1
|
Renaud EA, Maupin AJM, Berry L, Bals J, Bordat Y, Demolombe V, Rofidal V, Vignols F, Besteiro S. The HCF101 protein is an important component of the cytosolic iron-sulfur synthesis pathway in Toxoplasma gondii. PLoS Biol 2025; 23:e3003028. [PMID: 39913537 PMCID: PMC11838916 DOI: 10.1371/journal.pbio.3003028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/19/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Several key cellular functions depend on proteins harboring an iron-sulfur (Fe-S) cofactor. As these Fe-S proteins localize to several subcellular compartments, they require a dedicated machinery for cofactor assembly. For instance, in plants and algae there are Fe-S cluster synthesis pathways localizing to the cytosol, but also present in the mitochondrion and in the chloroplast, 2 organelles of endosymbiotic origin. Toxoplasma gondii is a plastid-bearing parasitic protist responsible for a pathology affecting humans and other warm-blooded vertebrates. We have characterized the Toxoplasma homolog of HCF101, originally identified in plants as a protein transferring Fe-S clusters to photosystem I subunits in the chloroplast. Contrarily to plants, we have shown that HCF101 does not localize to the plastid in parasites, but instead is an important component of the cytosolic Fe-S assembly (CIA) pathway which is vital for Toxoplasma. While the CIA pathway is widely conserved in eukaryotes, it is the first time the involvement of HCF101 in this pan-eukaryotic machinery is established. Moreover, as this protein is essential for parasite viability and absent from its mammalian hosts, it constitutes a novel and promising potential drug target.
Collapse
Affiliation(s)
- Eléa A. Renaud
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Laurence Berry
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Bals
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yann Bordat
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Demolombe
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Valérie Rofidal
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Florence Vignols
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
2
|
Maclean AE, Sloan MA, Renaud EA, Argyle BE, Lewis WH, Ovciarikova J, Demolombe V, Waller RF, Besteiro S, Sheiner L. The Toxoplasma gondii mitochondrial transporter ABCB7L is essential for the biogenesis of cytosolic and nuclear iron-sulfur cluster proteins and cytosolic translation. mBio 2024; 15:e0087224. [PMID: 39207139 PMCID: PMC11481526 DOI: 10.1128/mbio.00872-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous inorganic cofactors required for numerous essential cellular pathways. Since they cannot be scavenged from the environment, Fe-S clusters are synthesized de novo in cellular compartments such as the apicoplast, mitochondrion, and cytosol. The cytosolic Fe-S cluster biosynthesis pathway relies on the transport of an intermediate from the mitochondrial pathway. An ATP-binding cassette (ABC) transporter called ABCB7 is responsible for this role in numerous commonly studied organisms, but its role in the medically important apicomplexan parasites has not yet been studied. Here we identify and characterize a Toxoplasma gondii ABCB7 homolog, which we name ABCB7-like (ABCB7L). Genetic depletion shows that it is essential for parasite growth and that its disruption triggers partial stage conversion. Characterization of the knock-down line highlights a defect in the biogenesis of cytosolic and nuclear Fe-S proteins leading to defects in protein translation and other pathways including DNA and RNA replication and metabolism. Our work provides support for a broad conservation of the connection between mitochondrial and cytosolic pathways in Fe-S cluster biosynthesis and reveals its importance for parasite survival. IMPORTANCE Iron-sulfur (Fe-S) clusters are inorganic cofactors of proteins that play key roles in numerous essential biological processes, for example, respiration and DNA replication. Cells possess dedicated biosynthetic pathways to assemble Fe-S clusters, including a pathway in the mitochondrion and cytosol. A single transporter, called ABCB7, connects these two pathways, allowing an essential intermediate generated by the mitochondrial pathway to be used in the cytosolic pathway. Cytosolic and nuclear Fe-S proteins are dependent on the mitochondrial pathway, mediated by ABCB7, in numerous organisms studied to date. Here, we study the role of a homolog of ABCB7, which we name ABCB7-like (ABCB7L), in the ubiquitous unicellular apicomplexan parasite Toxoplasma gondii. We generated a depletion mutant of Toxoplasma ABCB7L and showed its importance for parasite fitness. Using comparative quantitative proteomic analysis and experimental validation of the mutants, we show that ABCB7L is required for cytosolic and nuclear, but not mitochondrial, Fe-S protein biogenesis. Our study supports the conservation of a protein homologous to ABCB7 and which has a similar function in apicomplexan parasites and provides insight into an understudied aspect of parasite metabolism.
Collapse
Affiliation(s)
- Andrew E. Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Megan A. Sloan
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Eléa A. Renaud
- LPHI, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Blythe E. Argyle
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - William H. Lewis
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Vincent Demolombe
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Dussouchaud M, Barras F, Ollagnier de Choudens S. Fe-S biogenesis by SMS and SUF pathways: A focus on the assembly step. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119772. [PMID: 38838856 DOI: 10.1016/j.bbamcr.2024.119772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
FeS clusters are prosthetic groups present in all organisms. Proteins with FeS centers are involved in most cellular processes. ISC and SUF are machineries necessary for the formation and insertion of FeS in proteins. Recently, a phylogenetic analysis on more than 10,000 genomes of prokaryotes have uncovered two new systems, MIS and SMS, which were proposed to be ancestral to ISC and SUF. SMS is composed of SmsBC, two homologs of SufBC(D), the scaffolding complex of SUF. In this review, we will specifically focus on the current knowledge of the SUF system and on the new perspectives given by the recent discovery of its ancestor, the SMS system.
Collapse
Affiliation(s)
- Macha Dussouchaud
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Department of Microbiology, Unit Stress Adaptation and Metabolism in enterobacteria, Paris, France
| | - Frédéric Barras
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Department of Microbiology, Unit Stress Adaptation and Metabolism in enterobacteria, Paris, France
| | | |
Collapse
|
4
|
Williams SK, Jerlström Hultqvist J, Eglit Y, Salas-Leiva DE, Curtis B, Orr RJS, Stairs CW, Atalay TN, MacMillan N, Simpson AGB, Roger AJ. Extreme mitochondrial reduction in a novel group of free-living metamonads. Nat Commun 2024; 15:6805. [PMID: 39122691 PMCID: PMC11316075 DOI: 10.1038/s41467-024-50991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
Metamonads are a diverse group of heterotrophic microbial eukaryotes adapted to living in hypoxic environments. All metamonads but one harbour metabolically altered 'mitochondrion-related organelles' (MROs) with reduced functions, however the degree of reduction varies. Here, we generate high-quality draft genomes, transcriptomes, and predicted proteomes for five recently discovered free-living metamonads. Phylogenomic analyses placed these organisms in a group we name the 'BaSk' (Barthelonids+Skoliomonads) clade, a deeply branching sister group to the Fornicata, a phylum that includes parasitic and free-living flagellates. Bioinformatic analyses of gene models shows that these organisms are predicted to have extremely reduced MRO proteomes in comparison to other free-living metamonads. Loss of the mitochondrial iron-sulfur cluster assembly system in some organisms in this group appears to be linked to the acquisition in their common ancestral lineage of a SUF-like minimal system Fe/S cluster pathway by lateral gene transfer. One of the isolates, Skoliomonas litria, appears to have lost all other known MRO pathways. No proteins were confidently assigned to the predicted MRO proteome of this organism suggesting that the organelle has been lost. The extreme mitochondrial reduction observed within this free-living anaerobic protistan clade demonstrates that mitochondrial functions may be completely lost even in free-living organisms.
