1
|
Roberts WR, Alverson AJ. Three reference genomes for freshwater diatom ecology and evolution. JOURNAL OF PHYCOLOGY 2025; 61:267-274. [PMID: 39930529 PMCID: PMC12044402 DOI: 10.1111/jpy.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 05/02/2025]
Abstract
Diatoms are an important component of marine and freshwater ecosystems. Although the majority of described diatom species live in freshwater systems, genome sequencing efforts have focused primarily on marine species. Genomic resources for freshwater species have the potential to improve our understanding of diatom ecology and evolution, particularly in the context of major environmental shifts. We used long- and short-read sequencing platforms to assemble reference genomes for three freshwater diatom species, all in the order Thalalassiosirales, which are abundant in the plankton of oceans, lakes, reservoirs, and rivers worldwide. We targeted three species that cover the breadth of phylogenetic diversity in the cyclostephanoid clade of Thalassiosirales: Cyclostephanos tholiformis (JALLPB020000000), Discostella pseudostelligera (JALLBG020000000), and Praestephanos triporus (JALLAZ020000000). The reference genome for D. pseudostelligera was considerably smaller (39 Mb) than those of both P. triporus (73 Mb) and C. tholiformis (177 Mb). Long-read sequencing allowed for the assembly of scaffold-level genomes, including regions rich in repetitive DNA. Compared to short-read assemblies, long-read assemblies increased the contig N50 length as much as 37-fold and reduced the number of contigs by more than 88%. Transcriptome-guided annotation of the protein-coding genes identified between 10,000 and 12,000 genes. This work provides further demonstration of the value of long-read sequencing and provides novel genomic resources for understanding the ecology and evolution of freshwater diatoms.
Collapse
Affiliation(s)
- Wade R. Roberts
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| | - Andrew J. Alverson
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
2
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James CC, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Fussy Z, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular forecasting of domoic acid during a pervasive toxic diatom bloom. Proc Natl Acad Sci U S A 2024; 121:e2319177121. [PMID: 39298472 PMCID: PMC11459128 DOI: 10.1073/pnas.2319177121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/05/2024] [Indexed: 09/21/2024] Open
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis, this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis (dab) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters (sit1) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that coexpression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have colimited the diatom population along with low Si. Iron limitation represents an overlooked driver of both toxin production and ecological success of the low-iron-adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms.
Collapse
Affiliation(s)
- John K. Brunson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Monica Thukral
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - John P. Ryan
- Research Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA95093
| | - Clarissa R. Anderson
- Southern California Coastal Ocean Observing System, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Bethany C. Kolody
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Chase C. James
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Francisco P. Chavez
- Research Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA95093
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan16310, Malaysia
| | - Ariel J. Rabines
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Pratap Venepally
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Zoltan Fussy
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Raphael M. Kudela
- Ocean Sciences Department, Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, CA95064
| | - G. Jason Smith
- Environmental Biotechnology Department, Moss Landing Marine Laboratories, Moss Landing, CA95039
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Andrew E. Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
3
|
Sanniyasi E, Gopal RK, Damodharan R, Thirumurugan T, Mahendran V. Bioaccumulation of Titanium in diatom Cyclotella atomus Hust. Biometals 2024; 37:71-86. [PMID: 37566151 DOI: 10.1007/s10534-023-00528-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Diatomaceous earth or diatomite is a fossil rock deposit of diatoms made up of silica and other minerals. A distinguishing feature of diatoms that placed them in the single class of microalgae Bacillariophyceae, is the frustule, a transparent, hard-shelled cell wall. It's interesting to note that the diatom has specific proteins and enzymes for heavy metal detoxification and can intake and store more heavy metals in its frustule. Consequently, an attempt has been made in this study to determine the bioaccumulation of metals in the frustules of the diatom. Hence, a centric diatom was isolated from the freshwater sample collected from the Adyar River, Chennai, Tamil Nadu. The diameter of the cell was 5-7.5 µm and 20-23 striations with radial arrangement. A single, dark off-center fultoportula and marginal fultoportula on the striae are found in the diatom. Additionally, one rimoportula between two marginal fultoportula distributed on the striae between the costa was also seen. As a result, the isolated diatom was morphologically identified as Cyclotella atomus Hust. Simultaneously, the bioaccumulation study reveals that the Titanium (Ti) was found accumulated in the frustules of the diatom incubated in the Ti-supplemented culture medium based on the scanning electron microscope-energy-dispersive X-ray analysis (SEM-EDAX). Therefore, the biogenic accumulation and fabrication of Titanium frustules in diatom have advantages in enhancing the efficiency of solar cells.
Collapse
Affiliation(s)
- Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India.
| | - Rajesh Kanna Gopal
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | - Rajesh Damodharan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Tarani Thirumurugan
- Department of Biotechnology, Rajalakshmi Engineering College (Autonomous), Thandalam, Chennai, 602 105, India
| | - Vishali Mahendran
- Department of Biotechnology, Rajalakshmi Engineering College (Autonomous), Thandalam, Chennai, 602 105, India
| |
Collapse
|
4
|
Bryłka K, Pinseel E, Roberts WR, Ruck EC, Conley DJ, Alverson AJ. Gene Duplication, Shifting Selection, and Dosage Balance of Silicon Transporter Proteins in Marine and Freshwater Diatoms. Genome Biol Evol 2023; 15:evad212. [PMID: 37996067 PMCID: PMC10700740 DOI: 10.1093/gbe/evad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Numerous factors shape the evolution of protein-coding genes, including shifts in the strength or type of selection following gene duplications or changes in the environment. Diatoms and other silicifying organisms use a family of silicon transporters (SITs) to import dissolved silicon from the environment. Freshwaters contain higher silicon levels than oceans, and marine diatoms have more efficient uptake kinetics and less silicon in their cell walls, making them better competitors for a scarce resource. We compiled SITs from 37 diatom genomes to characterize shifts in selection following gene duplications and marine-freshwater transitions. A deep gene duplication, which coincided with a whole-genome duplication, gave rise to two gene lineages. One of them (SIT1-2) is present in multiple copies in most species and is known to actively import silicon. These SITs have evolved under strong purifying selection that was relaxed in freshwater taxa. Episodic diversifying selection was detected but not associated with gene duplications or habitat shifts. In contrast, genes in the second SIT lineage (SIT3) were present in just half the species, the result of multiple losses. Despite conservation of SIT3 in some lineages for the past 90-100 million years, repeated losses, relaxed selection, and low expression highlighted the dispensability of SIT3, consistent with a model of deterioration and eventual loss due to relaxed selection on SIT3 expression. The extensive but relatively balanced history of duplications and losses, together with paralog-specific expression patterns, suggest diatoms continuously balance gene dosage and expression dynamics to optimize silicon transport across major environmental gradients.
Collapse
Affiliation(s)
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Wade R Roberts
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | | | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
5
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James C, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular Forecasting of Domoic Acid during a Pervasive Toxic Diatom Bloom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565333. [PMID: 37961417 PMCID: PMC10635071 DOI: 10.1101/2023.11.02.565333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis , this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis ( dab ) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters ( sit1 ) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that co-expression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have co-limited the diatom population along with low Si. Iron limitation represents a previously unrecognized driver of both toxin production and ecological success of the low iron adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms. Significance Pseudo-nitzschia diatoms form oceanic harmful algal blooms that threaten human health through production of the neurotoxin domoic acid (DA). DA biosynthetic gene expression is hypothesized to control DA production in the environment, yet what regulates expression of these genes is yet to be discovered. In this study, we uncovered expression of DA biosynthesis genes by multiple toxigenic Pseudo-nitzschia species during an economically impactful bloom along the North American West Coast, and identified genes that predict DA in advance of its production. We discovered that iron and silica co-limitation restrained the bloom and likely promoted toxin production. This work suggests that increasing iron limitation due to global change may play a previously unrecognized role in driving bloom frequency and toxicity.
