1
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
2
|
Rai SK, Sangesland M, Lee M, Esnault C, Cui Y, Chatterjee AG, Levin HL. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes. PLoS Genet 2017; 13:e1006775. [PMID: 29232693 PMCID: PMC5741268 DOI: 10.1371/journal.pgen.1006775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements. Retroviruses and retrotransposons are genetic elements that propagate by integrating into chromosomes of eukaryotic cells. Genetic disorders are being treated with retrovirus-based vectors that integrate corrective genes into the chromosomes of patients. Unfortunately, the vectors can alter expression of adjacent genes and depending on the position of integration, cancer genes can be induced. It is therefore essential that we understand how integration sites are selected. Interestingly, different retroviruses and retrotransposons have different profiles of integration sites. While specific proteins have been identified that select target sites, it’s not known what other cellular factors promote integration. In this paper, we report a comprehensive screen of host factors that promote LTR-retrotransposon integration in the widely-studied yeast, Schizosaccharomyces pombe. Unexpectedly, we found a wide range of pathways and host factors participate in integration. And importantly, we found the cellular processes that promote integration relative to recombination in S. pombe are the same that drive integration of LTR-retrotransposons in the distantly related yeast Saccharomyces cerevisiae. This suggests a specific set of cellular pathways are responsible for integration in a wide range of eukaryotic hosts.
Collapse
Affiliation(s)
- Sudhir Kumar Rai
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Maya Sangesland
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yujin Cui
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Atreyi Ghatak Chatterjee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Henry L. Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Adrion JR, Song MJ, Schrider DR, Hahn MW, Schaack S. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster. Genome Biol Evol 2017; 9:1329-1340. [PMID: 28338986 PMCID: PMC5447328 DOI: 10.1093/gbe/evx050] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species.
Collapse
Affiliation(s)
| | - Michael J. Song
- Department of Integrative Biology, University of California, Berkeley, CA
| | - Daniel R. Schrider
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN
- School of Informatics and Computing, Indiana University, Bloomington, IN
| | | |
Collapse
|
4
|
Grandi N, Cadeddu M, Blomberg J, Tramontano E. Contribution of type W human endogenous retroviruses to the human genome: characterization of HERV-W proviral insertions and processed pseudogenes. Retrovirology 2016; 13:67. [PMID: 27613107 PMCID: PMC5016936 DOI: 10.1186/s12977-016-0301-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
Abstract
Background Human endogenous retroviruses (HERVs) are ancient sequences integrated in the germ line cells and vertically transmitted through the offspring constituting about 8 % of our genome. In time, HERVs accumulated mutations that compromised their coding capacity. A prominent exception is HERV-W locus 7q21.2, producing a functional Env protein (Syncytin-1) coopted for placental syncytiotrophoblast formation. While expression of HERV-W sequences has been investigated for their correlation to disease, an exhaustive description of the group composition and characteristics is still not available and current HERV-W group information derive from studies published a few years ago that, of course, used the rough assemblies of the human genome available at that time. This hampers the comparison and correlation with current human genome assemblies. Results In the present work we identified and described in detail the distribution and genetic composition of 213 HERV-W elements. The bioinformatics analysis led to the characterization of several previously unreported features and provided a phylogenetic classification of two main subgroups with different age and structural characteristics. New facts on HERV-W genomic context of insertion and co-localization with sequences putatively involved in disease development are also reported. Conclusions The present work is a detailed overview of the HERV-W contribution to the human genome and provides a robust genetic background useful to clarify HERV-W role in pathologies with poorly understood etiology, representing, to our knowledge, the most complete and exhaustive HERV-W dataset up to date. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0301-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042, Monserrato, Cagliari, Italy. .,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy.