Collapse
Affiliation(s)
- Shelby K Williams
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jon Jerlström Hultqvist
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Yana Eglit
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, Canada
| | - Dayana E Salas-Leiva
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Bruce Curtis
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Russell J S Orr
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Tuğba N Atalay
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Naomi MacMillan
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Alastair G B Simpson
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, Canada
| | - Andrew J Roger
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada.
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
| |
Collapse
|
5
|
Záhonová K, Low RS, Warren CJ, Cantoni D, Herman EK, Yiangou L, Ribeiro CA, Phanprasert Y, Brown IR, Rueckert S, Baker NL, Tachezy J, Betts EL, Gentekaki E, van der Giezen M, Clark CG, Jackson AP, Dacks JB, Tsaousis AD. Evolutionary analysis of cellular reduction and anaerobicity in the hyper-prevalent gut microbe Blastocystis. Curr Biol 2023:S0960-9822(23)00620-6. [PMID: 37267944 DOI: 10.1016/j.cub.2023.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.
Collapse
Affiliation(s)
- Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic; Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava 710 00, Czech Republic
| | - Ross S Low
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Christopher J Warren
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Diego Cantoni
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Emily K Herman
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, 2-31 General Services Building, Edmonton, AB T6G 2H1, Canada
| | - Lyto Yiangou
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Cláudia A Ribeiro
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Yasinee Phanprasert
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; School of Science, Mae Fah Luang Universit, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand
| | - Ian R Brown
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Sonja Rueckert
- School of Applied Sciences, Sighthill Campus, Room 3.B.36, Edinburgh EH11 4BN, Scotland; Faculty of Biology, AG Eukaryotische Mikrobiologie, Universitätsstrasse 5, S05 R04 H83, Essen 45141, Germany
| | - Nicola L Baker
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic
| | - Emma L Betts
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK; School of Applied Sciences, Sighthill Campus, Room 3.B.36, Edinburgh EH11 4BN, Scotland
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang Universit, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand; Gut Microbiome Research Group, Mae Fah Luang University, 333 Moo 1, T. Tasud, Muang District, Chiang Rai 57100, Thailand
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger Richard Johnsens Gate 4, 4021 Stavanger, Norway; Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - C Graham Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Andrew P Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Centre for Life's Origin and Evolution, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Giles Lane, Stacey Building, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
6
|
Rydz L, Wróbel M, Jurkowska H. Sulfur Administration in Fe-S Cluster Homeostasis. Antioxidants (Basel) 2021; 10:antiox10111738. [PMID: 34829609 PMCID: PMC8614886 DOI: 10.3390/antiox10111738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are the key organelles of Fe–S cluster synthesis. They contain the enzyme cysteine desulfurase, a scaffold protein, iron and electron donors, and specific chaperons all required for the formation of Fe–S clusters. The newly formed cluster can be utilized by mitochondrial Fe–S protein synthesis or undergo further transformation. Mitochondrial Fe–S cluster biogenesis components are required in the cytosolic iron–sulfur cluster assembly machinery for cytosolic and nuclear cluster supplies. Clusters that are the key components of Fe–S proteins are vulnerable and prone to degradation whenever exposed to oxidative stress. However, once degraded, the Fe–S cluster can be resynthesized or repaired. It has been proposed that sulfurtransferases, rhodanese, and 3-mercaptopyruvate sulfurtransferase, responsible for sulfur transfer from donor to nucleophilic acceptor, are involved in the Fe–S cluster formation, maturation, or reconstitution. In the present paper, we attempt to sum up our knowledge on the involvement of sulfurtransferases not only in sulfur administration but also in the Fe–S cluster formation in mammals and yeasts, and on reconstitution-damaged cluster or restoration of enzyme’s attenuated activity.
Collapse
|
7
|
Samouha A, Fogel EJ, Goel S, Maitra R. Oncolytic Virus Affects the RAS Pathway in Cancer: RNA Sequence Analysis. JOURNAL OF ONCOLOGY RESEARCH AND THERAPY 2021; 6:10118. [PMID: 34841205 PMCID: PMC8623657 DOI: 10.29011/2574-710x.10118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Approximately 45% of individuals diagnosed with Colorectal Cancer (CRC) also possess KRAS mutations. One developing therapeutic method for this disease is reovirus treatment. It is theorized that reovirus treatment on patients with KRAS mutated CRC cells would be successful due to the virus' innate oncolytic properties [1]. Reovirus, a stable form of nonenveloped double-stranded RNA, causes minor infections in humans under normal circumstances. However, when the virus encounters KRAS mutated cells, it has the potential to lyse them [2]. While this method of treatment to CRC has shown signs of success, we are still some ways from universal administration of reovirus as a treatment. This review seeks to utilize various studies, as well as our original research data, to investigate reovirus as an efficient method of treatment, with a focus on select growth, apoptotic and RAS-related genes, and their effectiveness of mitigating KRAS mutated CRC post reovirus treatment. Furthermore, the review highlights transcriptome analysis as an effective tool to examine these genes and their activity. It has been shown that reovirus treatment induces apoptosis and mitigates growth related gene activity. CONCLUSIONS This review confirms the novelty of our findings on the efficacy of reovirus in CRC treatment. The study that this review article discusses concluded that 10 apoptotic and lymphocyte-related genes were found to be upregulated and 6 angiogenesis and Ras-related genes were found to be downregulated post reovirus treatment. These findings enforce the notion that reovirus could be used as a novel treatment for KRAS mutated CRC.
Collapse
Affiliation(s)
| | - Elisha J Fogel
- Department of Biology, Yeshiva University, New York, USA
| | - Sanjay Goel
- Montefiore Medical Center, Morris Park Ave Bronx, New York, USA
| | - Radhashree Maitra
- Department of Biology, Yeshiva University, New York, USA
- Montefiore Medical Center, Morris Park Ave Bronx, New York, USA
| |
Collapse
|
8
|
Pyrih J, Žárský V, Fellows JD, Grosche C, Wloga D, Striepen B, Maier UG, Tachezy J. The iron-sulfur scaffold protein HCF101 unveils the complexity of organellar evolution in SAR, Haptista and Cryptista. BMC Ecol Evol 2021; 21:46. [PMID: 33740894 PMCID: PMC7980591 DOI: 10.1186/s12862-021-01777-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. Results We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. Conclusion Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans). Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01777-x.