Collapse
|
6
|
Wang L, Sun Y, Zhang R, Pan K, Li Y, Wang R, Zhang L, Zhou C, Li J, Li Y, Zhu B, Han J. Enhancement of hemostatic properties of Cyclotella cryptica frustule through genetic manipulation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:136. [PMID: 37710352 PMCID: PMC10503012 DOI: 10.1186/s13068-023-02389-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The silicified cell wall of diatoms, also known as frustule, shows huge potential as an outstanding bio-nanomaterial for hemostatic applications due to its high hemostatic efficiency, good biocompatibility, and ready availability. As the architectural features of the frustule determine its hemostatic performance, it is of great interest to develop an effective method to modify the frustule morphology into desired patterns to further improve hemostatic efficiency. RESULTS In this study, the gene encoding Silicalemma Associated Protein 2 (a silicalemma-spanning protein) of Cyclotella cryptica (CcSAP2) was identified as a key gene in frustule morphogenesis. Thus, it was overexpressed and knocked down, respectively. The frustule of the overexpress lines showed no obvious alteration in morphology compared to the wild type (WT), while the size, specific surface area (BET), pore volume, and pore diameter of the knockdown strains changed greatly. Particularly, the knockdown frustules achieved a more pronounced coagulation effect and in vivo hemostatic performance than the WT strains. Such observations suggested that silicalemma proteins are ideal genetic encoding targets for manipulating frustule morphology associated hemostatic properties. Furthermore, the Mantel test was adopted to identify the key morphologies associated with C. cryptica bleeding control. Finally, based on our results and recent advances, the mechanism of frustule morphogenesis was discussed. CONCLUSION This study explores a new strategy for enhancing the hemostatic efficiency of the frustule based on genetic morphology modification and may provide insights into a better understanding of the frustule morphogenesis mechanism.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Ruihao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kehou Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Laoshan Laboratory, Qingdao, 266237, China
| | - Yuhang Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315200, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China.
| |
Collapse
|
7
|
Ratcliffe S, Meyer EM, Walker CE, Knight M, McNair HM, Matson PG, Iglesias-Rodriguez D, Brzezinski M, Langer G, Sadekov A, Greaves M, Brownlee C, Curnow P, Taylor AR, Wheeler GL. Characterization of the molecular mechanisms of silicon uptake in coccolithophores. Environ Microbiol 2023; 25:315-330. [PMID: 36397254 PMCID: PMC10098502 DOI: 10.1111/1462-2920.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/05/2022] [Indexed: 11/19/2022]
Abstract
Coccolithophores are an important group of calcifying marine phytoplankton. Although coccolithophores are not silicified, some species exhibit a requirement for Si in the calcification process. These species also possess a novel protein (SITL) that resembles the SIT family of Si transporters found in diatoms. However, the nature of Si transport in coccolithophores is not yet known, making it difficult to determine the wider role of Si in coccolithophore biology. Here, we show that coccolithophore SITLs act as Na+ -coupled Si transporters when expressed in heterologous systems and exhibit similar characteristics to diatom SITs. We find that CbSITL from Coccolithus braarudii is transcriptionally regulated by Si availability and is expressed in environmental coccolithophore populations. However, the Si requirement of C. braarudii and other coccolithophores is very low, with transport rates of exogenous Si below the level of detection in sensitive assays of Si transport. As coccoliths contain only low levels of Si, we propose that Si acts to support the calcification process, rather than forming a structural component of the coccolith itself. Si is therefore acting as a micronutrient in coccolithophores and natural populations are only likely to experience Si limitation in circumstances where dissolved silicon (DSi) is depleted to extreme levels.
Collapse
Affiliation(s)
| | - Erin M Meyer
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Charlotte E Walker
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| | - Michael Knight
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Heather M McNair
- Department of Ecology Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California, USA
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Paul G Matson
- Department of Ecology Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California, USA
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Debora Iglesias-Rodriguez
- Department of Ecology Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Mark Brzezinski
- Department of Ecology Evolution and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California, USA
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Gerald Langer
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| | - Aleksey Sadekov
- ARC Centre of Excellence for Coral Reef Studies, Ocean Graduate School, University of Western Australia, Crawley, Western Australia, Australia
| | - Mervyn Greaves
- The Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| |
Collapse
|
8
|
Knight MJ, Hardy BJ, Wheeler GL, Curnow P. Computational modelling of diatom silicic acid transporters predicts a conserved fold with implications for their function and evolution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184056. [PMID: 36191629 DOI: 10.1016/j.bbamem.2022.184056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022]
Abstract
Diatoms are an important group of algae that can produce intricate silicified cell walls (frustules). The complex process of silicification involves a set of enigmatic integral membrane proteins that are thought to actively transport the soluble precursor of biosilica, dissolved silicic acid. Full-length silicic acid transporters are found widely across the diatoms while homologous shorter proteins have now been identified in a range of other organisms. It has been suggested that modern silicic acid transporters arose from the union of such partial sequences. Here, we present a computational study of the silicic acid transporters and related transporter-like sequences to help understand the structure, function and evolution of this class of membrane protein. The AlphaFold software predicts that all of the protein sequences studied here share a common fold in the membrane domain which is entirely different from the predicted folds of non-homologous silicic acid transporters from plants. Substrate docking reveals how conserved polar residues could interact with silicic acid at a central solvent-accessible binding site, consistent with an alternating access mechanism of transport. The structural conservation between these proteins supports a model where modern silicon transporters evolved from smaller ancestral proteins by gene fusion.
Collapse
Affiliation(s)
| | | | | | - Paul Curnow
- School of Biochemistry, University of Bristol, UK.
| |
Collapse
|
9
|
Maniscalco MA, Brzezinski MA, Lampe RH, Cohen NR, McNair HM, Ellis KA, Brown M, Till CP, Twining BS, Bruland KW, Marchetti A, Thamatrakoln K. Diminished carbon and nitrate assimilation drive changes in diatom elemental stoichiometry independent of silicification in an iron-limited assemblage. ISME COMMUNICATIONS 2022; 2:57. [PMID: 37938259 PMCID: PMC9723790 DOI: 10.1038/s43705-022-00136-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 06/17/2023]
Abstract
In the California Current Ecosystem, upwelled water low in dissolved iron (Fe) can limit phytoplankton growth, altering the elemental stoichiometry of the particulate matter and dissolved macronutrients. Iron-limited diatoms can increase biogenic silica (bSi) content >2-fold relative to that of particulate organic carbon (C) and nitrogen (N), which has implications for carbon export efficiency given the ballasted nature of the silica-based diatom cell wall. Understanding the molecular and physiological drivers of this altered cellular stoichiometry would foster a predictive understanding of how low Fe affects diatom carbon export. In an artificial upwelling experiment, water from 96 m depth was incubated shipboard and left untreated or amended with dissolved Fe or the Fe-binding siderophore desferrioxamine-B (+DFB) to induce Fe-limitation. After 120 h, diatoms dominated the communities in all treatments and displayed hallmark signatures of Fe-limitation in the +DFB treatment, including elevated particulate Si:C and Si:N ratios. Single-cell, taxon-resolved measurements revealed no increase in bSi content during Fe-limitation despite higher transcript abundance of silicon transporters and silicanin-1. Based on these findings we posit that the observed increase in bSi relative to C and N was primarily due to reductions in C fixation and N assimilation, driven by lower transcript expression of key Fe-dependent genes.
Collapse
Affiliation(s)
- Michael A Maniscalco
- Marine Science Institute and The Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
| | - Mark A Brzezinski
- Marine Science Institute and The Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Heather M McNair
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, USA
| | - Kelsey A Ellis
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | - Claire P Till
- Chemistry Department, California State Polytechnic University, Humboldt, Arcata, CA, USA
| | | | - Kenneth W Bruland
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Adrian Marchetti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
10
|
Abstract
Biomass and lipid production by the marine centric diatom Thalassiosira pseudonana were characterized in media based on palm oil mill effluent (POME) as a source of key nutrients. The optimal medium comprised 20% by volume POME, 80 µM Na2SiO3, and 35 g NaCl L−1 in water at pH ~7.7. In 15-day batch cultures (16:8 h/h light–dark cycle; 200 µmol photons m−2 s−1, 26 ± 1 °C) bubbled continuously with air mixed with CO2 (2.5% by vol), the peak concentration of dry biomass was 869 ± 14 mg L−1 corresponding to a productivity of ~58 mg L−1 day−1. The neutral lipid content of the biomass was 46.2 ± 1.1% by dry weight. The main components of the esterified lipids were palmitoleic acid methyl ester (31.6% w/w) and myristic acid methyl ester (16.8% w/w). The final biomass concentration and the lipid content were affected by the light–dark cycle. Continuous (24 h light) illumination at the above-specified irradiance reduced biomass productivity to ~54 mg L−1 day−1 and lipid content to 38.1%.
