1
|
Bertels LK, Walter S, Heinisch JJ. Genetic and Physiological Characterization of the Pentose Phosphate Pathway in the Yeast Kluyveromyces lactis. Int J Mol Sci 2025; 26:938. [PMID: 39940707 PMCID: PMC11817168 DOI: 10.3390/ijms26030938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The pentose phosphate pathway (PPP) is essential for human health and provides, amongst others, the reduction power to cope with oxidative stress. In contrast to the model baker's yeast, the PPP also contributes to a large extent to glucose metabolism in the milk yeast Kluyveromyces lactis. Yet, the physiological consequences of mutations in genes encoding PPP enzymes in K. lactis have been addressed for only a few. We here embarked on a systematic study of such mutants, deleting ZWF1, SOL4, GND1, RKI1, RPE1, TKL1, TAL1, and SHB17. Interestingly, GND1, RKI1, and TKL1 were found to be essential under standard growth conditions. Epistasis analyses revealed that a lack of Zwf1 rescued the lethality of the gnd1 deletion, indicating that it is caused by the accumulation of 6-phosphogluconate. Moreover, the slow growth of a tal1 null mutant, which lacks fructose-1,6-bisphosphate aldolase, was aggravated by deleting the SHB17 gene encoding sedoheptulose-1,7-bisphosphatase. A mitotically stable tetOFF system was established for conditional expression of TAL1 and TKL1, encoding transaldolase and transketolase in the non-oxidative part of the PPP, and employed in a global proteome analysis upon depletion of the enzymes. Results indicate that fatty acid degradation is upregulated, providing an alternative energy source. In addition, tal1 and tkl1 null mutants were complemented by heterologous expression of the respective genes from baker's yeast and humans. These data demonstrate the importance of the PPP for basic sugar metabolism and oxidative stress response in K. lactis and the potential of this yeast as a model for the study of PPP enzymes from heterologous sources, including human patients.
Collapse
Affiliation(s)
- Laura-Katharina Bertels
- Department of Genetics, Faculty of Biology and Chemistry, University of Osnabrück; Barbarastr. 11, D-49076 Osnabrueck, Germany;
| | - Stefan Walter
- Facility for Mass Spectrometry, Faculty of Biology and Chemistry, University of Osnabrück; Barbarastr. 11, D-49076 Osnabrueck, Germany;
| | - Jürgen J. Heinisch
- Department of Genetics, Faculty of Biology and Chemistry, University of Osnabrück; Barbarastr. 11, D-49076 Osnabrueck, Germany;
| |
Collapse
|
2
|
Rakhmanova TI, Gessler NN, Isakova EP, Klein OI, Deryabina YI, Popova TN. The Key Enzymes of Carbon Metabolism and the Glutathione Antioxidant System Protect Yarrowia lipolytica Yeast Against pH-Induced Stress. J Fungi (Basel) 2024; 10:747. [PMID: 39590666 PMCID: PMC11595425 DOI: 10.3390/jof10110747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, we first thoroughly assayed the response of the key enzymes of energy metabolism and the antioxidant system in Yarrowia lipolytica yeast at extreme pH. The activity of the tricarboxylic acid cycle enzymes, namely NAD-dependent isocitrate dehydrogenase, aconitate hydratase, NAD-dependent malate dehydrogenase, and fumarate hydratase, NADPH-producing enzymes of glucose-6-P dehydrogenase and NADP-dependent isocitrate dehydrogenase, and the enzymes of the glutathione system was assessed. All the enzymes that were tested showed a significant induction contrary to some decrease in the aconitate hydratase activity with acidic and alkaline stress. It is probable that a change in the enzyme activity in the mitochondria matrix is involved in the regulation of the cellular metabolism of Y. lipolytica, which allows the species to prosper at an extreme ambient pH. It distinguishes it from any other type of ascomycete. A close relationship between the induction of the Krebs cycle enzymes and the key enzymes of the glutathione system accompanied by an increased level of reduced glutathione was shown. The assumption that the increased activity of the Krebs cycle dehydrogenases and promotion of the pentose phosphate pathway at pH stress launches a set of events determining the adaptive response of Y. lipolytica yeast.