Collapse
Affiliation(s)
- Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Justin D Fellows
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Christopher Grosche
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Boris Striepen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA, 19104, USA
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
9
|
Aw YTV, Seidi A, Hayward JA, Lee J, Makota FV, Rug M, van Dooren GG. A key cytosolic iron-sulfur cluster synthesis protein localizes to the mitochondrion of Toxoplasma gondii. Mol Microbiol 2020; 115:968-985. [PMID: 33222310 DOI: 10.1111/mmi.14651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe-S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe-S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosolic compartments of eukaryotic cells. Little is known about the cytosolic Fe-S cluster biosynthesis in apicomplexan parasites, the causative agents of diseases such as malaria and toxoplasmosis. NBP35 serves as a key scaffold protein on which cytosolic Fe-S clusters assemble, and has a cytosolic localization in most eukaryotes studied thus far. Unexpectedly, we found that the NBP35 homolog of the apicomplexan Toxoplasma gondii (TgNBP35) localizes to the outer mitochondrial membrane, with mitochondrial targeting mediated by an N-terminal transmembrane domain. We demonstrate that TgNBP35 is critical for parasite proliferation, but that, despite its mitochondrial localization, it is not required for Fe-S cluster synthesis in the mitochondrion. Instead, we establish that TgNBP35 is important for the biogenesis of cytosolic Fe-S proteins. Our data are consistent with TgNBP35 playing a central and specific role in cytosolic Fe-S cluster biosynthesis, and imply that the assembly of cytosolic Fe-S clusters occurs on the cytosolic face of the outer mitochondrial membrane in these parasites.
Collapse
Affiliation(s)
- Yi Tong Vincent Aw
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Azadeh Seidi
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT, Australia
| | - F Victor Makota
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
10
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
11
|
Blahut M, Sanchez E, Fisher CE, Outten FW. Fe-S cluster biogenesis by the bacterial Suf pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118829. [PMID: 32822728 DOI: 10.1016/j.bbamcr.2020.118829] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023]
Abstract
Biogenesis of iron-sulfur (FeS) clusters in an essential process in living organisms due to the critical role of FeS cluster proteins in myriad cell functions. During biogenesis of FeS clusters, multi-protein complexes are used to drive the mobilization and protection of reactive sulfur and iron intermediates, regulate assembly of various FeS clusters on an ATPase-dependent, multi-protein scaffold, and target nascent clusters to their downstream protein targets. The evolutionarily ancient sulfur formation (Suf) pathway for FeS cluster assembly is found in bacteria and archaea. In Escherichia coli, the Suf pathway functions as an emergency pathway under conditions of iron limitation or oxidative stress. In other pathogenic bacteria, such as Mycobacterium tuberculosis and Enterococcus faecalis, the Suf pathway is the sole source for FeS clusters and therefore is a potential target for the development of novel antibacterial compounds. Here we summarize the considerable progress that has been made in characterizing the first step of mobilization and protection of reactive sulfur carried out by the SufS-SufE or SufS-SufU complex, FeS cluster assembly on SufBC2D scaffold complexes, and the downstream trafficking of nascent FeS clusters to A-type carrier (ATC) proteins. Cell Biology of Metals III edited by Roland Lill and Mick Petris.
Collapse
Affiliation(s)
- Matthew Blahut
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Enis Sanchez
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Claire E Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
12
|
Zhang Y, Zheng J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020; 25:molecules25153366. [PMID: 32722260 PMCID: PMC7435645 DOI: 10.3390/molecules25153366] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Trace metals are inorganic elements that are required for all organisms in very low quantities. They serve as cofactors and activators of metalloproteins involved in a variety of key cellular processes. While substantial effort has been made in experimental characterization of metalloproteins and their functions, the application of bioinformatics in the research of metalloproteins and metalloproteomes is still limited. In the last few years, computational prediction and comparative genomics of metalloprotein genes have arisen, which provide significant insights into their distribution, function, and evolution in nature. This review aims to offer an overview of recent advances in bioinformatic analysis of metalloproteins, mainly focusing on metalloprotein prediction and the use of different metals across the tree of life. We describe current computational approaches for the identification of metalloprotein genes and metal-binding sites/patterns in proteins, and then introduce a set of related databases. Furthermore, we discuss the latest research progress in comparative genomics of several important metals in both prokaryotes and eukaryotes, which demonstrates divergent and dynamic evolutionary patterns of different metalloprotein families and metalloproteomes. Overall, bioinformatic studies of metalloproteins provide a foundation for systematic understanding of trace metal utilization in all three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-2692-2024
| | - Junge Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
13
|
Dharamshi JE, Tamarit D, Eme L, Stairs CW, Martijn J, Homa F, Jørgensen SL, Spang A, Ettema TJG. Marine Sediments Illuminate Chlamydiae Diversity and Evolution. Curr Biol 2020; 30:1032-1048.e7. [PMID: 32142706 DOI: 10.1016/j.cub.2020.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/22/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
The bacterial phylum Chlamydiae is so far composed of obligate symbionts of eukaryotic hosts. Well known for Chlamydiaceae, pathogens of humans and other animals, Chlamydiae also include so-called environmental lineages that primarily infect microbial eukaryotes. Environmental surveys indicate that Chlamydiae are found in a wider range of environments than anticipated previously. However, the vast majority of this chlamydial diversity has been underexplored, biasing our current understanding of their biology, ecological importance, and evolution. Here, we report that previously undetected and active chlamydial lineages dominate microbial communities in deep anoxic marine sediments taken from the Arctic Mid-Ocean Ridge. Reaching relative abundances of up to 43% of the bacterial community, and a maximum diversity of 163 different species-level taxonomic units, these Chlamydiae represent important community members. Using genome-resolved metagenomics, we reconstructed 24 draft chlamydial genomes, expanding by over a third the known genomic diversity in this phylum. Phylogenomic analyses revealed several novel clades across the phylum, including a previously unknown sister lineage of the Chlamydiaceae, providing new insights into the origin of pathogenicity in this family. We were unable to identify putative eukaryotic hosts for these marine sediment chlamydiae, despite identifying genomic features that may be indicative of host-association. The high abundance and genomic diversity of Chlamydiae in these anoxic marine sediments indicate that some members could play an important, and thus far overlooked, ecological role in such environments and may indicate alternate lifestyle strategies.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay 91400, France
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Felix Homa
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Steffen L Jørgensen
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, Bergen 5020, Norway
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg 1790 AB, the Netherlands
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, the Netherlands.
| |
Collapse
|
14
|
Tsaousis AD. On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes. Front Microbiol 2019; 10:2478. [PMID: 31781051 PMCID: PMC6857552 DOI: 10.3389/fmicb.2019.02478] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Iron and sulfur are indispensable elements of every living cell, but on their own these elements are toxic and require dedicated machineries for the formation of iron/sulfur (Fe/S) clusters. In eukaryotes, proteins requiring Fe/S clusters (Fe/S proteins) are found in or associated with various organelles including the mitochondrion, endoplasmic reticulum, cytosol, and the nucleus. These proteins are involved in several pathways indispensable for the viability of each living cell including DNA maintenance, protein translation and metabolic pathways. Thus, the formation of Fe/S clusters and their delivery to these proteins has a fundamental role in the functions and the evolution of the eukaryotic cell. Currently, most eukaryotes harbor two (located in cytosol and mitochondrion) or three (located in plastid) machineries for the assembly of Fe/S clusters, but certain anaerobic microbial eukaryotes contain sulfur mobilization (SUF) machineries that were previously thought to be present only in archaeal linages. These machineries could not only stipulate which pathway was present in the last eukaryotic common ancestor (LECA), but they could also provide clues regarding presence of an Fe/S cluster machinery in the proto-eukaryote and evolution of Fe/S cluster assembly machineries in all eukaryotes.