Collapse
|
11
|
Skordalou G, Korey M, Youngblood JP, Demadis KD. Pleiotropic action of pH-responsive poly(pyridine/PEG) copolymers in the stabilization of silicic acid or the enhancement of its polycondensation. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Kumar S, Rechav K, Kaplan-Ashiri I, Gal A. Imaging and quantifying homeostatic levels of intracellular silicon in diatoms. SCIENCE ADVANCES 2020; 6:6/42/eaaz7554. [PMID: 33067244 PMCID: PMC7567585 DOI: 10.1126/sciadv.aaz7554] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 08/28/2020] [Indexed: 05/21/2023]
Abstract
Diatoms are an abundant group of microalgae, known for their ability to form an intricate cell wall made of silica. Silicon levels in seawater are in the micromolar range, making it a challenge for diatoms to supply the rapid intracellular silicification process with the needed flux of soluble silicon. Here, we use three-dimensional cryo-electron microscopy and spectroscopy to quantitatively analyze, at submicrometer spatial resolution and sensitivity in the millimolar range, intracellular silicon in diatom cells. Our results show that the internal silicon concentration inside the cell is ~150 mM in average, three orders of magnitude higher than the external environment. The cellular silicon content is not compartmentalized, but rather unevenly distributed throughout the cell. Unexpectedly, under silicon starvation, the internal silicon pool is not depleted, reminiscent of a constitutive metabolite. Our spatially resolved approach to analyze intracellular silicon opens avenues to investigate this homeostatic trait of diatoms.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Bretherton L, Hillhouse J, Bacosa H, Setta S, Genzer J, Kamalanathan M, Finkel ZV, Quigg A. Growth dynamics and domoic acid production of Pseudo-nitzschia sp. in response to oil and dispersant exposure. HARMFUL ALGAE 2019; 86:55-63. [PMID: 31358277 DOI: 10.1016/j.hal.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
The diatom genus Pseudo-nitzschia is a common component of phytoplankton communities in the Gulf of Mexico and is potentially toxic as some species produce the potent neurotoxin domoic acid. The impact of oil and chemical dispersants on Pseudo-nitzschia spp. and domoic acid production have not yet been studied; preliminary findings from a mesocosm experiment suggest this genus may be particularly resilient. A toxicological study was conducted using a colony of Pseudo-nitzschia sp. isolated from a station off the coast of Louisiana in the Gulf of Mexico. The cultures were exposed to a water accommodated fraction (WAF) of oil and a diluted chemically enhanced WAF (DCEWAF) which was a mix of oil and dispersant (20:1). Exposure to WAF induced a lag phase but did not inhibit growth rates once in exponential growth. Cultures grown in DCEWAF did not experience a lag phase but had significantly lower growth rates than the Control and WAF cultures. The cellular quota of domoic acid was higher in cultures treated with DCEWAF and WAF relative to their control values, and half of the domoic acid had leaked out of the cells into the surrounding seawater in the DCEWAF cultures while all the domoic acid remained inside the cells in WAF-treated cultures. These results suggest that the presence of oil could lead to toxic blooms, but that the application of dispersant could decrease bioaccumulation of domoic acid through the food web.
Collapse
Affiliation(s)
- Laura Bretherton
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA.
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA
| | - Hernando Bacosa
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA
| | - Samantha Setta
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA
| | - Jennifer Genzer
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA
| | - Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77554, USA; Department of Oceanography, Texas A&M University, College Station, TX, 77843 USA
| |
Collapse
|
14
|
Chen XH, Li YY, Zhang H, Liu JL, Xie ZX, Lin L, Wang DZ. Quantitative Proteomics Reveals Common and Specific Responses of a Marine Diatom Thalassiosira pseudonana to Different Macronutrient Deficiencies. Front Microbiol 2018; 9:2761. [PMID: 30487787 PMCID: PMC6246746 DOI: 10.3389/fmicb.2018.02761] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
Macronutrients such as nitrogen (N), phosphorus (P), and silicon (Si) are essential for the productivity and distribution of diatoms in the ocean. Responses of diatoms to a particular macronutrient deficiency have been investigated, however, we know little about their common or specific responses to different macronutrients. Here, we investigated the physiology and quantitative proteomics of a diatom Thalassiosira pseudonana grown in nutrient-replete, N-, P-, and Si-deficient conditions. Cell growth was ceased in all macronutrient deficient conditions while cell volume and cellular C content under P- and Si-deficiencies increased. Contents of chlorophyll a, protein and cellular N decreased in both N- and P-deficient cells but chlorophyll a and cellular N increased in the Si-deficient cells. Cellular P content increased under N- and Si-deficiencies. Proteins involved in carbon fixation and photorespiration were down-regulated under all macronutrient deficiencies while neutral lipid synthesis and carbohydrate accumulation were enhanced. Photosynthesis, chlorophyll biosynthesis, and protein biosynthesis were down-regulated in both N- and P-deficient cells, while Si transporters, light-harvesting complex proteins, chloroplastic ATP synthase, plastid transcription and protein synthesis were up-regulated in the Si-deficient cells. Our results provided insights into the common and specific responses of T. pseudonana to different macronutrient deficiencies and identified specific proteins potentially indicating a particular macronutrient deficiency.
Collapse
Affiliation(s)
- Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jiu-Ling Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
15
|
Marchenkov AM, Petrova DP, Morozov AA, Zakharova YR, Grachev MA, Bondar AA. A family of silicon transporter structural genes in a pennate diatom Synedra ulna subsp. danica (Kütz.) Skabitsch. PLoS One 2018; 13:e0203161. [PMID: 30157241 PMCID: PMC6114903 DOI: 10.1371/journal.pone.0203161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022] Open
Abstract
Silicon transporters (SIT) are the proteins, which capture silicic acid in the aquatic environment and direct it across the plasmalemma to the cytoplasm of diatoms. Diatoms utilize silicic acid to build species-specific ornamented exoskeletons and make a significant contribution to the global silica cycle, estimated at 240 ±40 Tmol a year. Recently SaSIT genes of the freshwater araphid pennate diatom Synedra acus subsp. radians are found to be present in the genome as a cluster of two structural genes (SaSIT-TD and SaSIT-TRI) encoding several concatenated copies of a SIT protein each. These structural genes could potentially be transformed into "mature" SIT proteins by means of posttranslational proteolytic cleavage. In the present study, we discovered three similar structural SuSIT genes in the genome of a closely related freshwater diatom Synedra ulna subsp. danica. Structural gene SuSIT1 is identical to structural gene SuSIT2, and the two are connected by a non-coding nucleotide DNA sequence. All the putative "mature" SITs contain conserved amino acid motifs, which are believed to be important in silicon transport. The data obtained suggest that the predicted "mature" SIT proteins may be the minimal units necessary for the transport of silicon is S. ulna subsp. danica. The comparative analysis of all available multi-SITs has allowed us to detect two conservative motifs YQXDXVYL and DXDID, located between the "mature" proteins. Aspartic acid-rich DXDID motif can, in our opinion, serve as a proteolysis site during the multi-SIT cleavage. The narrow distribution of the distances between CMLD and DXDID motifs can serve as additional evidence to the conservation of their function.
Collapse
Affiliation(s)
- Artyom M. Marchenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Darya P. Petrova
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Alexey A. Morozov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Yulia R. Zakharova
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Michael A. Grachev
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Alexander A. Bondar
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
16
|
Shrestha RP, Hildebrand M. Development of a silicon limitation inducible expression system for recombinant protein production in the centric diatoms Thalassiosira pseudonana and Cyclotella cryptica. Microb Cell Fact 2017; 16:145. [PMID: 28818078 PMCID: PMC5561644 DOI: 10.1186/s12934-017-0760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/10/2017] [Indexed: 01/03/2023] Open
Abstract
Background An inducible promoter for recombinant protein expression provides substantial benefits because under induction conditions cellular energy and metabolic capability can be directed into protein synthesis. The most widely used inducible promoter for diatoms is for nitrate reductase, however, nitrogen metabolism is tied into diverse aspects of cellular function, and the induction response is not necessarily robust. Silicon limitation offers a means to eliminate energy and metabolic flux into cell division processes, with little other detrimental effect on cellular function, and a protein expression system that works under those conditions could be advantageous. Results In this study, we evaluate a number of promoters for recombinant protein expression induced by silicon limitation and repressed by the presence of silicon in the diatoms Thalassiosira pseudonana and Cyclotella cryptica. In addition to silicon limitation, we describe additional strategies to elevate recombinant protein expression level, including inclusion of the 5′ fragment of the coding region of the native gene and reducing carbon flow into ancillary processes of pigment synthesis and formation of photosynthetic storage products. We achieved yields of eGFP to 1.8% of total soluble protein in C. cryptica, which is about 3.6-fold higher than that obtained with chloroplast expression and ninefold higher than nuclear expression in another well-established algal system. Conclusions Our studies demonstrate that the combination of inducible promoter and other strategies can result in robust expression of recombinant protein in a nuclear-based expression system in diatoms under silicon limited conditions, separating the protein expression regime from growth processes and improving overall recombinant protein yields. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0760-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roshan P Shrestha
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
De Tommasi E, Gielis J, Rogato A. Diatom Frustule Morphogenesis and Function: a Multidisciplinary Survey. Mar Genomics 2017; 35:1-18. [PMID: 28734733 DOI: 10.1016/j.margen.2017.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023]
Abstract
Diatoms represent the major component of phytoplankton and are responsible for about 20-25% of global primary production. Hundreds of millions of years of evolution led to tens of thousands of species differing in dimensions and morphologies. In particular, diatom porous silica cell walls, the frustules, are characterized by an extraordinary, species-specific diversity. It is of great interest, among the marine biologists and geneticists community, to shed light on the origin and evolutionary advantage of this variability of dimensions, geometries and pore distributions. In the present article the main reported data related to frustule morphogenesis and functionalities with contributions from fundamental biology, genetics, mathematics, geometry and physics are reviewed.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- Institute for Microelectronics and Microsystems, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Johan Gielis
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Alessandra Rogato
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy; Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy.