Collapse
Affiliation(s)
- Tatyana I. Rakhmanova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia; (T.I.R.); (T.N.P.)
| | - Natalia N. Gessler
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Elena P. Isakova
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Olga I. Klein
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Yulia I. Deryabina
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Ave. 33/2, 119071 Moscow, Russia; (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia; (T.I.R.); (T.N.P.)
| |
Collapse
|
3
|
Patiño-Ruiz MF, Anshari ZR, Gaastra B, Slotboom DJ, Poolman B. Chemiosmotic nutrient transport in synthetic cells powered by electrogenic antiport coupled to decarboxylation. Nat Commun 2024; 15:7976. [PMID: 39266519 PMCID: PMC11392934 DOI: 10.1038/s41467-024-52085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Cellular homeostasis depends on the supply of metabolic energy in the form of ATP and electrochemical ion gradients. The construction of synthetic cells requires a constant supply of energy to drive membrane transport and metabolism. Here, we provide synthetic cells with long-lasting metabolic energy in the form of an electrochemical proton gradient. Leveraging the L-malate decarboxylation pathway we generate a stable proton gradient and electrical potential in lipid vesicles by electrogenic L-malate/L-lactate exchange coupled to L-malate decarboxylation. By co-reconstitution with the transporters GltP and LacY, the synthetic cells maintain accumulation of L-glutamate and lactose over periods of hours, mimicking nutrient feeding in living cells. We couple the accumulation of lactose to a metabolic network for the generation of intermediates of the glycolytic and pentose phosphate pathways. This study underscores the potential of harnessing a proton motive force via a simple metabolic network, paving the way for the development of more complex synthetic systems.
Collapse
Affiliation(s)
- Miyer F Patiño-Ruiz
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Zaid Ramdhan Anshari
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bauke Gaastra
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Dirk J Slotboom
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
4
|
Heinisch JJ, Murra A, Fernández Murillo L, Schmitz HP. The Role of Glucose-6-phosphate Dehydrogenase in the Wine Yeast Hanseniaspora uvarum. Int J Mol Sci 2024; 25:2395. [PMID: 38397078 PMCID: PMC10889316 DOI: 10.3390/ijms25042395] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Hanseniaspora uvarum is the predominant yeast species in the majority of wine fermentations, which has only recently become amenable to directed genetic manipulation. The genetics and metabolism of H. uvarum have been poorly studied as compared to other yeasts of biotechnological importance. This work describes the construction and characterization of homozygous deletion mutants in the HuZWF1 gene, encoding glucose-6-phosphate dehydrogenase (G6PDH), which provides the entrance into the oxidative part of the pentose phosphate pathway (PPP) and serves as a major source of NADPH for anabolic reactions and oxidative stress response. Huzwf1 deletion mutants grow more slowly on glucose medium than wild-type and are hypersensitive both to hydrogen peroxide and potassium bisulfite, indicating that G6PDH activity is required to cope with these stresses. The mutant also requires methionine for growth. Enzyme activity can be restored by the expression of heterologous G6PDH genes from other yeasts and humans under the control of a strong endogenous promoter. These findings provide the basis for a better adaptation of H. uvarum to conditions used in wine fermentations, as well as its use for other biotechnological purposes and as an expression organism for studying G6PDH functions in patients with hemolytic anemia.
Collapse
Affiliation(s)
- Jürgen J. Heinisch
- AG Genetik, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany; (A.M.); (L.F.M.); (H.-P.S.)