Collapse
Affiliation(s)
- Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, ResistAnce Pathogenicity and Infectious Diseases (RAPID) Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
15
|
Vacek V, Novák LVF, Treitli SC, Táborský P, Cepicka I, Kolísko M, Keeling PJ, Hampl V. Fe-S Cluster Assembly in Oxymonads and Related Protists. Mol Biol Evol 2019; 35:2712-2718. [PMID: 30184127 PMCID: PMC6231488 DOI: 10.1093/molbev/msy168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe–S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe–S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe–S proteins.
Collapse
Affiliation(s)
- Vojtech Vacek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lukáš V F Novák
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Cepicka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic.,Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
16
|
Grossman JD, Camire EJ, Glynn CA, Neil CM, Seguinot BO, Perlstein DL. The Cfd1 Subunit of the Nbp35-Cfd1 Iron Sulfur Cluster Scaffolding Complex Controls Nucleotide Binding. Biochemistry 2019; 58:1587-1595. [PMID: 30785732 DOI: 10.1021/acs.biochem.8b00798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytosolic iron sulfur cluster assembly (CIA) scaffold biosynthesizes iron sulfur cluster cofactors for enzymes residing in the cytosol and the nucleus. In fungi and animals, it comprises two homologous ATPases, called Nbp35 and Cfd1 in yeast, which can form homodimeric and heterodimeric complexes. Both proteins are required for CIA function, but their individual roles are not well understood. Here we investigate the nucleotide affinity of each form of the scaffold for ATP and ADP to reveal any differences that could shed light on the functions of the different oligomeric forms of the protein or any distinct roles of the individual subunits. All forms of the CIA scaffold are specific for adenosine nucleotides and not guanosine nucleotides. Although the Cfd1 homodimer has no detectable ATPase activity, it binds ATP with an affinity comparable to that of the hydrolysis competent forms, Nbp352 and Nbp35-Cfd1. Titrations to determine the number of nucleotide binding sites combined with site-directed mutagenesis demonstrate that the nucleotide must bind to the Cfd1 subunit of the heterodimer before it can bind to Nbp35 and that the Cfd1 subunit is hydrolysis competent when bound to Nbp35 in the heterodimer. Altogether, our work reveals the distinct roles of the Nbp35 and Cfd1 subunits in their heterodimeric complex. Cfd1 controls nucleotide binding, and the Nbp35 subunit is required to activate nucleotide hydrolysis.
Collapse
Affiliation(s)
- John D Grossman
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Eric J Camire
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Calina A Glynn
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Christopher M Neil
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Bryan O Seguinot
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Deborah L Perlstein
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
17
|
Stairs CW, Kokla A, Ástvaldsson Á, Jerlström-Hultqvist J, Svärd S, Ettema TJG. Oxygen induces the expression of invasion and stress response genes in the anaerobic salmon parasite Spironucleus salmonicida. BMC Biol 2019; 17:19. [PMID: 30823887 PMCID: PMC6397501 DOI: 10.1186/s12915-019-0634-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/06/2019] [Indexed: 01/01/2023] Open
Abstract
Background Spironucleus salmonicida is an anaerobic parasite that can cause systemic infections in Atlantic salmon. Unlike other diplomonad parasites, such as the human pathogen Giardia intestinalis, Spironucleus species can infiltrate the blood stream of their hosts eventually colonizing organs, skin and gills. How this presumed anaerobe can persist and invade oxygenated tissues, despite having a strictly anaerobic metabolism, remains elusive. Results To investigate how S. salmonicida response to oxygen stress, we performed RNAseq transcriptomic analyses of cells grown in the presence of oxygen or antioxidant-free medium. We found that over 20% of the transcriptome is differentially regulated in oxygen (1705 genes) and antioxidant-depleted (2280 genes) conditions. These differentially regulated transcripts encode proteins related to anaerobic metabolism, cysteine and Fe-S cluster biosynthesis, as well as a large number of proteins of unknown function. S. salmonicida does not encode genes involved in the classical elements of oxygen metabolism (e.g., catalases, superoxide dismutase, glutathione biosynthesis, oxidative phosphorylation). Instead, we found that genes encoding bacterial-like oxidoreductases were upregulated in response to oxygen stress. Phylogenetic analysis revealed some of these oxygen-responsive genes (e.g., nadh oxidase, rubrerythrin, superoxide reductase) are rare in eukaryotes and likely derived from lateral gene transfer (LGT) events into diplomonads from prokaryotes. Unexpectedly, we observed that many host evasion- and invasion-related genes were also upregulated under oxidative stress suggesting that oxygen might be an important signal for pathogenesis. Conclusion While oxygen is toxic for related organisms, such as G. intestinalis, we find that oxygen is likely a gene induction signal for host invasion- and evasion-related pathways in S. salmonicida. These data provide the first molecular evidence for how S. salmonicida could tolerate oxic host environments and demonstrate how LGT can have a profound impact on the biology of anaerobic parasites. Electronic supplementary material The online version of this article (10.1186/s12915-019-0634-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Courtney W Stairs
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Anna Kokla
- Present Address: Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, BioCentrum, room D-444, Uppsala, Sweden
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Present Address: Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
18
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
19
|
Zhang Y, Ying H, Xu Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019; 11:1026-1043. [DOI: 10.1039/c9mt00023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent achievements and advances in comparative genomic and metagenomic analyses of trace metals were reviewed and discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huimin Ying
- Department of Endocrinology
- Hangzhou Xixi Hospital
- Hangzhou
- P. R. China
| | - Yinzhen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
20
|
Tonini ML, Peña-Diaz P, Haindrich AC, Basu S, Kriegová E, Pierik AJ, Lill R, MacNeill SA, Smith TK, Lukeš J. Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei. PLoS Pathog 2018; 14:e1007326. [PMID: 30346997 PMCID: PMC6211773 DOI: 10.1371/journal.ppat.1007326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 11/01/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Fe-S clusters are ubiquitous cofactors of proteins involved in a variety of essential cellular processes. The biogenesis of Fe-S clusters in the cytosol and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. The early- and middle-acting modules of the CIA pathway concerned with the assembly and trafficking of Fe-S clusters have been previously characterised in the parasitic protist Trypanosoma brucei. In this study, we applied proteomic and genetic approaches to gain insights into the network of protein-protein interactions of the late-acting CIA targeting complex in T. brucei. All components of the canonical CIA machinery are present in T. brucei including, as in humans, two distinct CIA2 homologues TbCIA2A and TbCIA2B. These two proteins are found interacting with TbCIA1, yet the interaction is mutually exclusive, as determined by mass spectrometry. Ablation of most of the components of the CIA targeting complex by RNAi led to impaired cell growth in vitro, with the exception of TbCIA2A in procyclic form (PCF) trypanosomes. Depletion of the CIA-targeting complex was accompanied by reduced levels of protein-bound cytosolic iron and decreased activity of an Fe-S dependent enzyme in PCF trypanosomes. We demonstrate that the C-terminal domain of TbMMS19 acts as a docking site for TbCIA2B and TbCIA1, forming a trimeric complex that also interacts with target Fe-S apo-proteins and the middle-acting CIA component TbNAR1. Cytosolic and nuclear proteins containing iron-sulphur clusters (Fe-S) are essential for the survival of every extant eukaryotic cell. The biogenesis of Fe-S clusters and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. Recently, the CIA factors that generate cytosolic Fe-S clusters were characterised in T. brucei, a unicellular parasite that causes diseases in humans and animals. However, an outstanding question in this organism is the way by which the CIA machinery directs and inserts newly formed Fe-S clusters into proteins. We found that the T. brucei proteins TbCIA2B and TbCIA1 assemble at a region of the C-terminal domain of a third protein, TbMMS19, to form a complex labelled the CIA targeting complex (CTC). The CTC interacts with TbNAR1 and with Fe-S proteins, meaning that the complex assists in the transfer of Fe-S clusters from the upstream members of the pathway into target Fe-S proteins. T. brucei cells depleted of CTC had decreased levels of protein-bound cytosolic iron, and lower activities of cytosolic aconitase, an enzyme that depends upon Fe-S clusters to function.