| |
Collapse
|
18
|
Brembu T, Chauton MS, Winge P, Bones AM, Vadstein O. Dynamic responses to silicon in Thalasiossira pseudonana - Identification, characterisation and classification of signature genes and their corresponding protein motifs. Sci Rep 2017; 7:4865. [PMID: 28687794 PMCID: PMC5501833 DOI: 10.1038/s41598-017-04921-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022] Open
Abstract
The diatom cell wall, or frustule, is a highly complex, three-dimensional structure consisting of nanopatterned silica as well as proteins and other organic components. While some key components have been identified, knowledge on frustule biosynthesis is still fragmented. The model diatom Thalassiosira pseudonana was subjected to silicon (Si) shift-up and shift-down situations. Cellular and molecular signatures, dynamic changes and co-regulated clusters representing the hallmarks of cellular and molecular responses to changing Si availabilities were characterised. Ten new proteins with silaffin-like motifs, two kinases and a novel family of putatively frustule-associated transmembrane proteins induced by Si shift-up with a possible role in frustule biosynthesis were identified. A separate cluster analysis performed on all significantly regulated silaffin-like proteins (SFLPs), as well as silaffin-like motifs, resulted in the classification of silaffins, cingulins and SFLPs into distinct clusters. A majority of the genes in the Si-responsive clusters are highly divergent, but positive selection does not seem to be the driver behind this variability. This study provides a high-resolution map over transcriptional responses to changes in Si availability in T. pseudonana. Hallmark Si-responsive genes are identified, characteristic motifs and domains are classified, and taxonomic and evolutionary implications outlined and discussed.
Collapse
Affiliation(s)
- Tore Brembu
- NTNU Norwegian University of Science and Technology, Departments of Biology, N-7491, Trondheim, Norway.
| | | | - Per Winge
- NTNU Norwegian University of Science and Technology, Departments of Biology, N-7491, Trondheim, Norway
| | - Atle M Bones
- NTNU Norwegian University of Science and Technology, Departments of Biology, N-7491, Trondheim, Norway
| | - Olav Vadstein
- Biotechnology and Food Science, N-7491, Trondheim, Norway
| |
Collapse
|
19
|
Expression of Histophilus somni IbpA DR2 protective antigen in the diatom Thalassiosira pseudonana. Appl Microbiol Biotechnol 2017; 101:5313-5324. [PMID: 28405704 PMCID: PMC5486823 DOI: 10.1007/s00253-017-8267-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 01/08/2023]
Abstract
Increasing demand for the low-cost production of valuable proteins has stimulated development of novel expression systems. Many challenges faced by existing technology may be overcome by using unicellular microalgae as an expression platform due to their ability to be cultivated rapidly, inexpensively, and in large scale. Diatoms are a particularly productive type of unicellular algae showing promise as production organisms. Here, we report the development of an expression system in the diatom Thalassiosira pseudonana by expressing the protective IbpA DR2 antigen from Histophilus somni for the production of a vaccine against bovine respiratory disease. The utilization of diatoms with their typically silicified cell walls permitted development of silicon-responsive transcription elements to induce protein expression. Specifically, we demonstrate that transcription elements from the silicon transporter gene SIT1 are sufficient to drive high levels of IbpA DR2 expression during silicon limitation and growth arrest. These culture conditions eliminate the flux of cellular resources into cell division processes, yet do not limit protein expression. In addition to improving protein expression levels by molecular manipulations, yield was dramatically increased through cultivation enhancement including elevated light and CO2 supplementation. We substantially increased recombinant protein production over starting levels to 1.2% of the total sodium dodecyl sulfate-extractable protein in T. pseudonana, which was sufficient to conduct preliminary immunization trials in mice. Mice exposed to 5 μg of diatom-expressed DR2 in whole or sonicated cells (without protein purification) exhibited a modest immune response without the addition of adjuvant.
Collapse
|
20
|
The Multiple Roles of Diatoms in Environmental Applications: Prospects for Sol-Gel Modified Diatoms. ADVANCES IN SOL-GEL DERIVED MATERIALS AND TECHNOLOGIES 2017. [DOI: 10.1007/978-3-319-50144-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Marron AO, Ratcliffe S, Wheeler GL, Goldstein RE, King N, Not F, de Vargas C, Richter DJ. The Evolution of Silicon Transport in Eukaryotes. Mol Biol Evol 2016; 33:3226-3248. [PMID: 27729397 PMCID: PMC5100055 DOI: 10.1093/molbev/msw209] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biosilicification (the formation of biological structures from silica) occurs in diverse eukaryotic lineages, plays a major role in global biogeochemical cycles, and has significant biotechnological applications. Silicon (Si) uptake is crucial for biosilicification, yet the evolutionary history of the transporters involved remains poorly known. Recent evidence suggests that the SIT family of Si transporters, initially identified in diatoms, may be widely distributed, with an extended family of related transporters (SIT-Ls) present in some nonsilicified organisms. Here, we identify SITs and SIT-Ls in a range of eukaryotes, including major silicified lineages (radiolarians and chrysophytes) and also bacterial SIT-Ls. Our evidence suggests that the symmetrical 10-transmembrane-domain SIT structure has independently evolved multiple times via duplication and fusion of 5-transmembrane-domain SIT-Ls. We also identify a second gene family, similar to the active Si transporter Lsi2, that is broadly distributed amongst siliceous and nonsiliceous eukaryotes. Our analyses resolve a distinct group of Lsi2-like genes, including plant and diatom Si-responsive genes, and sequences unique to siliceous sponges and choanoflagellates. The SIT/SIT-L and Lsi2 transporter families likely contribute to biosilicification in diverse lineages, indicating an ancient role for Si transport in eukaryotes. We propose that these Si transporters may have arisen initially to prevent Si toxicity in the high Si Precambrian oceans, with subsequent biologically induced reductions in Si concentrations of Phanerozoic seas leading to widespread losses of SIT, SIT-L, and Lsi2-like genes in diverse lineages. Thus, the origin and diversification of two independent Si transporter families both drove and were driven by ancient ocean Si levels.
Collapse
Affiliation(s)
- Alan O Marron
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom .,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Ratcliffe
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, United Kingdom
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Fabrice Not
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Colomban de Vargas
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Daniel J Richter
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA.,CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| |
Collapse
|
22
|
Durkin CA, Koester JA, Bender SJ, Armbrust EV. The evolution of silicon transporters in diatoms. JOURNAL OF PHYCOLOGY 2016; 52:716-731. [PMID: 27335204 PMCID: PMC5129515 DOI: 10.1111/jpy.12441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/21/2016] [Indexed: 05/06/2023]
Abstract
Diatoms are highly productive single-celled algae that form an intricately patterned silica cell wall after every cell division. They take up and utilize silicic acid from seawater via silicon transporter (SIT) proteins. This study examined the evolution of the SIT gene family to identify potential genetic adaptations that enable diatoms to thrive in the modern ocean. By searching for sequence homologs in available databases, the diversity of organisms found to encode SITs increased substantially and included all major diatom lineages and other algal protists. A bacterial-encoded gene with homology to SIT sequences was also identified, suggesting that a lateral gene transfer event occurred between bacterial and protist lineages. In diatoms, the SIT genes diverged and diversified to produce five distinct clades. The most basal SIT clades were widely distributed across diatom lineages, while the more derived clades were lineage-specific, which together produced a distinct repertoire of SIT types among major diatom lineages. Differences in the predicted protein functional domains encoded among SIT clades suggest that the divergence of clades resulted in functional diversification among SITs. Both laboratory cultures and natural communities changed transcription of each SIT clade in response to experimental or environmental growth conditions, with distinct transcriptional patterns observed among clades. Together, these data suggest that the diversification of SITs within diatoms led to specialized adaptations among diatoms lineages, and perhaps their dominant ability to take up silicic acid from seawater in diverse environmental conditions.
Collapse
Affiliation(s)
- Colleen A. Durkin
- Moss Landing Marine Laboratories8272 Moss Landing RoadMoss LandingCalifornia95039USA
| | - Julie A. Koester
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNorth Carolina28403USA
| | - Sara J. Bender
- Marine Chemistry and GeochemistryWoods Hole Oceanographic InstitutionWoods HoleMassachusetts02543USA
- Present address: The Gordon and Betty Moore FoundationPalo AltoCalifornia94304USA
| | | |
Collapse
|
23
|
Marron AO, Chappell H, Ratcliffe S, Goldstein RE. A model for the effects of germanium on silica biomineralization in choanoflagellates. J R Soc Interface 2016; 13:20160485. [PMID: 27655668 PMCID: PMC5046948 DOI: 10.1098/rsif.2016.0485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022] Open
Abstract
Silica biomineralization is a widespread phenomenon of major biotechnological interest. Modifying biosilica with substances like germanium (Ge) can confer useful new properties, although exposure to high levels of Ge disrupts normal biosilicification. No clear mechanism explains why this disruption occurs. Here, we study the effect of Ge on loricate choanoflagellates, a group of protists that construct a species-specific extracellular lorica from multiple siliceous costal strips. High Ge exposures were toxic, whereas lower Ge exposures produced cells with incomplete or absent loricae. These effects can be ameliorated by restoring the germanium : silicon ratio, as observed in other biosilicifying organisms. We developed simulations of how Ge interacts with polymerizing silica. In our models, Ge is readily incorporated at the ends of silica forming from silicic acid condensation, but this prevents further silica polymerization. Our 'Ge-capping' model is supported by observations from loricate choanoflagellates. Ge exposure terminates costal strip synthesis and lorica formation, resulting in disruption to cytokinesis and fatal build-up of silicic acid. Applying the Ge-capping model to other siliceous organisms explains the general toxicity of Ge and identifies potential protective responses in metalloid uptake and sensing. This can improve the design of new silica biomaterials, and further our understanding of silicon metabolism.