| |
Collapse
|
5
|
Sangesland M, Atwood-Moore A, Rai SK, Levin HL. Qualitative and Quantitative Assays of Transposition and Homologous Recombination of the Retrotransposon Tf1 in Schizosaccharomyces pombe. Methods Mol Biol 2016; 1400:117-30. [PMID: 26895050 DOI: 10.1007/978-1-4939-3372-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposition and homologous recombination assays are valuable genetic tools to measure the production and integration of cDNA from the long terminal repeat (LTR) retrotransposon Tf1 in the fission yeast (Schizosaccharomyces pombe). Here we describe two genetic assays, one that measures the transposition activity of Tf1 by monitoring the mobility of a drug resistance marked Tf1 element expressed from a multi-copy plasmid and another assay that measures homologous recombination between Tf1 cDNA and the expression plasmid. While the transposition assay measures insertion of full-length Tf1 cDNA mediated by the transposon integrase, the homologous recombination assay measures levels of cDNA present in the nucleus and is independent of integrase activity. Combined, these assays can be used to systematically screen large collections of strains to identify mutations that specifically inhibit the integration step in the retroelement life cycle. Such mutations can be identified because they reduce transposition activity but nevertheless have wild-type frequencies of homologous recombination. Qualitative assays of yeast patches on agar plates detect large defects in integration and recombination, while the quantitative approach provides a precise method of determining integration and recombination frequencies.
Collapse
Affiliation(s)
- Maya Sangesland
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr. room 106, Bethesda, MD, 20892, USA
| | - Angela Atwood-Moore
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr. room 106, Bethesda, MD, 20892, USA
| | - Sudhir K Rai
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr. room 106, Bethesda, MD, 20892, USA
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr. room 106, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Normant V, Beaudoin J, Labbé S. An antisense RNA-mediated mechanism eliminates a meiosis-specific copper-regulated transcript in mitotic cells. J Biol Chem 2015; 290:22622-22637. [PMID: 26229103 PMCID: PMC4566236 DOI: 10.1074/jbc.m115.674556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/23/2015] [Indexed: 11/06/2022] Open
Abstract
Sense and antisense transcripts produced from convergent gene pairs could interfere with the expression of either partner gene. In Schizosaccharomyces pombe, we found that the iss1(+) gene produces two transcript isoforms, including a long antisense mRNA that is complementary to the meiotic cum1(+) sense transcript, inhibiting cum1(+) expression in vegetative cells. Inhibition of cum1(+) transcription was not at the level of its initiation because fusion of the cum1(+) promoter to the lacZ gene showed that activation of the reporter gene occurs in response to low copper conditions. Further analysis showed that the transcription factor Cuf1 and conserved copper-signaling elements (CuSEs) are required for induction of cum1(+)-lacZ transcription under copper deficiency. Insertion of a multipartite polyadenylation signal immediately downstream of iss1(+) led to the exclusive production of a shorter iss1(+) mRNA isoform, thereby allowing accumulation of cum1(+) sense mRNA in copper-limited vegetative cells. This finding suggested that the long iss1(+) antisense mRNA could pair with cum1(+) sense mRNA, thereby producing double-stranded RNA molecules that could induce RNAi. We consistently found that mutant strains for RNAi (dcr1Δ, ago1Δ, rdp1Δ, and clr4Δ) are defective in selectively eliminating cum1(+) sense transcript in the G1 phase of the cell cycle. Taken together, these results describe the first example of a copper-regulated meiotic gene repressed by an antisense transcription mechanism in vegetative cells.
Collapse
Affiliation(s)
- Vincent Normant
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Jude Beaudoin
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Simon Labbé
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| |
Collapse
|
7
|
Single-Nucleotide-Specific Targeting of the Tf1 Retrotransposon Promoted by the DNA-Binding Protein Sap1 of Schizosaccharomyces pombe. Genetics 2015; 201:905-24. [PMID: 26358720 DOI: 10.1534/genetics.115.181602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and -9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration.