Collapse
Affiliation(s)
- Maiko Luis Tonini
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
| | - Priscila Peña-Diaz
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Alexander C. Haindrich
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Eva Kriegová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Antonio J. Pierik
- Faculty of Chemistry–Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Zentrum für synthetische Mikrobiologie, Marburg, Germany
| | - Stuart A. MacNeill
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (SAM); (TKS); (JL)
| | - Terry K. Smith
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (SAM); (TKS); (JL)
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- * E-mail: (SAM); (TKS); (JL)
| |
Collapse
|
21
|
Tsaousis AD, Hamblin KA, Elliott CR, Young L, Rosell-Hidalgo A, Gourlay CW, Moore AL, van der Giezen M. The Human Gut Colonizer Blastocystis Respires Using Complex II and Alternative Oxidase to Buffer Transient Oxygen Fluctuations in the Gut. Front Cell Infect Microbiol 2018; 8:371. [PMID: 30406045 PMCID: PMC6204527 DOI: 10.3389/fcimb.2018.00371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Blastocystis is the most common eukaryotic microbe in the human gut. It is linked to irritable bowel syndrome (IBS), but its role in disease has been contested considering its widespread nature. This organism is well-adapted to its anoxic niche and lacks typical eukaryotic features, such as a cytochrome-driven mitochondrial electron transport. Although generally considered a strict or obligate anaerobe, its genome encodes an alternative oxidase. Alternative oxidases are energetically wasteful enzymes as they are non-protonmotive and energy is liberated in heat, but they are considered to be involved in oxidative stress protective mechanisms. Our results demonstrate that the Blastocystis cells themselves respire oxygen via this alternative oxidase thereby casting doubt on its strict anaerobic nature. Inhibition experiments using alternative oxidase and Complex II specific inhibitors clearly demonstrate their role in cellular respiration. We postulate that the alternative oxidase in Blastocystis is used to buffer transient oxygen fluctuations in the gut and that it likely is a common colonizer of the human gut and not causally involved in IBS. Additionally the alternative oxidase could act as a protective mechanism in a dysbiotic gut and thereby explain the absence of Blastocystis in established IBS environments.
Collapse
Affiliation(s)
- Anastasios D. Tsaousis
- RAPID Group, Laboratory of Molecular & Evolutionary Parasitology, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Karleigh A. Hamblin
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Catherine R. Elliott
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Luke Young
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | |
Collapse
|
22
|
Grosche C, Diehl A, Rensing SA, Maier UG. Iron-Sulfur Cluster Biosynthesis in Algae with Complex Plastids. Genome Biol Evol 2018; 10:2061-2071. [PMID: 30085124 PMCID: PMC6105332 DOI: 10.1093/gbe/evy156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
Plastids surrounded by four membranes harbor a special compartment between the outer and inner plastid membrane pair, the so-called periplastidal compartment (PPC). This cellular structure is usually presumed to be the reduced cytoplasm of a eukaryotic phototrophic endosymbiont, which was integrated into a host cell and streamlined into a plastid with a complex membrane structure. Up to date, no mitochondrion or mitochondrion-related organelle has been identified in the PPC of any representative. However, two prominent groups, the cryptophytes and the chlorarachniophytes, still harbor a reduced cell nucleus of symbiont origin, the nucleomorph, in their PPCs. Generally, many cytoplasmic and nucleus-located eukaryotic proteins need an iron–sulfur cofactor for their functionality. Beside some exceptions, their synthesis is depending on a so-called iron–sulfur complex (ISC) assembly machinery located in the mitochondrion. This machinery provides the cytoplasm with a still unknown sulfur component, which is then converted into iron–sulfur clusters via a cytosolic iron–sulfur protein assembly (CIA) machinery. Here, we investigated if a CIA machinery is present in mitochondrion-lacking PPCs. By using bioinformatic screens and in vivo-localizations of candidate proteins, we show that the presence of a PPC-specific CIA machinery correlates with the presence of a nucleomorph. Phylogenetic analyses of PPC- and host specific CIA components additionally indicate a complex evolution of the CIA machineries in organisms having plastids surrounded by four membranes.
Collapse
Affiliation(s)
- Christopher Grosche
- LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, Germany.,Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Angelika Diehl
- LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, Germany.,Laboratory for Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Uwe G Maier
- LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, Germany.,Laboratory for Cell Biology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
23
|
Miller CN, Jossé L, Tsaousis AD. Localization of Fe-S Biosynthesis Machinery in Cryptosporidium parvum Mitosome. J Eukaryot Microbiol 2018; 65:913-922. [PMID: 29932290 PMCID: PMC6282951 DOI: 10.1111/jeu.12663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022]
Abstract
Cryptosporidium is a protozoan, apicomplexan, parasite that poses significant risk to humans and animals, as a common cause of potentially fatal diarrhea in immunodeficient hosts. The parasites have evolved a number of unique biological features that allow them to thrive in a highly specialized parasitic lifestyle. For example, the genome of Cryptosporidium parvum is highly reduced, encoding only 3,805 proteins, which is also reflected in its reduced cellular and organellar content and functions. As such, its remnant mitochondrion, dubbed a mitosome, is one of the smallest mitochondria yet found. While numerous studies have attempted to discover the function(s) of the C. parvum mitosome, most of them have been focused on in silico predictions. Here, we have localized components of a biochemical pathway in the C. parvum mitosome, in our investigations into the functions of this peculiar mitochondrial organelle. We have shown that three proteins involved in the mitochondrial iron-sulfur cluster biosynthetic pathway are localized in the organelle, and one of them can functionally replace its yeast homolog. Thus, it seems that the C. parvum mitosome is involved in iron-sulfur cluster biosynthesis, supporting the organellar and cytosolic apoproteins. These results spearhead further research on elucidating the functions of the mitosome and broaden our understanding in the minimalistic adaptations of these organelles.