Collapse
Affiliation(s)
- Alan O Marron
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Helen Chappell
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Sarah Ratcliffe
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| |
Collapse
|
24
|
Knight MJ, Senior L, Nancolas B, Ratcliffe S, Curnow P. Direct evidence of the molecular basis for biological silicon transport. Nat Commun 2016; 7:11926. [PMID: 27305972 PMCID: PMC4912633 DOI: 10.1038/ncomms11926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation: they sheath themselves in a cell wall made largely of silica. The cellular machinery responsible for silicification includes a family of membrane permeases that recognize and actively transport the soluble precursor of biosilica, silicic acid. However, the molecular basis of silicic acid transport remains obscure. Here, we identify experimentally tractable diatom silicic acid transporter (SIT) homologues and study their structure and function in vitro, enabled by the development of a new fluorescence method for studying substrate transport kinetics. We show that recombinant SITs are Na+/silicic acid symporters with a 1:1 protein: substrate stoichiometry and KM for silicic acid of 20 μM. Protein mutagenesis supports the long-standing hypothesis that four conserved GXQ amino acid motifs are important in SIT function. This marks a step towards a detailed understanding of silicon transport with implications for biogeochemistry and bioinspired materials. Diatoms sheath themselves in a self-made casing of silica, which requires the function of silicic acid transporters. Here, the authors identify versions of these transporters that are experimentally tractable, and develop a fluorescence method to study silicic acid transport in vitro.
Collapse
Affiliation(s)
- Michael J Knight
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Senior
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Bethany Nancolas
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sarah Ratcliffe
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
25
|
Smith SR, Glé C, Abbriano RM, Traller JC, Davis A, Trentacoste E, Vernet M, Allen AE, Hildebrand M. Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana. THE NEW PHYTOLOGIST 2016; 210:890-904. [PMID: 26844818 PMCID: PMC5067629 DOI: 10.1111/nph.13843] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/03/2015] [Indexed: 05/06/2023]
Abstract
Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome-wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time-course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterized alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes. Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal-derived biofuels.
Collapse
Affiliation(s)
- Sarah R. Smith
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA92037USA
| | - Corine Glé
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Raffaela M. Abbriano
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Jesse C. Traller
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Aubrey Davis
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Emily Trentacoste
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Maria Vernet
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Andrew E. Allen
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA92037USA
| | - Mark Hildebrand
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| |
Collapse
|
26
|
Metatranscriptomes reveal functional variation in diatom communities from the Antarctic Peninsula. ISME JOURNAL 2015; 9:2275-89. [PMID: 25871931 DOI: 10.1038/ismej.2015.40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022]
Abstract
Functional genomics of diatom-dominated communities from the Antarctic Peninsula was studied using comparative metatranscriptomics. Samples obtained from diatom-rich communities in the Bransfield Strait, the western Weddell Sea and sea ice in the Bellingshausen Sea/Wilkins Ice Shelf yielded more than 500K pyrosequencing reads that were combined to produce a global metatranscriptome assembly. Multi-gene phylogenies recovered three distinct communities, and diatom-assigned contigs further indicated little read-sharing between communities, validating an assembly-based annotation and analysis approach. Although functional analysis recovered a core of abundant shared annotations that were expressed across the three diatom communities, over 40% of annotations (but accounting for <10% of sequences) were community-specific. The two pelagic communities differed in their expression of N-metabolism and acquisition genes, which was almost absent in post-bloom conditions in the Weddell Sea community, while enrichment of transporters for ammonia and urea in Bransfield Strait diatoms suggests a physiological stance towards acquisition of reduced N-sources. The depletion of carbohydrate and energy metabolism pathways in sea ice relative to pelagic communities, together with increased light energy dissipation (via LHCSR proteins), photorespiration, and NO3(-) uptake and utilization all pointed to irradiance stress and/or inorganic carbon limitation within sea ice. Ice-binding proteins and cold-shock transcription factors were also enriched in sea ice diatoms. Surprisingly, the abundance of gene transcripts for the translational machinery tracked decreasing environmental temperature across only a 4 °C range, possibly reflecting constraints on translational efficiency and protein production in cold environments.
Collapse
|
27
|
Shrestha RP, Hildebrand M. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses. EUKARYOTIC CELL 2015; 14:29-40. [PMID: 25380754 PMCID: PMC4279021 DOI: 10.1128/ec.00209-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/03/2014] [Indexed: 01/19/2023]
Abstract
The utilization of silicon by diatoms has both global and small-scale implications, from oceanic primary productivity to nanotechnological applications of their silica cell walls. The sensing and transport of silicic acid are key aspects of understanding diatom silicon utilization. At low silicic acid concentrations (<30 μM), transport mainly occurs through silicic acid transport proteins (SITs), and at higher concentrations it occurs through diffusion. Previous analyses of the SITs were done either in heterologous systems or without a distinction between individual SITs. In the present study, we examined individual SITs in Thalassiosira pseudonana in terms of transcript and protein abundance in response to different silicic acid regimes and examined knockdown lines to evaluate the role of the SITs in transport, silica incorporation, and lipid accumulation resulting from silicon starvation. SIT1 and SIT2 were localized in the plasma membrane, and protein levels were generally inversely correlated with cellular silicon needs, with a distinct response being found when the two SITs were compared. We developed highly effective approaches for RNA interference and antisense knockdowns, the first such approaches developed for a centric diatom. SIT knockdown differentially affected the uptake of silicon and the incorporation of silicic acid and resulted in the induction of lipid accumulation under silicon starvation conditions far earlier than in the wild-type cells, suggesting that the cells were artificially sensing silicon limitation. The data suggest that the transport role of the SITs is relatively minor under conditions with sufficient silicic acid. Their primary role is to sense silicic acid levels to evaluate whether the cell can proceed with its cell wall formation and division processes.
Collapse
Affiliation(s)
- Roshan P Shrestha
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
28
|
Chauton MS, Skolem LMB, Olsen LM, Vullum PE, Walmsley J, Vadstein O. Titanium uptake and incorporation into silica nanostructures by the diatom Pinnularia sp. (Bacillariophyceae). JOURNAL OF APPLIED PHYCOLOGY 2014; 27:777-786. [PMID: 25866446 PMCID: PMC4387253 DOI: 10.1007/s10811-014-0373-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 06/01/2023]
Abstract
Diatoms are an ecologically successful group within the phytoplankton, and their special feature is a biofabricated silica cell encasement called a frustule. These frustules attract interest in material technology, and one potential application is to use them in solar cell technology. The silica frustule with its nanoscaled pattern is interesting per se, but the utility is enhanced if we succeed in incorporating other elements. Titanium is an interesting element because its oxide is a semi-conductor with a high band gap. However, doping with relevant elements through bioincorporation is challenging, and it is necessary to understand the biology involved in element uptake and incorporation. Here we present data on bioincorporation of Ti into the silica frustules of the pennate diatom Pinnularia sp. (Ehrenberg) and show that the distribution of the incorporated Ti is inhomogeneous both between and within valves. More than a tenfold increase of Ti in newly synthesised valves was achieved, and increased Ti around the pores was confirmed by both EDS and EELS analyses. HAADF STEM spectroscopy revealed a grainy surface with amorphous silica particles of 4 to 5 nm in size. These observations are explained by what is known from the physico-chemical processes involved in biosilification and frustule formation, looking into it from a biological point of view.