| | | | | | | |
Collapse
|
5
|
Minden S, Aniolek M, Sarkizi Shams Hajian C, Teleki A, Zerrer T, Delvigne F, van Gulik W, Deshmukh A, Noorman H, Takors R. Monitoring Intracellular Metabolite Dynamics in Saccharomyces cerevisiae during Industrially Relevant Famine Stimuli. Metabolites 2022; 12:metabo12030263. [PMID: 35323706 PMCID: PMC8953226 DOI: 10.3390/metabo12030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance. A priori knowledge of the expected strain performance would enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today, computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on microbial performance. However, profound wet-lab datasets are needed to cover relevant perturbations on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response experiments were operated as chemostats with an intermittent feed and high-frequency sampling. Our results reveal that even mild glucose gradients in the range of 100 µmol·L−1 impose significant perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Apparently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7% increased maintenance demands.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Christopher Sarkizi Shams Hajian
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Tobias Zerrer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), TERRA Research and Teaching Centre, Gembloux Agro Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 6, 2629 HZ Delft, The Netherlands;
| | - Amit Deshmukh
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
- Correspondence:
| |
Collapse
|
6
|
Wang X, Luo X. Precursor Quantitation Methods for Next Generation Food Production. Front Bioeng Biotechnol 2022; 10:849177. [PMID: 35360389 PMCID: PMC8960114 DOI: 10.3389/fbioe.2022.849177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Food is essential for human survival. Nowadays, traditional agriculture faces challenges in balancing the need of sustainable environmental development and the rising food demand caused by an increasing population. In addition, in the emerging of consumers' awareness of health related issues bring a growing trend towards novel nature-based food additives. Synthetic biology, using engineered microbial cell factories for production of various molecules, shows great advantages for generating food alternatives and additives, which not only relieve the pressure laid on tradition agriculture, but also create a new stage in healthy and sustainable food supplement. The biosynthesis of food components (protein, fats, carbohydrates or vitamins) in engineered microbial cells often involves cellular central metabolic pathways, where common precursors are processed into different proteins and products. Quantitation of the precursors provides information of the metabolic flux and intracellular metabolic state, giving guidance for precise pathway engineering. In this review, we summarized the quantitation methods for most cellular biosynthetic precursors, including energy molecules and co-factors involved in redox-reactions. It will also be useful for studies worked on pathway engineering of other microbial-derived metabolites. Finally, advantages and limitations of each method are discussed.
Collapse
Affiliation(s)
- Xinran Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
7
|
Identification of a novel cytochrome P450 17A2 enzyme catalyzing the C17α hydroxylation of progesterone and its application in engineered Pichia pastoris. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis. Biomolecules 2021; 11:biom11050725. [PMID: 34065948 PMCID: PMC8151747 DOI: 10.3390/biom11050725] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose catabolism in the baker’s yeast Saccharomyces cerevisiae, where its components were first discovered and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute almost equally to glucose degradation in other yeasts. We here summarize the data available for the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of gene deletions and the benefits of their overproduction and modification. Reference to other yeasts and to the importance of the PPP in their biotechnological and medical applications is briefly being included. We propose future studies on the PPP in K. lactis to be of special interest for basic science and as a host for the expression of human disease genes.
Collapse
|
9
|
Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2020; 104:7991-8006. [PMID: 32776206 DOI: 10.1007/s00253-020-10808-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023]
Abstract
Glycolysis and the pentose phosphate pathway (PPP) are two basic metabolic pathways that are simultaneously present in yeasts. As the main pathway in most species, the glycolysis provides ATP and NADH for cell metabolism while PPP, as a complementary pathway, supplies NADPH. In this study, the performance of Kluyveromyces marxianus using glycolysis or PPP were studied through the disruption of PGI1 or ZWF1 gene, respectively. K. marxianus using glycolysis as the only pathway showed higher ethanol production ability than that of the Kluyveromyces lactis zwf1Δ mutant; K. marxianus using only PPP showed more robustness than that of Saccharomyces cerevisiae pgi1Δ mutant. Additionally, K. marxianus pgi1Δ strain accumulated much more intracellular NADPH than the wild type strain and co-utilized glucose and xylose more effectively. These findings suggest that phosphoglucose isomerase participates in the regulation of the repression of glucose on xylose utilization in K. marxianus. The NADPH/NADP+ ratio, dependent on the activity of the PPP, regulated the expression of multiple genes related to NADPH metabolism in K. marxianus (including NDE1, NDE2, GLR1, and GDP1). Since K. marxianus is considered a promising host in industrial biotechnology to produce renewable chemicals from plant biomass feedstocks, our research showed the potential of the thermotolerant K. marxianus to produce NADP(H)-dependent chemical synthesis from multiple feedstocks. KEY POINTS: • The function of PGI1 and ZWF1 in K. marxianus has been analyzed in this study. • K. marxianus zwf1Δ strain produced ethanol but with decreased productivity. • K. marxianus pgi1Δ strain grew with glucose and accumulated NADPH. • K. marxianus pgi1Δ strain released glucose repression on xylose utilization.