Collapse
Affiliation(s)
- Christopher N Miller
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Lyne Jossé
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
24
|
Vo AT, Fleischman NM, Marquez MD, Camire EJ, Esonwune SU, Grossman JD, Gay KA, Cosman JA, Perlstein DL. Defining the domains of Cia2 required for its essential function in vivo and in vitro. Metallomics 2018; 9:1645-1654. [PMID: 29057997 DOI: 10.1039/c7mt00181a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cytosolic iron-sulfur cluster assembly (CIA) system biosynthesizes iron-sulfur (FeS) cluster cofactors for cytosolic and nuclear proteins. The yeast Cia2 protein is the central component of the targeting complex which identifies apo-protein targets in the final step of the pathway. Herein, we determine that Cia2 contains five conserved motifs distributed between an intrinsically disordered N-terminal domain and a C-terminal domain of unknown function 59 (DUF59). The disordered domain is dispensible for binding the other subunits of the targeting complex, Met18 and Cia1, and the apo-target Rad3 in vitro. While in vivo assays reveal that the C-terminal domain is sufficient to support viability, several phenotypic assays indicate that deletion of the N-terminal domain negatively impacts CIA function. We additionally establish that Glu208, located within a conserved motif found only in eukaryotic DUF59 proteins, is important for the Cia1-Cia2 interaction in vitro. In vivo, E208A-Cia2 results in a diminished activity of the cytosolic iron sulfur cluster protein, Leu1 but only modest effects on hydroxyurea or methylmethane sulfonate sensitivity. Finally, we demonstrate that neither of the two highly conserved motifs of the DUF59 domain are vital for any of Cia2's interactions in vitro yet mutation of the DPE motif in the DUF59 domain results in a nonfunctional allele in vivo. Our observation that four of the five highly conserved motifs of Cia2 are dispensable for targeting complex formation and apo-target binding suggests that Cia2 is not simply a protein-protein interaction mediator but it likely possesses an additional, currently cryptic, function during the final cluster insertion step of CIA.
Collapse
Affiliation(s)
- Amanda T Vo
- Department of Chemistry, Boston University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grossman JD, Camire EJ, Perlstein DL. Approaches to Interrogate the Role of Nucleotide Hydrolysis by Metal Trafficking NTPases: The Nbp35-Cfd1 Iron-Sulfur Cluster Scaffold as a Case Study. Methods Enzymol 2018; 599:293-325. [PMID: 29746244 DOI: 10.1016/bs.mie.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleotide hydrolases play integral yet poorly understood roles in several metallocluster biosynthetic pathways. For example, the cytosolic iron-sulfur cluster assembly (CIA) is initiated by the CIA scaffold, an ATPase which builds new iron-sulfur clusters for proteins localized to the cytosol and the nucleus in eukaryotic organisms. While in vivo studies have demonstrated the scaffold's nucleotide hydrolase domain is vital for its function, in vitro approaches have not revealed tight allosteric coupling between the cluster scaffolding site and the ATPase site. Thus, the role of ATP hydrolysis has been hard to pinpoint. Herein, we describe methods to probe the nucleotide affinity and hydrolysis activity of the CIA scaffold from yeast, which is comprised of two homologous polypeptides called Nbp35 and Cfd1. In particular, we report two different equilibrium binding assays that make use of commercially available fluorescent nucleotide analogs. Importantly, these assays can be applied to probe nucleotide affinity of both the apo- and holo-forms of the CIA scaffold. Generally, these fluorescent nucleotide analogs have been underutilized to probe metal trafficking NTPase because one of the most commonly used probes, mantATP, which is labeled with the methylanthraniloyl probe via the 2' or 3' sugar hydroxyls, has an absorption which overlaps with the UV-Vis features of many metal-binding proteins. However, by exploiting analogs like BODIPY-FL and trinitrophenyl-labeled nucleotides which have better photophysical properties for metalloprotein applications, these approaches have the potential to reveal the mechanistic underpinnings of NTPases required for metallocluster biosynthesis.
Collapse
|
26
|
Mashruwala AA, Boyd JM. Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron-sulfur proteins. Curr Genet 2017; 64:9-16. [PMID: 28589301 DOI: 10.1007/s00294-017-0716-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/07/2023]
Abstract
Comprehending biology at the molecular and systems levels is predicated upon understanding the functions of proteins. Proteins are typically composed of one or more functional moieties termed domains. Members of Bacteria, Eukarya, and Archaea utilize proteins containing a domain of unknown function (DUF) 59. Proteins requiring iron-sulfur (FeS) clusters containing cofactors are necessary for nearly all organisms making the assembly of functional FeS proteins essential. Recently, studies in eukaryotic and bacterial organisms have shown that proteins containing a DUF59, or those composed solely of DUF59, function in FeS protein maturation and/or intracellular Fe homeostasis. Herein, we review the current literature, discuss potential roles for DUF59, and address future studies that will help advance the field.
Collapse
Affiliation(s)
- Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA.
| |
Collapse
|
27
|
Vo A, Fleischman NM, Froehlich MJ, Lee CY, Cosman JA, Glynn CA, Hassan ZO, Perlstein DL. Identifying the Protein Interactions of the Cytosolic Iron–Sulfur Cluster Targeting Complex Essential for Its Assembly and Recognition of Apo-Targets. Biochemistry 2017; 57:2349-2358. [DOI: 10.1021/acs.biochem.7b00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Amanda Vo
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | | | - Mary J. Froehlich
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Claudia Y. Lee
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jessica A. Cosman
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Calina A. Glynn
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zanub O. Hassan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Deborah L. Perlstein
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
28
|
Bastow EL, Bych K, Crack JC, Le Brun NE, Balk J. NBP35 interacts with DRE2 in the maturation of cytosolic iron-sulphur proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:590-600. [PMID: 27801963 PMCID: PMC5324674 DOI: 10.1111/tpj.13409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Accepted: 10/27/2016] [Indexed: 05/23/2023]
Abstract
Proteins of the cytosolic pathway for iron-sulphur (FeS) cluster assembly are conserved, except that plants lack a gene for CFD1 (Cytosolic FeS cluster Deficient 1). This poses the question of how NBP35 (Nucleotide-Binding Protein 35 kDa), the heteromeric partner of CFD1 in metazoa, functions on its own in plants. Firstly, we created viable mutant alleles of NBP35 in Arabidopsis to overcome embryo lethality of previously reported knockout mutations. RNAi knockdown lines with less than 30% NBP35 protein surprisingly showed no developmental or biochemical differences to wild-type. Substitution of Cys14 to Ala, which destabilized the N-terminal Fe4 S4 cluster in vitro, caused mild growth defects and a significant decrease in the activity of cytosolic FeS enzymes such as aconitase and aldehyde oxidases. The DNA glycosylase ROS1 was only partially decreased in activity and xanthine dehydrogenase not at all. Plants with strongly depleted NBP35 protein in combination with Cys14 to Ala substitution had distorted leaf development and decreased FeS enzyme activities. To find protein interaction partners of NBP35, a yeast-two-hybrid screen was carried out that identified NBP35 and DRE2 (Derepressed for Ribosomal protein S14 Expression). NBP35 is known to form a dimer, and DRE2 acts upstream in the cytosolic FeS protein assembly pathway. The NBP35-DRE2 interaction was not disrupted by Cys14 to Ala substitution. Our results show that NBP35 has a function in the maturation of FeS proteins that is conserved in plants, and is closely allied to the function of DRE2.