Collapse
Affiliation(s)
- Matilde Skogen Chauton
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), SemSelands veg 6/8, 7491 Trondheim, Norway
| | - Lotte M. B. Skolem
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), SemSelands veg 6/8, 7491 Trondheim, Norway
| | - Lasse Mork Olsen
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), SemSelands veg 6/8, 7491 Trondheim, Norway
| | - Per Erik Vullum
- SINTEF Materials and Chemistry, Postboks 4760 Sluppen, 7465 Trondheim, Norway
| | - John Walmsley
- SINTEF Materials and Chemistry, Postboks 4760 Sluppen, 7465 Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), SemSelands veg 6/8, 7491 Trondheim, Norway
| |
Collapse
|
29
|
Huysman MJJ, Vyverman W, De Veylder L. Molecular regulation of the diatom cell cycle. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2573-2584. [PMID: 24277280 DOI: 10.1093/jxb/ert387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Accounting for almost one-fifth of the primary production on Earth, the unicellular eukaryotic group of diatoms plays a key ecological and biogeochemical role in our contemporary oceans. Furthermore, as producers of various lipids and pigments, and characterized by their finely ornamented silica cell wall, diatoms hold great promise for different industrial fields, including biofuel production, nanotechnology, and pharmaceutics. However, in spite of their major ecological importance and their high commercial value, little is known about the mechanisms that control the diatom life and cell cycle. To date, both microscopic and genomic analyses have revealed that diatoms exhibit specific and unique mechanisms of cell division compared with those found in the classical model organisms. Here, we review the structural peculiarities of diatom cell proliferation, highlight the regulation of their major cell cycle checkpoints by environmental factors, and discuss recent progress in molecular cell division research.
Collapse
Affiliation(s)
- Marie J J Huysman
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, B-9000 Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
30
|
Javaheri N, Dries R, Kaandorp J. Understanding the sub-cellular dynamics of silicon transportation and synthesis in diatoms using population-level data and computational optimization. PLoS Comput Biol 2014; 10:e1003687. [PMID: 24945622 PMCID: PMC4063665 DOI: 10.1371/journal.pcbi.1003687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/09/2014] [Indexed: 01/10/2023] Open
Abstract
Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae, are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell compartments, including cytoplasm and silica deposition vesicle (SDV). Considering the low concentration of silicic acid in oceans, cells have developed silicon transporter proteins (SIT). Moreover, cells change the level of active SITs during one cell cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an optimization technique (global and local search), together with enzyme related penalty terms, has been applied. We have connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge, externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with previous classical kinetics. The model introduced can be generalized in order to analyze different biomineralizing organisms and to test different chemical pathways only by switching the system of mass transport equations.
Collapse
Affiliation(s)
- Narjes Javaheri
- Section Computational Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Roland Dries
- Section Computational Science, University of Amsterdam, Amsterdam, The Netherlands
- FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Jaap Kaandorp
- Section Computational Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Preari M, Spinde K, Lazic J, Brunner E, Demadis KD. Bioinspired Insights into Silicic Acid Stabilization Mechanisms: The Dominant Role of Polyethylene Glycol-Induced Hydrogen Bonding. J Am Chem Soc 2014; 136:4236-44. [DOI: 10.1021/ja411822s] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Melina Preari
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete, GR-71003, Greece
| | - Katrin Spinde
- Fachrichtung
Chemie und Lebensmittelchemie, Bioanalytische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Joëlle Lazic
- Fachrichtung
Chemie und Lebensmittelchemie, Bioanalytische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Eike Brunner
- Fachrichtung
Chemie und Lebensmittelchemie, Bioanalytische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Konstantinos D. Demadis
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete, GR-71003, Greece
| |
Collapse
|
32
|
Javaheri N, Cronemberger CM, Kaandorp JA. Modeling biosilicification at subcellular scales. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2014; 54:117-41. [PMID: 24420712 DOI: 10.1007/978-3-642-41004-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Biosilicification occurs in many organisms. Sponges and diatoms are major examples of them. In this chapter, we introduce a modeling approach that describes several biological mechanisms controlling silicification. Modeling biosilicification is a typical multiscale problem where processes at very different temporal and spatial scales need to be coupled: processes at the molecular level, physiological processes at the subcellular and cellular level, etc. In biosilicification morphology plays a fundamental role, and a spatiotemporal model is required. In the case of sponges, a particle simulation based on diffusion-limited aggregation is presented here. This model can describe fractal properties of silica aggregates in first steps of deposition on an organic template. In the case of diatoms, a reaction-diffusion model is introduced which can describe the concentrations of chemical components and has the possibility to include polymerization chain of reactions.
Collapse
Affiliation(s)
- Narjes Javaheri
- Section Computational Science, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Du C, Liang JR, Chen DD, Xu B, Zhuo WH, Gao YH, Chen CP, Bowler C, Zhang W. iTRAQ-based proteomic analysis of the metabolism mechanism associated with silicon response in the marine diatom Thalassiosira pseudonana. J Proteome Res 2014; 13:720-34. [PMID: 24372006 DOI: 10.1021/pr400803w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silicon is a critical element for diatom growth; however our understanding of the molecular mechanisms involved in intracellular silicon responses are limited. In this study, an iTRAQ-LC-MS/MS quantitative proteomic approach was coupled with an established synchrony technique to reveal the global metabolic silicon-response in the model diatom Thalassiosira pseudonana subject to silicon starvation and readdition. Four samples, which corresponded to the time of silicon starvation, girdle band synthesis, valve formation, and right after daughter cell separation (0, 1, 5, 7 h), were collected for the proteomic analysis. The results indicated that a total of 1,831 proteins, representing 16% of the predicted proteins encoded by the T. pseudonana genome, could be identified. Of the identified proteins, 165 were defined as being differentially expressed proteins, and these proteins could be linked to multiple biochemical pathways. In particular, a number of proteins related to silicon transport, cell wall synthesis, and cell-cycle progress could be identified. In addition, other proteins that are potentially involved in amino acid synthesis, protein metabolism, and energy generation may have roles in the cellular response to silicon. Our findings provide a range of valuable information that will be of use for further studies of this important physiological response that is unique to diatoms.
Collapse
Affiliation(s)
- Chao Du
- School of Life Sciences, Xiamen University , Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Marron AO, Alston MJ, Heavens D, Akam M, Caccamo M, Holland PWH, Walker G. A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates. Proc Biol Sci 2013; 280:20122543. [PMID: 23407828 PMCID: PMC3574361 DOI: 10.1098/rspb.2012.2543] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/17/2013] [Indexed: 11/12/2022] Open
Abstract
Biosilicification is widespread across the eukaryotes and requires concentration of silicon in intracellular vesicles. Knowledge of the molecular mechanisms underlying this process remains limited, with unrelated silicon-transporting proteins found in the eukaryotic clades previously studied. Here, we report the identification of silicon transporter (SIT)-type genes from the siliceous loricate choanoflagellates Stephanoeca diplocostata and Diaphanoeca grandis. Until now, the SIT gene family has been identified only in diatoms and other siliceous stramenopiles, which are distantly related to choanoflagellates among the eukaryotes. This is the first evidence of similarity between SITs from different eukaryotic supergroups. Phylogenetic analysis indicates that choanoflagellate and stramenopile SITs form distinct monophyletic groups. The absence of putative SIT genes in any other eukaryotic groups, including non-siliceous choanoflagellates, leads us to propose that SIT genes underwent a lateral gene transfer event between stramenopiles and loricate choanoflagellates. We suggest that the incorporation of a foreign SIT gene into the stramenopile or choanoflagellate genome resulted in a major metabolic change: the acquisition of biomineralized silica structures. This hypothesis implies that biosilicification has evolved multiple times independently in the eukaryotes, and paves the way for a better understanding of the biochemical basis of silicon transport through identification of conserved sequence motifs.
Collapse
Affiliation(s)
- Alan O Marron
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | | | | | | | | | | | |
Collapse
|
35
|
Curnow P, Senior L, Knight MJ, Thamatrakoln K, Hildebrand M, Booth PJ. Expression, purification, and reconstitution of a diatom silicon transporter. Biochemistry 2012; 51:3776-85. [PMID: 22530967 DOI: 10.1021/bi3000484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and manipulation of silicon materials on the nanoscale are core themes in nanotechnology research. Inspiration is increasingly being taken from the natural world because the biological mineralization of silicon results in precisely controlled, complex silica structures with dimensions from the millimeter to the nanometer. One fascinating example of silicon biomineralization occurs in the diatoms, unicellular algae that sheath themselves in an ornate silica-based cell wall. To harvest silicon from the environment, diatoms have developed a unique family of integral membrane proteins that bind to a soluble form of silica, silicic acid, and transport it across the cell membrane to the cell interior. These are the first proteins shown to directly interact with silicon, but the current understanding of these specific silicon transport proteins is limited by the lack of in vitro studies of structure and function. We report here the recombinant expression, purification, and reconstitution of a silicon transporter from the model diatom Thalassiosira pseudonana. After using GFP fusions to optimize expression and purification protocols, a His(10)-tagged construct was expressed in Saccharomyces cerevisiae, solubilized in the detergent Fos-choline-12, and purified by affinity chromatography. Size-exclusion chromatography and particle sizing by dynamic light scattering showed that the protein was purified as a homotetramer, although nonspecific oligomerization occurred at high protein concentrations. Circular dichroism measurements confirmed sequence-based predictions that silicon transporters are α-helical membrane proteins. Silicic acid transport could be established in reconstituted proteoliposomes, and silicon uptake was found to be dependent upon an applied sodium gradient. Transport data across different substrate concentrations were best fit to the sigmoidal Hill equation, with a K(0.5) of 19.4 ± 1.3 μM and a cooperativity coefficient of 1.6. Sodium binding was noncooperative with a K(m)(app) of 1.7 ± 1.0 mM, suggesting a transport silicic acid:Na(+) stoichiometry of 2:1. These results provide the basis for a full understanding of both silicon transport in the diatom and protein-silicon interactions in general.