Collapse
|
8
|
Esnault C, Levin HL. The Long Terminal Repeat Retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MDNA3-0040-2014. [PMID: 26350316 PMCID: PMC6388632 DOI: 10.1128/microbiolspec.mdna3-0040-2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 12/15/2022] Open
Abstract
The long terminal repeat (LTR) retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe are active mobile elements of the Ty3/gypsy family. The mobilization of these retrotransposons depends on particle formation, reverse transcription and integration, processes typical of other LTR retrotransposons. However, Tf1 and Tf2 are distinct from other LTR elements in that they assemble virus-like particles from a single primary translation product, initiate reverse transcription with an unusual self-priming mechanism, and, in the case of Tf1, integrate with a pattern that favors specific promoters of RNA pol II-transcribed genes. To avoid the chromosome instability and genome damage that results from increased copy number, S. pombe applies a variety of defense mechanisms that restrict Tf1 and Tf2 activity. The mRNA of the Tf elements is eliminated by an exosome-based pathway when cells are in favorable conditions whereas nutrient deprivation triggers an RNA interference-dependent pathway that results in the heterochromatization of the elements. Interestingly, Tf1 integrates into the promoters of stress-induced genes and these insertions are capable of increasing the expression of adjacent genes. These properties of Tf1 transposition raise the possibility that Tf1 benefits cells with specific insertions by providing resistance to environmental stress.
Collapse
Affiliation(s)
- Caroline Esnault
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res 2014; 21:587-600. [PMID: 24254230 DOI: 10.1007/s10577-013-9394-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA,
| |
Collapse
|
10
|
Cherry KE, Hearn WE, Seshie OYK, Singleton TL. Identification of Tf1 integration events in S. pombe under nonselective conditions. Gene 2014; 542:221-31. [PMID: 24680781 DOI: 10.1016/j.gene.2014.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 12/01/2022]
Abstract
Integration of retroviral elements into the host genome is a phenomena observed among many classes of retroviruses. Much information concerning the integration of retroviral elements has been documented based on in vitro analysis or expression of selectable markers. To identify possible Tf1 integration events within silent regions of the Schizosaccharomyces pombe genome, we focused on performing an in vivo genome-wide analysis of Tf1 integration events from the nonselective phase of the retrotransposition assay. We analyzed 1000 individual colonies streaked from four independent Tf1 transposed patches under nonselection conditions. Our analysis detected a population of G418(S)/neo(+) Tf1 integration events that would have been overlooked during the selective phase of the assay. Further RNA analysis from the G418(S)/neo(+) clones revealed 50% of clones expressing the neo selectable marker. Our data reveals Tf1's ability to insert within silent regions of S. pombe's genome.
Collapse
Affiliation(s)
- Kristina E Cherry
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| | - Willis E Hearn
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| | - Osborne Y K Seshie
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| | - Teresa L Singleton
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| |
Collapse
|
11
|
Krastanova O, Hadzhitodorov M, Pesheva M. Ty Elements of the YeastSaccharomyces Cerevisiae. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Qi X, Vargas E, Larsen L, Knapp W, Hatfield GW, Lathrop R, Sandmeyer S. Directed DNA shuffling of retrovirus and retrotransposon integrase protein domains. PLoS One 2013; 8:e63957. [PMID: 23691126 PMCID: PMC3656877 DOI: 10.1371/journal.pone.0063957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/11/2013] [Indexed: 12/15/2022] Open
Abstract
Chimeric proteins are used to study protein domain functions and to recombine protein domains for novel or optimal functions. We used a library of chimeric integrase proteins to study DNA integration specificity. The library was constructed using a directed shuffling method that we adapted from fusion PCR. This method easily and accurately shuffles multiple DNA gene sequences simultaneously at specific base-pair positions, such as protein domain boundaries. It produced all 27 properly-ordered combinations of the amino-terminal, catalytic core, and carboxyl-terminal domains of the integrase gene from human immunodeficiency virus, prototype foamy virus, and Saccharomyces cerevisiae retrotransposon Ty3. Retrotransposons can display dramatic position-specific integration specificity compared to retroviruses. The yeast retrotransposon Ty3 integrase interacts with RNA polymerase III transcription factors to target integration at the transcription initiation site. In vitro assays of the native and chimeric proteins showed that human immunodeficiency virus integrase was active with heterologous substrates, whereas prototype foamy virus and Ty3 integrases were not. This observation was consistent with a lower substrate specificity for human immunodeficiency virus integrase than for other retrovirus integrases. All eight chimeras containing the Ty3 integrase carboxyl-terminal domain, a candidate targeting domain, failed to target strand transfer in the presence of the targeting protein, suggesting that multiple domains of the Ty3 integrase cooperate in this function.