Collapse
|
10
|
Isakova EP, Matushkina IN, Popova TN, Dergacheva DI, Gessler NN, Klein OI, Semenikhina AV, Deryabina YI, La Porta N, Saris NEL. Metabolic Remodeling during Long-Lasting Cultivation of the Endomyces magnusii Yeast on Oxidative and Fermentative Substrates. Microorganisms 2020; 8:E91. [PMID: 31936585 PMCID: PMC7022524 DOI: 10.3390/microorganisms8010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, we evaluated the metabolic profile of the aerobic microorganism of Endomyces magnusii with a complete respiration chain and well-developed mitochondria system during long-lasting cultivation. The yeast was grown in batches using glycerol and glucose as the sole carbon source for a week. The profile included the cellular biological and chemical parameters, which determined the redox status of the yeast cells. We studied the activities of the antioxidant systems (catalases and superoxide dismutases), glutathione system enzymes (glutathione peroxidase and reductase), aconitase, as well as the main enzymes maintaining NADPH levels in the cells (glucose-6-phosphate dehydrogenase and NADP+-isocitrate dehydrogenase) during aging of Endomyces magnusii on two kinds of substrates. We also investigated the dynamics of change in oxidized and reduced glutathione, conjugated dienes, and reactive oxidative species in the cells at different growth stages, including the deep stationary stages. Our results revealed a similar trend in the changes in the activity of all the enzymes tested, which increased 2-4-fold upon aging. The yeast cytosol had a very high reduced glutathione content, 22 times than that of Saccharomyces cerevisiae, and remained unchanged during growth, whereas there was a 7.5-fold increase in the reduced glutathione-to-oxidized glutathione ratio. The much higher level of reactive oxidative species was observed in the cells in the late and deep stationary phases, especially in the cells using glycerol. Cell aging of the culture grown on glycerol, which promotes active oxidative phosphorylation in the mitochondria, facilitated the functioning of powerful antioxidant systems (catalases, superoxide dismutases, and glutathione system enzymes) induced by reactive oxidative species. Moreover, it stimulated NADPH synthesis, regulating the cytosolic reduced glutathione level, which in turn determines the redox potential of the yeast cell during the early aging process.
Collapse
Affiliation(s)
- Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Irina N. Matushkina
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Darya I. Dergacheva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Olga I. Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Anastasya V. Semenikhina
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund, Mach, Department of Sustainable Agroecosystems and Bioresources, Via Mach 1, 38010 San Michele all’Adige, Italy
| | - Nils-Eric L. Saris
- Department of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, POB 56, 00014 Helsinki, Finland;
| |
Collapse
|
11
|
Benítez-Rangel E, Rodríguez-Hernández A, Velasco-García R. The substrate of the glucose-6-phosphate dehydrogenase of Pseudomonas aeruginosa provides structural stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140331. [PMID: 31760039 DOI: 10.1016/j.bbapap.2019.140331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/22/2019] [Accepted: 11/20/2019] [Indexed: 01/18/2023]
Abstract
In general, eukaryotic glucose-6-phosphate dehydrogenases (G6PDHs) are structurally stabilized by NADP+. Here we show by spectrofluorometric analysis, thermal and urea denaturation, and trypsin proteolysis, that a different mechanism stabilizes the enzyme from Pseudomonas aeruginosa (PaG6PDH) (EC 1.1.1.363). The spectrofluorometric analysis of the emission of 8-anilino-1-naphthalenesulfonic acid (ANS) indicates that this stabilization is the result of a structural change in the enzyme caused by G6P. The similarity between the Kd values determined for the PaG6PDH-G6P complex (78.0 ± 7.9 μM) and the K0.5 values determined for G6P (57.9 ± 2.5 and 104.5 ± 9.3 μM in the NADP+- and NAD+-dependent reactions, respectively) suggests that the structural changes are the result of G6P binding to the active site of PaG6PDH. Modeling of PaG6PDH indicated the residues that potentially bind the ligand. These results and a phylogenetic analysis of the amino acid sequences of forty-four G6PDHs, suggest that the stabilization observed for PaG6PDH could be a characteristic that distinguishes this and other G6PDHs that use NAD+ and NADP+ from those that use NADP+ only or preferentially, such as those found in eukaryotes. This characteristic could be related to the metabolic roles these enzymes play in the organisms to which they belong.