Collapse
Affiliation(s)
- Paul Curnow
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Transport routes of metalloids into and out of the cell: A review of the current knowledge. Chem Biol Interact 2012; 197:47-57. [DOI: 10.1016/j.cbi.2012.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/27/2012] [Accepted: 02/14/2012] [Indexed: 11/20/2022]
|
37
|
Otzen D. The role of proteins in biosilicification. SCIENTIFICA 2012; 2012:867562. [PMID: 24278750 PMCID: PMC3820600 DOI: 10.6064/2012/867562] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/24/2012] [Indexed: 05/19/2023]
Abstract
Although the use of silicon dioxide (silica) as a constituent of living organisms is mainly restricted to diatoms and sponges, the ways in which this process is controlled by nature continue to inspire and fascinate. Both diatoms and sponges carry out biosilificiation using an organic matrix but they adopt very different strategies. Diatoms use small and heavily modified peptides called silaffins, where the most characteristic feature is a modulation of charge by attaching long chain polyamines (LCPAs) to lysine groups. Free LCPAs can also cooperate with silaffins. Sponges use the enzyme silicatein which is homologous to the cysteine protease cathepsin. Both classes of proteins form higher-order structures which act both as structural templates and mechanistic catalysts for the polycondensation reaction. In both cases, additional proteins are continuously being discovered which modulate the process further. This paper concentrates on the role of these proteins in the biosilification process as well as in various applications, highlighting areas where focus on specific protein properties may provide further insight. The field of biosilification is a crossroads of different disciplines, where insight into the energetics and mechanisms of molecular self-assembly combine with fundamental biology, complex multicomponent colloidal systems, and an impressive array of potential technological applications.
Collapse
Affiliation(s)
- Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Center for Insoluble Protein Structures (inSPIN), and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- *Daniel Otzen:
| |
Collapse
|
38
|
Carvalho RN, Bopp SK, Lettieri T. Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo[a]pyrene. PLoS One 2011; 6:e26985. [PMID: 22073232 PMCID: PMC3207822 DOI: 10.1371/journal.pone.0026985] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/07/2011] [Indexed: 01/06/2023] Open
Abstract
Diatoms are unicellular, photosynthetic, eukaryotic algae with a ubiquitous distribution in water environments and they play an important role in the carbon cycle. Molecular or morphological changes in these species under ecological stress conditions are expected to serve as early indicators of toxicity and can point to a global impact on the entire ecosystem. Thalassiosira pseudonana, a marine diatom and the first with a fully sequenced genome has been selected as an aquatic model organism for ecotoxicological studies using molecular tools. A customized DNA microarray containing probes for the available gene sequences has been developed and tested to analyze the effects of a common pollutant, benzo(a)pyrene (BaP), at a sub-lethal concentration. This approach in diatoms has helped to elucidate pathway/metabolic processes involved in the mode of action of this pollutant, including lipid metabolism, silicon metabolism and stress response. A dose-response of BaP on diatoms has been made and the effect of this compound on the expression of selected genes was assessed by quantitative real time-PCR. Up-regulation of the long-chain acyl-CoA synthetase and the anti-apoptotic transmembrane Bax inhibitor, as well as down-regulation of silicon transporter 1 and a heat shock factor was confirmed at lower concentrations of BaP, but not the heat-shock protein 20. The study has allowed the identification of molecular biomarkers to BaP to be later on integrated into environmental monitoring for water quality assessment.
Collapse
Affiliation(s)
- Raquel N. Carvalho
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
| | - Stephanie K. Bopp
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
| | - Teresa Lettieri
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
- * E-mail:
| |
Collapse
|
39
|
Alverson AJ, Beszteri B, Julius ML, Theriot EC. The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella. BMC Evol Biol 2011; 11:125. [PMID: 21569560 PMCID: PMC3121624 DOI: 10.1186/1471-2148-11-125] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/14/2011] [Indexed: 11/25/2022] Open
Abstract
Background Publication of the first diatom genome, that of Thalassiosira pseudonana, established it as a model species for experimental and genomic studies of diatoms. Virtually every ensuing study has treated T. pseudonana as a marine diatom, with genomic and experimental data valued for their insights into the ecology and evolution of diatoms in the world's oceans. Results The natural distribution of T. pseudonana spans both marine and fresh waters, and phylogenetic analyses of morphological and molecular datasets show that, 1) T. pseudonana marks an early divergence in a major freshwater radiation by diatoms, and 2) as a species, T. pseudonana is likely ancestrally freshwater. Marine strains therefore represent recent recolonizations of higher salinity habitats. In addition, the combination of a relatively nondescript form and a convoluted taxonomic history has introduced some confusion about the identity of T. pseudonana and, by extension, its phylogeny and ecology. We resolve these issues and use phylogenetic criteria to show that T. pseudonana is more appropriately classified by its original name, Cyclotella nana. Cyclotella contains a mix of marine and freshwater species and so more accurately conveys the complexities of the phylogenetic and natural histories of T. pseudonana. Conclusions The multitude of physical barriers that likely must be overcome for diatoms to successfully colonize freshwaters suggests that the physiological traits of T. pseudonana, and the genes underlying those traits, might differ from those of strictly marine diatoms. The freshwater ancestry of T. pseudonana might therefore confound generalizations about the physiological and metabolic properties of marine diatoms. The freshwater component of T. pseudonana's history merits careful consideration in the interpretation of experimental data collected for this important model species.
Collapse
Affiliation(s)
- Andrew J Alverson
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
40
|
Richthammer P, Börmel M, Brunner E, van Pée KH. Biomineralization in Diatoms: The Role of Silacidins. Chembiochem 2011; 12:1362-6. [DOI: 10.1002/cbic.201000775] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Indexed: 11/12/2022]
|
41
|
Carvalho RN, Lettieri T. Proteomic analysis of the marine diatom Thalassiosira pseudonana upon exposure to benzo(a)pyrene. BMC Genomics 2011; 12:159. [PMID: 21435224 PMCID: PMC3076255 DOI: 10.1186/1471-2164-12-159] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 03/24/2011] [Indexed: 02/05/2023] Open
Abstract
Background Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants ubiquitously distributed. They are generated by incomplete combustion of organic materials such as wood or fossil fuels. Due to their carcinogenic, mutagenic effects and to their wide distribution in the environment, these pollutants pose many concerns to researchers and regulators. In our laboratories we investigated the effect of benzo(a)pyrene (BaP) exposure in the marine diatom Thalassiosira pseudonana, which has become an important model organism in aquatic toxicology studies. Results In order to investigate the mechanism of action of PAHs, we exposed the diatoms for 24 h to 36.45 μg/L of BaP which inhibits the growth by about 30%, and analysed the relative protein expression profile by a quantitative proteomics approach based on iTRAQ labels. The proteomics profile analysis showed that around 10% of the identified proteins were regulated and one fourth of them confirmed the gene expression changes seen by DNA microarray. Particularly interesting was the down regulation of the Silicon transporter 1 (SIT1), an enzyme that is responsible for the uptake of silicon from the media into the diatom cells. Regulation of SIT1 upon BaP treatment was also confirmed at the gene expression level. Conclusions The potential use of the regulated proteins found in this study as early indicators of environmental exposure to PAHs is discussed. In particular, SIT1 is considered a promising biomarker and SIT1 expression changes were confirmed also when the diatoms were exposed to field samples, e.g. marine surface sediments contaminated by PAHs.
Collapse
Affiliation(s)
- Raquel N Carvalho
- European Commission - Joint Research Centre, Institute for Environment and Sustainability, Rural, Water, and Ecosystem Resources Unit, T.P. 270, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | | |
Collapse
|
42
|
Carvalho RN, Burchardt AD, Sena F, Mariani G, Mueller A, Bopp SK, Umlauf G, Lettieri T. Gene biomarkers in diatom Thalassiosira pseudonana exposed to polycyclic aromatic hydrocarbons from contaminated marine surface sediments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:244-253. [PMID: 21087797 DOI: 10.1016/j.aquatox.2010.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/28/2010] [Accepted: 10/09/2010] [Indexed: 05/30/2023]
Abstract
Marine diatoms have a key role in the global carbon fixation and therefore in the ecosystem. We used Thalassiosira pseudonana as a model organism to assess the effects of exposure to environmental pollutants at the gene expression level. Diatoms were exposed to polycyclic aromatic hydrocarbons mixture (PAH) from surface sediments collected at a highly PAH contaminated area of the Mediterranean Sea (Genoa, Italy), due to intense industrial and harbor activities. The gene expression data for exposure to the sediment-derived PAH mixture was compared with gene expression data for in vitro exposure to specific polycyclic aromatic hydrocarbons. The data shows that genes involved in stress response, silica uptake, and metabolism were regulated both upon exposure to the sediment-derived PAH mixture and to the single component. Complementary monitoring of silica in the diatom cultures provide further evidence of a reduced cellular uptake of silica as an end-point for benzo[a]pyrene exposure that could be linked with the reduced gene and protein expression of the silicon transporter protein. However some genes showed differences in regulation indicating that mixtures of structurally related chemical compounds can elicit a slightly different gene expression response compared to that of a single component. The paper provides indications on the specific pathways affected by PAH exposure and shows that selected genes (silicon transporter, and silaffin 3) involved in silica uptake and metabolism could be suitable molecular biomarkers of exposure to PAHs.