Collapse
Affiliation(s)
- Emma L. Bastow
- John Innes CentreNorwichNR4 7UHUK
- University of East AngliaNorwichNR4 7TJUK
| | - Katrine Bych
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Present address: Glycom A/SDK – 2800 Kgs.LyngbyDenmark
| | | | | | | |
Collapse
|
29
|
Freibert SA, Goldberg AV, Hacker C, Molik S, Dean P, Williams TA, Nakjang S, Long S, Sendra K, Bill E, Heinz E, Hirt RP, Lucocq JM, Embley TM, Lill R. Evolutionary conservation and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat Commun 2017; 8:13932. [PMID: 28051091 PMCID: PMC5216125 DOI: 10.1038/ncomms13932] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron–sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe–2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron–sulfur protein assembly (CIA) pathway includes the essential Cfd1–Nbp35 scaffold complex that assembles a [4Fe–4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes.
The functions of the highly reduced mitochondria (mitosomes) of microsporidians are not well-characterized. Here, the authors show that the Trachipleistophora hominis mitosome is the site of iron–sulfur cluster assembly and that its retention is likely linked to its role in cytosolic and nuclear iron–sulfur protein maturation.
Collapse
Affiliation(s)
- Sven-A Freibert
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, Marburg 35032, Germany
| | - Alina V Goldberg
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Christian Hacker
- School of Medicine, University of St Andrews, St. Andrews KY16 9TF, UK.,Bioimaging Centre, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Sabine Molik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, Marburg 35032, Germany
| | - Paul Dean
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Tom A Williams
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Sirintra Nakjang
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Shaojun Long
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Kacper Sendra
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Eckhard Bill
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Eva Heinz
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - John M Lucocq
- School of Medicine, University of St Andrews, St. Andrews KY16 9TF, UK
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, Marburg 35032, Germany.,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, Marburg 35043, Germany
| |
Collapse
|
30
|
Mashruwala AA, Roberts CA, Bhatt S, May KL, Carroll RK, Shaw LN, Boyd JM. Staphylococcus aureus SufT: an essential iron-sulphur cluster assembly factor in cells experiencing a high-demand for lipoic acid. Mol Microbiol 2016; 102:1099-1119. [PMID: 27671355 PMCID: PMC5161685 DOI: 10.1111/mmi.13539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus SufT is composed solely of the domain of unknown function 59 (DUF59) and has a role in the maturation of iron-sulphur (Fe-S) proteins. We report that SufT is essential for S. aureus when growth is heavily reliant upon lipoamide-utilizing enzymes, but dispensable when this reliance is decreased. LipA requires Fe-S clusters for lipoic acid (LA) synthesis and a ΔsufT strain had phenotypes suggestive of decreased LA production and decreased activities of lipoamide-requiring enzymes. Fermentative growth, a null clpC allele, or decreased flux through the TCA cycle diminished the demand for LA and rendered SufT non-essential. Abundance of the Fe-S cluster carrier Nfu was increased in a ΔclpC strain and a null clpC allele was unable to suppress the LA requirement of a ΔsufT Δnfu strain. Over-expression of nfu suppressed the LA requirement of the ΔsufT strain. We propose a model wherein SufT, and by extension the DUF59, is essential for the maturation of holo-LipA in S. aureus cells experiencing a high demand for lipoamide-dependent enzymes. The findings presented suggest that the demand for products of Fe-S enzymes is a factor governing the usage of one Fe-S cluster assembly factor over another in the maturation of apo-proteins.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Christina A. Roberts
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Shiven Bhatt
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Kerrie L. May
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Ronan K. Carroll
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FA 33620
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FA 33620
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
31
|
Richardson E, Zerr K, Tsaousis A, Dorrell RG, Dacks JB. Evolutionary cell biology: functional insight from "endless forms most beautiful". Mol Biol Cell 2016; 26:4532-8. [PMID: 26668171 PMCID: PMC4678011 DOI: 10.1091/mbc.e14-10-1433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking.
Collapse
Affiliation(s)
| | - Kelly Zerr
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Anastasios Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| |
Collapse
|
32
|
Pyrih J, Pyrihová E, Kolísko M, Stojanovová D, Basu S, Harant K, Haindrich AC, Doležal P, Lukeš J, Roger A, Tachezy J. Minimal cytosolic iron-sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol 2016; 102:701-714. [PMID: 27582265 DOI: 10.1111/mmi.13487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2016] [Indexed: 01/10/2023]
Abstract
Iron-sulfur (Fe-S) clusters are essential cofactors that enable proteins to transport electrons, sense signals, or catalyze chemical reactions. The maturation of dozens of Fe-S proteins in various compartments of every eukaryotic cell is driven by several assembly pathways. The ubiquitous cytosolic Fe-S cluster assembly (CIA) pathway, typically composed of eight highly conserved proteins, depends on mitochondrial Fe-S cluster assembly (ISC) machinery. Giardia intestinalis contains one of the smallest eukaryotic genomes and the mitosome, an extremely reduced mitochondrion. Because the only pathway known to be retained within this organelle is the synthesis of Fe-S clusters mediated by ISC machinery, a likely function of the mitosome is to cooperate with the CIA pathway. We investigated the cellular localization of CIA components in G. intestinalis and the origin and distribution of CIA-related components and Tah18-like proteins in other Metamonada. We show that orthologs of Tah18 and Dre2 are missing in these eukaryotes. In Giardia, all CIA components are exclusively cytosolic, with the important exception of Cia2 and two Nbp35 paralogs, which are present in the mitosomes. We propose that the dual localization of Cia2 and Nbp35 proteins in Giardia might represent a novel connection between the ISC and the CIA pathways.