Collapse
Affiliation(s)
- Xiaojie Qi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Edwin Vargas
- Department of Computer Science, School of Information and Computer Sciences, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Liza Larsen
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Whitney Knapp
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - G. Wesley Hatfield
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
- Department of Chemical Engineering and Materials Science, School of Engineering, University of California Irvine, Irvine, California, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, School of Engineering, University of California Irvine, Irvine, California, United States of America
- CODA Genomics, Inc., Laguna Hills, California, United States of America
| | - Richard Lathrop
- Department of Computer Science, School of Information and Computer Sciences, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, School of Engineering, University of California Irvine, Irvine, California, United States of America
- CODA Genomics, Inc., Laguna Hills, California, United States of America
| | - Suzanne Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
- Department of Chemical Engineering and Materials Science, School of Engineering, University of California Irvine, Irvine, California, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.
Collapse
Affiliation(s)
- Gang Feng
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Rocheta M, Carvalho L, Viegas W, Morais-Cecílio L. Corky, a gypsy-like retrotransposon is differentially transcribed in Quercus suber tissues. BMC Res Notes 2012; 5:432. [PMID: 22888907 PMCID: PMC3465219 DOI: 10.1186/1756-0500-5-432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 08/02/2012] [Indexed: 12/01/2022] Open
Abstract
Background Transposable elements (TEs) make up a large part of eukaryotic genomes. Due to their repetitive nature and to the fact that they harbour regulatory signals, TEs can be responsible for chromosomal rearrangements, movement of gene sequences and evolution of gene regulation and function. Retrotransposon ubiquity raises the question about their function in genomes and most are transcriptionally inactive due to rearrangements that compromise their activity. However, the activity of TEs is currently considered to have been one of the major processes in genome evolution. Findings We report on the characterization of a transcriptionally active gypsy-like retrotransposon (named Corky) from Quercus suber, in a comparative and quantitative study of expression levels in different tissues and distinct developmental stages through RT-qPCR. We observed Corky’s differential transcription levels in all the tissues analysed. Conclusions These results document that Corky’s transcription levels are not constant. Nevertheless, they depend upon the developmental stage, the tissue analysed and the potential occurring events during an individuals’ life span. This modulation brought upon by different developmental and environmental influences suggests an involvement of Corky in stress response and during development.
Collapse
Affiliation(s)
- Margarida Rocheta
- Centro de Botânica Aplicada à Agricultura, Departamento de Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Portugal.
| | | | | | | |
Collapse
|
15
|
Abstract
Transposable elements (TEs) have a unique ability to mobilize to new genomic locations, and the major advance of second-generation DNA sequencing has provided insights into the dynamic relationship between TEs and their hosts. It now is clear that TEs have adopted diverse strategies - such as specific integration sites or patterns of activity - to thrive in host environments that are replete with mechanisms, such as small RNAs or epigenetic marks, that combat TE amplification. Emerging evidence suggests that TE mobilization might sometimes benefit host genomes by enhancing genetic diversity, although TEs are also implicated in diseases such as cancer. Here, we discuss recent findings about how, where and when TEs insert in diverse organisms.
Collapse
Affiliation(s)
- Henry L. Levin
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA, Tel. 301-402-4281, Fax. 301-496-4491,
| | - John V. Moran
- Departments of Human Genetics and Internal Medicine, and Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109-6518, USA, Tel. 734-615-4046, Fax. 734-763-3784,
| |
Collapse
|
16
|
Abstract
RNAi plays a central role in the regulation of eukaryotic genes. In Schizosaccharomyces pombe fission yeast, RNAi involves the formation of siRNA from dsRNA that acts to establish and maintain heterochromatin over centromeres, telomeres, and mating loci. We showed previously that transient heterochromatin also forms over S. pombe convergent genes (CGs). Remarkably, most RNAi genes are themselves convergent. We demonstrate here that transient heterochromatin formed by the RNAi pathway over RNAi CGs leads to their autoregulation in G1-S. Furthermore, the switching of RNAi gene orientation from convergent to tandem causes loss of their G1-S down-regulation. Surprisingly, yeast mutants with tandemized dcr1, ago1, or clr4 genes display aberrant centromeric heterochromatin, which results in abnormal cell morphology. Our results emphasize the significance of gene orientation for correct RNAi gene expression, and suggest a role for cell cycle-dependent formation of RNAi CG heterochromatin in cellular integrity.