Collapse
Affiliation(s)
- Raquel N Carvalho
- European Commission-Joint Research Centre, Institute for Environment and Sustainability, Ispra (VA), Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rynearson TA, Palenik B. Learning to read the oceans genomics of marine phytoplankton. ADVANCES IN MARINE BIOLOGY 2011; 60:1-39. [PMID: 21962749 DOI: 10.1016/b978-0-12-385529-9.00001-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The phytoplankton are key members of marine ecosystems, generating about half of global primary productivity, supporting valuable fisheries and regulating global biogeochemical cycles. Marine phytoplankton are phylogenetically diverse and are comprised of both prokaryotic and eukaryotic species. In the last decade, new insights have been gained into the ecology and evolution of these important organisms through whole genome sequencing projects and more recently, through both transcriptomics and targeted metagenomics approaches. Sequenced genomes of cyanobacteria are generally small, ranging in size from 1.8 to 9 million base pairs (Mbp). Eukaryotic genomes, in general, have a much larger size range and those that have been sequenced range from 12 to 57 Mbp. Whole genome sequencing projects have revealed key features of the evolutionary history of marine phytoplankton, their varied responses to environmental stress, their ability to scavenge and store nutrients and their unique ability to form elaborate cellular coverings. We have begun to learn how to read the 'language' of marine phytoplankton, as written in their DNA. Here, we review the ecological and evolutionary insights gained from whole genome sequencing projects, illustrate how these genomes are yielding information on marine natural products and informing nanotechnology as well as make suggestions for future directions in the field of marine phytoplankton genomics.
Collapse
Affiliation(s)
- Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.
| | | |
Collapse
|
44
|
Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, Le Crom S, Lopez PJ. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One 2009; 4:e7458. [PMID: 19829693 PMCID: PMC2758714 DOI: 10.1371/journal.pone.0007458] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/21/2009] [Indexed: 12/26/2022] Open
Abstract
Background Diatoms are largely responsible for production of biogenic silica in the global ocean. However, in surface seawater, Si(OH)4 can be a major limiting factor for diatom productivity. Analyzing at the global scale the genes networks involved in Si transport and metabolism is critical in order to elucidate Si biomineralization, and to understand diatoms contribution to biogeochemical cycles. Methodology/Principal Findings Using whole genome expression analyses we evaluated the transcriptional response to Si availability for the model species Phaeodactylum tricornutum. Among the differentially regulated genes we found genes involved in glutamine-nitrogen pathways, encoding putative extracellular matrix components, or involved in iron regulation. Some of these compounds may be good candidates for intracellular intermediates involved in silicic acid storage and/or intracellular transport, which are very important processes that remain mysterious in diatoms. Expression analyses and localization studies gave the first picture of the spatial distribution of a silicic acid transporter in a diatom model species, and support the existence of transcriptional and post-transcriptional regulations. Conclusions/Significance Our global analyses revealed that about one fourth of the differentially expressed genes are organized in clusters, underlying a possible evolution of P. tricornutum genome, and perhaps other pennate diatoms, toward a better optimization of its response to variable environmental stimuli. High fitness and adaptation of diatoms to various Si levels in marine environments might arise in part by global regulations from gene (expression level) to genomic (organization in clusters, dosage compensation by gene duplication), and by post-transcriptional regulation and spatial distribution of SIT proteins.
Collapse
Affiliation(s)
- Guillaume Sapriel
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
| | - Michelle Quinet
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
| | - Marc Heijde
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
| | - Laurent Jourdren
- Ecole Normale Supérieure, IFR36, Plate-forme Transcriptome, Paris, France
| | - Véronique Tanty
- Ecole Normale Supérieure, IFR36, Plate-forme Transcriptome, Paris, France
| | - Guangzuo Luo
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
| | - Stéphane Le Crom
- Ecole Normale Supérieure, IFR36, Plate-forme Transcriptome, Paris, France
| | - Pascal Jean Lopez
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Brunner E, Gröger C, Lutz K, Richthammer P, Spinde K, Sumper M. Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms. Appl Microbiol Biotechnol 2009; 84:607-16. [DOI: 10.1007/s00253-009-2140-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 12/01/2022]
|
46
|
Chung CC, Hwang SPL, Chang J. The identification of three novel genes involved in the rapid-growth regulation in a marine diatom, Skeletonema costatum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:356-367. [PMID: 18841415 DOI: 10.1007/s10126-008-9150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/20/2008] [Indexed: 05/26/2023]
Abstract
In order to understand the molecular mechanism of growth regulation in phytoplankton and to develop novel growth-status indicators, a subtraction cDNA library was constructed by using the mRNA extracted from Skeletonema costatum in the rapid-growth stage (RG stage), and three RG-stage-related cDNA fragments, RG#14, RG#25, and RG#42, were obtained. According to the results of sequence analysis, RG#42 belonged to the MCM2-7 protein family, and the other two fragments, RG#14 and RG#25, were novel molecules. Under continuous illumination, these RG-stage-related mRNA expression levels increased from 100- (RG#14 and RG#42) to 1,000-fold (RG#25) with increasing growth rate. Furthermore, under a diel rhythm of light (light-dark = 12:12 h), the daily mean mRNA abundances of RG#14 and RG#25 in the exponential phase also differed from those in the late-stationary phase. However, such differences between these growth phases were not observed in the mRNA levels of RG#42 and PCNA. This study not only provided a new way to investigate the regulatory mechanisms of cell growth but also offered a possibility of employing these gene fragments as indicators to monitor the growth status of phytoplankton in the marine environment.
Collapse
Affiliation(s)
- Chih-Ching Chung
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China.
| | | | | |
Collapse
|
47
|
Light-dependent transcriptional regulation of genes of biogeochemical interest in the diploid and haploid life cycle stages of Emiliania huxleyi. Appl Environ Microbiol 2009; 75:3366-9. [PMID: 19304825 DOI: 10.1128/aem.02737-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes of biogeochemical interest in calcifying and noncalcifying life stages of the coccolithophore Emiliania huxleyi was investigated. Transcripts potentially involved in calcification were tested through a light-dark cycle. These transcripts were more abundant in calcifying cells and were upregulated in the light. Their application as potential candidates for in situ biogeochemical proxies is also suggested.
Collapse
|
48
|
Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS. The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 2009; 27:116-27. [PMID: 19167770 DOI: 10.1016/j.tibtech.2008.11.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 11/24/2022]
Abstract
Diatoms are unicellular, eukaryotic, photosynthetic algae that are found in aquatic environments. Diatoms have enormous ecological importance on this planet and display a diversity of patterns and structures at the nano- to millimetre scale. Diatom nanotechnology, a new interdisciplinary area, has spawned collaborations in biology, biochemistry, biotechnology, physics, chemistry, material science and engineering. We survey diatom nanotechnology since 2005, emphasizing recent advances in diatom biomineralization, biophotonics, photoluminescence, microfluidics, compustat domestication, multiscale porosity, silica sequestering of proteins, detection of trace gases, controlled drug delivery and computer design. Diatoms might become the first organisms for which the gap in our knowledge of the relationship between genotype and phenotype is closed.
Collapse
Affiliation(s)
- Richard Gordon
- Department of Radiology, University of Manitoba, Winnipeg MB R3A 1R9, Canada
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Mark Hildebrand
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202
| |
Collapse
|
50
|
Sumper M, Brunner E. Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana. Chembiochem 2008; 9:1187-94. [PMID: 18381716 DOI: 10.1002/cbic.200700764] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
After complete genome sequencing, the diatom Thalassiosira pseudonana has become an attractive model organism for silica biomineralization studies. Recent progress, especially with respect to intracellular silicic acid processing, as well as to the natures of the biomolecules involved in diatom cell wall formation, is described. On the one hand, considerable progress has been made with respect to silicon uptake by special proteins (SITs) from the surrounding water, as well as to the storage and processing of silicon before cell division. On the other hand, the discovery and characterisation of remarkable biomolecules such as silaffins, polyamines and--quite recently--of silacidins in the siliceous cell walls of diatoms strongly impacts the growing field of biomimetic materials synthesis.
Collapse
Affiliation(s)
- Manfred Sumper
- Lehrstuhl Biochemie I, Universität Regensburg, 93040 Regensburg, Germany.
| | | |
Collapse
|