Collapse
Affiliation(s)
- Jan Pyrih
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Eva Pyrihová
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Martin Kolísko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Darja Stojanovová
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, České Budějovice, Budweis, 37005, Czech Republic
| | - Karel Harant
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Alexander C Haindrich
- Institute of Parasitology, Biology Centre, České Budějovice, Budweis, 37005, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, 37005, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice, Budweis, 37005, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, 37005, Czech Republic.,Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| | - Andrew Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| | - Jan Tachezy
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| |
Collapse
|
33
|
Mashruwala AA, Bhatt S, Poudel S, Boyd ES, Boyd JM. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus. PLoS Genet 2016; 12:e1006233. [PMID: 27517714 PMCID: PMC4982691 DOI: 10.1371/journal.pgen.1006233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/10/2016] [Indexed: 01/01/2023] Open
Abstract
Proteins containing DUF59 domains have roles in iron-sulfur (FeS) cluster assembly and are widespread throughout Eukarya, Bacteria, and Archaea. However, the function(s) of this domain is unknown. Staphylococcus aureus SufT is composed solely of a DUF59 domain. We noted that sufT is often co-localized with sufBC, which encode for the Suf FeS cluster biosynthetic machinery. Phylogenetic analyses indicated that sufT was recruited to the suf operon, suggesting a role for SufT in FeS cluster assembly. A S. aureus ΔsufT mutant was defective in the assembly of FeS proteins. The DUF59 protein Rv1466 from Mycobacterium tuberculosis partially corrected the phenotypes of a ΔsufT mutant, consistent with a widespread role for DUF59 in FeS protein maturation. SufT was dispensable for FeS protein maturation during conditions that imposed a low cellular demand for FeS cluster assembly. In contrast, the role of SufT was maximal during conditions imposing a high demand for FeS cluster assembly. SufT was not involved in the repair of FeS clusters damaged by reactive oxygen species or in the physical protection of FeS clusters from oxidants. Nfu is a FeS cluster carrier and nfu displayed synergy with sufT. Furthermore, introduction of nfu upon a multicopy plasmid partially corrected the phenotypes of the ΔsufT mutant. Biofilm formation and exoprotein production are critical for S. aureus pathogenesis and vancomycin is a drug of last-resort to treat staphylococcal infections. Defective FeS protein maturation resulted in increased biofilm formation, decreased production of exoproteins, increased resistance to vancomycin, and the appearance of phenotypes consistent with vancomycin-intermediate resistant S. aureus. We propose that SufT, and by extension the DUF59 domain, is an accessory factor that functions in the maturation of FeS proteins. In S. aureus, the involvement of SufT is maximal during conditions of high demand for FeS proteins.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Shiven Bhatt
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Saroj Poudel
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Eric S. Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- NASA Astrobiology Institute, Mountain View, California, United States of America
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
34
|
The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Sci Rep 2016; 6:26443. [PMID: 27193999 PMCID: PMC4872223 DOI: 10.1038/srep26443] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/29/2016] [Indexed: 02/08/2023] Open
Abstract
DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis.
Collapse
|
35
|
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V. A Eukaryote without a Mitochondrial Organelle. Curr Biol 2016; 26:1274-84. [PMID: 27185558 DOI: 10.1016/j.cub.2016.03.053] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/05/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic; Department of Molecular Phylogenetics and Evolution, University of Warsaw, Warsaw 00478, Poland.
| | - Vojtěch Vacek
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Zuzana Zubáčová
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lukáš Novák
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Lael D Barlow
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Petr Soukal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Miluše Hroudová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic.
| |
Collapse
|
36
|
Barupala DP, Dzul SP, Riggs-Gelasco PJ, Stemmler TL. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors. Arch Biochem Biophys 2016; 592:60-75. [PMID: 26785297 PMCID: PMC4784227 DOI: 10.1016/j.abb.2016.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/25/2022]
Abstract
In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways.
Collapse
Affiliation(s)
- Dulmini P Barupala
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Stephen P Dzul
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | - Timothy L Stemmler
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
37
|
Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stümpfig M, Srinivasan V, Stehling O, Mühlenhoff U. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur J Cell Biol 2015; 94:280-91. [DOI: 10.1016/j.ejcb.2015.05.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Outten FW. Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1464-9. [PMID: 25447545 DOI: 10.1016/j.bbamcr.2014.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/21/2023]
Abstract
Fe-S clusters play critical roles in cellular function throughout all three kingdoms of life. Consequently, Fe-S cluster biogenesis systems are present in most organisms. The Suf (sulfur formation) system is the most ancient of the three characterized Fe-S cluster biogenesis pathways, which also include the Isc and Nif systems. Much of the first work on the Suf system took place in Gram-negative Proteobacteria used as model organisms. These early studies led to a wealth of biochemical, genetic, and physiological information on Suf function. From those studies we have learned that SufB functions as an Fe-S scaffold in conjunction with SufC (and in some cases SufD). SufS and SufE together mobilize sulfur for cluster assembly and SufA traffics the complete Fe-S cluster from SufB to target apo-proteins. However, recent progress on the Suf system in other organisms has opened up new avenues of research and new hypotheses about Suf function. This review focuses primarily on the most recent discoveries about the Suf pathway and where those new models may lead the field. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- F Wayne Outten
- University of South Carolina, Department of Chemistry and Biochemistry, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
39
|
Lukeš J, Basu S. Fe/S protein biogenesis in trypanosomes - A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1481-92. [PMID: 25196712 DOI: 10.1016/j.bbamcr.2014.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei, the causative agent of the African sleeping sickness of humans, and other kinetoplastid flagellates belong to the eukarytotic supergroup Excavata. This early-branching model protist is known for a broad range of unique features. As it is amenable to most techniques of forward and reverse genetics, T. brucei was subject to several studies of its iron-sulfur (Fe/S) protein biogenesis and thus represents the best studied excavate eukaryote. Here we review what is known about the Fe/S protein biogenesis of T. brucei, and focus especially on the comparative and evolutionary interesting aspects. We also explore the connections between the well-known and quite conserved ISC and CIA machineries and the tRNA thiolation pathway. Moreover, the Fe/S cluster protein biogenesis is dissected in the procyclic stage of T. brucei which has an active mitochondrion, as well as in its pathogenic bloodstream stage with a metabolically repressed organelle. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.
| | - Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
40
|
Basu S, Netz DJ, Haindrich AC, Herlerth N, Lagny TJ, Pierik AJ, Lill R, Lukeš J. Cytosolic iron-sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream Trypanosoma brucei. Mol Microbiol 2014; 93:897-910. [PMID: 25040552 DOI: 10.1111/mmi.12706] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/05/2023]
Abstract
Cytosolic and nuclear iron-sulphur (Fe/S) proteins include essential components involved in protein translation, DNA synthesis and DNA repair. In yeast and human cells, assembly of their Fe/S cofactor is accomplished by the CIA (cytosolic iron-sulphur protein assembly) machinery comprised of some 10 proteins. To investigate the extent of conservation of the CIA pathway, we examined its importance in the early-branching eukaryote Trypanosoma brucei that encodes all known CIA factors. Upon RNAi-mediated ablation of individual, early-acting CIA proteins, no major defects were observed in both procyclic and bloodstream stages. In contrast, parallel depletion of two CIA components was lethal, and severely diminished cytosolic aconitase activity lending support for a direct role of the CIA proteins in cytosolic Fe/S protein biogenesis. In support of this conclusion, the T. brucei CIA proteins complemented the growth defects of their respective yeast CIA depletion mutants. Finally, the T. brucei CIA factor Tah18 was characterized as a flavoprotein, while its binding partner Dre2 functions as a Fe/S protein. Together, our results demonstrate the essential and conserved function of the CIA pathway in cytosolic Fe/S protein assembly in both developmental stages of this representative of supergroup Excavata.
Collapse
Affiliation(s)
- Somsuvro Basu
- Biology Centre, Institute of Parasitology, 37005, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, 37005, České Budějovice (Budweis), Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|