Collapse
Affiliation(s)
- Edaena Benítez-Rangel
- Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico
| | - Annia Rodríguez-Hernández
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Roberto Velasco-García
- Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico.
| |
Collapse
|
12
|
Durano D, Di Felice F, Caldarelli F, Lukacs A, D'Alfonso A, Saliola M, Sciubba F, Miccheli A, Zambelli F, Pavesi G, Bianchi ME, Camilloni G. Histone acetylation landscape in S. cerevisiae nhp6ab mutants reflects altered glucose metabolism. Biochim Biophys Acta Gen Subj 2019; 1864:129454. [PMID: 31676292 DOI: 10.1016/j.bbagen.2019.129454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The execution of many genetic programs, influenced by environmental conditions, is epigenetically controlled. Thus, small molecules of the intermediate metabolism being precursors of most of nutrition-deriving epigenetic modifications, sense the cell surrounding environment. METHODS Here we describe histone H4K16 acetylation distribution in S. cerevisiae nhp6ab mutant, using ChIP-seq analysis; its transcription profile by RNA-seq and its metabolic features by studying the metabolome. We then intersected these three -omic approaches to unveil common crosspoints (if any). RESULTS In the nhp6ab mutant, the glucose metabolism is switched to pathways leading to Acetyl-CoA synthesis. These enhanced pathways could lead to histone hyperacetylation altering RNA transcription, particularly of those metabolic genes that maintain high Acetyl-CoA availability. CONCLUSIONS Thus, the absence of chromatin regulators like Nhp6 A and B, interferes with a regulative circular mechanism where histone modification, transcription and metabolism influence each other and contribute to clarify the more general phenomenon in which gene regulation feeds metabolic alterations on epigenetic basis. GENERAL SIGNIFICANCE This study allowed us to identify, in these two factors, a common element of regulation in metabolism and chromatin acetylation state that could represent a powerful tool to find out relationships existing between metabolism and gene expression in more complex systems.
Collapse
Affiliation(s)
- Diletta Durano
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Francesca Di Felice
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Federica Caldarelli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Andrea Lukacs
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Anna D'Alfonso
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Michele Saliola
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Fabio Sciubba
- Dipartimento di Chimica, Sapienza Università di Roma, Rome, Italy
| | - Alfredo Miccheli
- Dipartimento di Chimica, Sapienza Università di Roma, Rome, Italy
| | | | - Giulio Pavesi
- Dipartimento di Bioscienze, Università di Milano, Milan, Italy
| | - Marco E Bianchi
- Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute and San Raffaele University, Milan, Italy
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy; Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy; Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Italy.
| |
Collapse
|
13
|
Xu JZ, Yang HK, Zhang WG. NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Crit Rev Biotechnol 2018; 38:1061-1076. [PMID: 29480038 DOI: 10.1080/07388551.2018.1437387] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reduced nicotinamide adenine nucleotide phosphate (NADPH), which is one of the key cofactors in the metabolic network, plays an important role in the biochemical reactions, and physiological function of amino acid-producing strains. The manipulation of NADPH availability and form is an efficient and easy method of redirecting the carbon flux to the amino acid biosynthesis in industrial strains. In this review, we survey the metabolic mode of NADPH. Furthermore, we summarize the research developments in the understanding of the relationship between NADPH metabolism and amino acid biosynthesis. Detailed strategies to manipulate NADPH availability are addressed based on this knowledge. Finally, the uses of NADPH manipulation strategies to enhance the metabolic function of amino acid-producing strains are discussed.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China.,b The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China
| | - Han-Kun Yang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China
| | - Wei-Guo Zhang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China
| |
Collapse
|
14
|
Cardarelli S, Giorgi M, Naro F, Malatesta F, Biagioni S, Saliola M. Use of the KlADH3 promoter for the quantitative production of the murine PDE5A isoforms in the yeast Kluyveromyces lactis. Microb Cell Fact 2017; 16:159. [PMID: 28938916 PMCID: PMC5610471 DOI: 10.1186/s12934-017-0779-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. RESULTS Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying Km, Vmax and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. CONCLUSIONS To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Mauro Giorgi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic, and Orthopaedic Sciences, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Francesco Malatesta
