physiol 2013; 4:244. [PMID: 24046747 PMCID: PMC3764329 DOI: 10.3389/fphys.2013.00244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are versatile and dynamic organelles that are essential for the development of most eukaryotic organisms. In fungi, many developmental processes, such as sexual development, require the activity of peroxisomes. Sexual reproduction in fungi involves the formation of meiotic-derived sexual spores, often takes place inside multicellular fruiting bodies and requires precise coordination between the differentiation of multiple cell types and the progression of karyogamy and meiosis. Different peroxisomal functions contribute to the orchestration of this complex developmental process. Peroxisomes are required to sustain the formation of fruiting bodies and the maturation and germination of sexual spores. They facilitate the mobilization of reserve compounds via fatty acid β-oxidation and the glyoxylate cycle, allowing the generation of energy and biosynthetic precursors. Additionally, peroxisomes are implicated in the progression of meiotic development. During meiotic development in Podospora anserina, there is a precise modulation of peroxisome assembly and dynamics. This modulation includes changes in peroxisome size, number and localization, and involves a differential activity of the protein-machinery that drives the import of proteins into peroxisomes. Furthermore, karyogamy, entry into meiosis and sorting of meiotic-derived nuclei into sexual spores all require the activity of peroxisomes. These processes rely on different peroxisomal functions and likely depend on different pathways for peroxisome assembly. Indeed, emerging studies support the existence of distinct import channels for peroxisomal proteins that contribute to different developmental stages.
Collapse
Affiliation(s)
- Leonardo Peraza-Reyes
- CNRS, Institut de Génétique et Microbiologie, University Paris-Sud, UMR8621 Orsay, France
| | | |
Collapse
|
35
|
Abstract
Peroxisomes are ubiquitous organelles of eukaryotic cells that accomplish a variety of biochemical functions, including β-oxidation of fatty acids, glyoxylate cycle, etc. Many reports have been accumulating that indicate peroxisome related metabolic functions are essential for pathogenic development of plant pathogenic fungi. They include peroxisome biogenesis proteins, peroxins and preferential destruction of peroxisomes, pexophagy. Gene disrupted mutants of anthracnose disease pathogen Colletotrichum orbiculare or rice blast pathogen Magnaporthe oryzae defective in peroxins or pexophagy showed deficiency in pathogenesis. Woronin body, a peroxisome related cellular organelle that is related to endurance of fungal cells against environmental damage has essential roles in pathogenesis of M. oryzae. Also, peroxisome related metabolisms such as β-oxidation and glyoxylate cycle are essential for pathogenesis in several plant pathogenic fungi. In addition, secondary metabolisms including polyketide melanin biosynthesis of C. orbiculare and M. oryzae, and host selective toxins produced by necrotrophic pathogen Alternaria alternata have pivotal roles in fungal pathogenesis. Every such factor was listed and their functions for pathogenesis were demonstrated (Table 18.1 and Fig. 18.1).
Collapse
|
36
|
Peroxisomal and mitochondrial β-oxidation pathways influence the virulence of the pathogenic fungus Cryptococcus neoformans. EUKARYOTIC CELL 2012; 11:1042-54. [PMID: 22707485 DOI: 10.1128/ec.00128-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An understanding of the connections between metabolism and elaboration of virulence factors during host colonization by the human-pathogenic fungus Cryptococcus neoformans is important for developing antifungal therapies. Lipids are abundant in host tissues, and fungal pathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. In addition, lipids are important signaling molecules in both fungi and mammals. In this report, we demonstrate that defects in the peroxisomal and mitochondrial β-oxidation pathways influence the growth of C. neoformans on fatty acids as well as the virulence of the fungus in a mouse inhalation model of cryptococcosis. Disease attenuation may be due to the cumulative influence of altered carbon source acquisition or processing, interference with secretion, changes in cell wall integrity, and an observed defect in capsule production for the peroxisomal mutant. Altered capsule elaboration in the context of a β-oxidation defect was unexpected but is particularly important because this trait is a major virulence factor for C. neoformans. Additionally, analysis of mutants in the peroxisomal pathway revealed a growth-promoting activity for C. neoformans, and subsequent work identified oleic acid and biotin as candidates for such factors. Overall, this study reveals that β-oxidation influences virulence in C. neoformans by multiple mechanisms that likely include contributions to carbon source acquisition and virulence factor elaboration.
Collapse
|