- Department of Biochemical Sciences “Rossi Fanelli”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Balaban CL, Banchio C, Ceccarelli EA. TAT-mediated transduction of bacterial redox proteins generates a cytoprotective effect on neuronal cells. PLoS One 2017; 12:e0184617. [PMID: 28886198 PMCID: PMC5591030 DOI: 10.1371/journal.pone.0184617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/28/2017] [Indexed: 12/23/2022] Open
Abstract
Cell penetrating peptides, also known as protein transduction domains, have the capacity to ubiquitously cross cellular membranes carrying many different cargos with negligible cytotoxicity. As a result, they have emerged as a powerful tool for macromolecular delivery-based therapies. In this study, catalytically active bacterial Ferredoxin-NADP+ reductase (LepFNR) and Heme oxygenase (LepHO) fused to the HIV TAT-derived protein transduction peptide (TAT) were efficiently transduced to neuroblastoma SHSY-5Y cells. Proteins entered the cells through an endocytic pathway showing a time/concentration dependent mechanism that was clearly modulated by the nature of the cargo protein. Since ferredoxin-NADP+ reductases and heme oxygenases have been implicated in mechanisms of oxidative stress defense, neuroblastoma cells simultaneously transduced with TAT-LepFNR and TAT-LepHO were challenged by H2O2 incubations to judge the cytoprotective power of these bacterial enzymes. Accumulation of reactive oxygen species was significantly reduced in these transduced neuronal cells. Moreover, measurements of metabolic viability, membrane integrity, and cell survival indicated that these cells showed a better tolerance to oxidative stress. Our results open the possibility for the application of transducible active redox proteins to overcome the damage elicited by oxidative stress in cells and tissues.
Collapse
Affiliation(s)
- Cecilia L. Balaban
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Eduardo A. Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
- * E-mail:
| |
Collapse
|
16
|
Liu G, Li B, Li C, Yuan Y. Enhancement of Simultaneous Xylose and Glucose Utilization by Regulating ZWF1 and PGI1 in Saccharomyces Cerevisiae. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s12209-017-0048-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
18
|
Tramonti A, Saliola M. Glucose 6-phosphate and alcohol dehydrogenase activities are components of dynamic macromolecular depots structures. Biochim Biophys Acta Gen Subj 2015; 1850:1120-30. [PMID: 25662817 DOI: 10.1016/j.bbagen.2015.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Membrane-associated respiratory complexes, purinosome and many intracellular soluble activities have reported to be organized in dynamic multi-component macromolecular complexes using native PAGE, 2D SDS-PAGE, electron and systematic microscopy and genome-wide GFP fusion library. METHODS In-gel staining assays, SDS-PAGE and LC-MSMS techniques were performed on cellular extracts to analyze, isolate and identify the proteins associated with glucose 6-phosphate dehydrogenase (G6PDH) and fermentative alcohol dehydrogenase (ADH) I isoform in both Kluyveromyces lactis and Saccharomyces cerevisiae yeasts. RESULTS Analysis of LC-MSMS data showed that a large number of components, belonging to glycolysis, pentose phosphate, folding and stress response pathways, were associated with G6PDH and Adh1 putative complexes and that a number of these proteins were identical in either network in both yeasts. However, comparison of in-gel staining assays for hexokinase, phosphoglucoisomerase, acetaldehyde dehydrogenase, ADH and G6PDH showed that, despite their identification in these structures, functional localization of these activities varied according to growth conditions and to NAD(P)+/NAD(P)H redox ratio. CONCLUSIONS Reported data show that intracellular proteins are organized in large dynamic 'depots' and the NAD(P)+/NAD(P)H redox balance is one of the major factors regulating the assembly and the re-assortment of components inside the different metabolic structures. GENERAL SIGNIFICANCE The aim of this work is directed towards the comprehension of the mechanisms involved in the assembly, organization, functioning and dynamic re-assortment of cellular components according to physiological and/or pathological conditions.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, CNR-Dipartimento di Scienze Biochimiche "Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Michele Saliola
- Dipartimento di Biologia e Biotecnologia "C. Darwin", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
19
|
Signori L, Passolunghi S, Ruohonen L, Porro D, Branduardi P. Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain. Microb Cell Fact 2014; 13:51. [PMID: 24712908 PMCID: PMC3991920 DOI: 10.1186/1475-2859-13-51] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The yeast Kluyveromyces marxianus features specific traits that render it attractive for industrial applications. These include production of ethanol which, together with thermotolerance and the ability to grow with a high specific growth rate on a wide range of substrates, could make it an alternative to Saccharomyces cerevisiae as an ethanol producer. However, its ability to co-ferment C5 and C6 sugars under oxygen-limited conditions is far from being fully characterized. RESULTS In the present study, K. marxianus CBS712 strain was cultivated in defined medium with glucose and xylose as carbon source. Ethanol fermentation and sugar consumption of CBS712 were investigated under different oxygen supplies (1.75%, 11.00% and 20.95% of O2) and different temperatures (30°C and 41°C). By decreasing oxygen supply, independently from the temperature, both biomass production as well as sugar utilization rate were progressively reduced. In all the tested conditions xylose consumption followed glucose exhaustion. Therefore, xylose metabolism was mainly affected by oxygen depletion. Loss in cell viability cannot explain the decrease in sugar consumption rates, as demonstrated by single cell analyses, while cofactor imbalance is commonly considered as the main cause of impairment of the xylose reductase (KmXR) - xylitol dehydrogenase (KmXDH) pathway. Remarkably, when these enzyme activities were assayed in vitro, a significant decrease was observed together with oxygen depletion, not ascribed to reduced transcription of the corresponding genes. CONCLUSIONS In the present study both oxygen supply and temperature were shown to be key parameters affecting the fermentation capability of sugars in the K. marxianus CBS712 strain. In particular, a direct correlation was observed between the decreased efficiency to consume xylose with the reduced specific activity of the two main enzymes (KmXR and KmXDH) involved in its catabolism. These data suggest that, in addition to the impairment of the oxidoreductive pathway being determined by the cofactor imbalance, post-transcriptional and/or post-translational regulation of the pathway enzymes contributes to the efficiency of xylose catabolism in micro-aerobic conditions. Overall, the presented work provides novel information on the fermentation capability of the CBS712 strain that is currently considered as the reference strain of the genus K. marxianus.
Collapse
Affiliation(s)
| | | | | | | | - Paola Branduardi
- University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
20
|
Gorietti D, Zanni E, Palleschi C, Delfini M, Uccelletti D, Saliola M, Miccheli A. Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis. Biochim Biophys Acta Gen Subj 2013; 1840:556-64. [PMID: 24144565 DOI: 10.1016/j.bbagen.2013.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND In the Crabtree-negative Kluyveromyces lactis yeast the rag8 mutant is one of nineteen complementation groups constituting the fermentative-deficient model equivalent to the Saccharomyces cerevisiae respiratory petite mutants. These mutants display pleiotropic defects in membrane fatty acids and/or cell walls, osmo-sensitivity and the inability to grow under strictly anaerobic conditions (Rag(-) phenotype). RAG8 is an essential gene coding for the casein kinase I, an evolutionary conserved activity involved in a wide range of cellular processes coordinating morphogenesis and glycolytic flux with glucose/oxygen sensing. METHODS A metabolomic approach was performed by NMR spectroscopy to investigate how the broad physiological roles of Rag8, taken as a model for all rag mutants, coordinate cellular responses. RESULTS Statistical analysis of metabolomic data showed a significant increase in the level of metabolites in reactions directly involved in the reoxidation of the NAD(P)H in rag8 mutant samples with respect to the wild type ones. We also observed an increased de novo synthesis of nicotinamide adenine dinucleotide. On the contrary, the production of metabolites in pathways leading to the reduction of the cofactors was reduced. CONCLUSIONS The changes in metabolite levels in rag8 showed a metabolic adaptation that is determined by the intracellular NAD(P)(+)/NAD(P)H redox balance state. GENERAL SIGNIFICANCE The inadequate glycolytic flux of the mutant leads to a reduced/asymmetric distribution of acetyl-CoA to the different cellular compartments with loss of the fatty acid dynamic respiratory/fermentative adaptive balance response.
Collapse
Affiliation(s)
- D Gorietti
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|