Collapse
|
17
|
Li J, Zhang JM, Li X, Suo F, Zhang MJ, Hou W, Han J, Du LL. A piggyBac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 2011; 39:e40. [PMID: 21247877 PMCID: PMC3064801 DOI: 10.1093/nar/gkq1358] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The TTAA-specific transposon piggyBac (PB), originally isolated from the cabbage looper moth, Trichoplusia ni, has been utilized as an insertional mutagenesis tool in various eukaryotic organisms. Here, we show that PB transposes in the fission yeast Schizosaccharomyces pombe and leaves almost no footprints. We developed a PB-based mutagenesis system for S. pombe by constructing a strain with a selectable transposon excision marker and an integrated transposase gene. PB transposition in this strain has low chromosomal distribution bias as shown by deep sequencing-based insertion site mapping. Using this system, we obtained loss-of-function alleles of klp5 and klp6, and a gain-of-function allele of dam1 from a screen for mutants resistant to the microtubule-destabilizing drug thiabendazole. From another screen for cdc25-22 suppressors, we obtained multiple alleles of wee1 as expected. The success of these two screens demonstrated the usefulness of this PB-mediated mutagenesis tool for fission yeast.
Collapse
Affiliation(s)
- Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lisch D, Slotkin RK. Strategies for silencing and escape: the ancient struggle between transposable elements and their hosts. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:119-52. [PMID: 22078960 DOI: 10.1016/b978-0-12-386033-0.00003-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past several years, there has been an explosion in our understanding of the mechanisms by which plant transposable elements (TEs) are epigenetically silenced and maintained in an inactive state over long periods of time. This highly efficient process results in vast numbers of inactive TEs; indeed, the majority of many plant genomes are composed of these quiescent elements. This observation has led to the rather static view that TEs represent an essentially inert portion of plant genomes. However, recent work has demonstrated that TE silencing is a highly dynamic process that often involves transcription of TEs at particular times and places during plant development. Plants appear to use transcripts from silenced TEs as an ongoing source of information concerning the mobile portion of the genome. In contrast to our understanding of silencing pathways, we know relatively little about the ways in which TEs evade silencing. However, vast differences in TE content between even closely related plant species suggest that they are often wildly successful at doing so. Here, we discuss TE activity in plants as the result of a constantly shifting balance between host strategies for TE silencing and TE strategies for escape and amplification.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | | |
Collapse
|
19
|
Determinants that specify the integration pattern of retrotransposon Tf1 in the fbp1 promoter of Schizosaccharomyces pombe. J Virol 2010; 85:519-29. [PMID: 20980525 DOI: 10.1128/jvi.01719-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long terminal repeat (LTR) retrotransposons are closely related to retroviruses and, as such, are important models for the study of viral integration and target site selection. The transposon Tf1 of Schizosaccharomyces pombe integrates with a strong preference for the promoters of polymerase II (Pol II)-transcribed genes. Previous work in vivo with plasmid-based targets revealed that the patterns of insertion were promoter specific and highly reproducible. To determine which features of promoters are recognized by Tf1, we studied integration in a promoter that has been characterized. The promoter of fbp1 has two upstream activating sequences, UAS1 and UAS2. We found that integration was targeted to two windows, one 180 nucleotides (nt) upstream and the other 30 to 40 nt downstream of UAS1. A series of deletions in the promoter showed that the integration activities of these two regions functioned autonomously. Integration assays of UAS2 and of a synthetic promoter demonstrated that strong promoter activity alone was not sufficient to direct integration. The factors that modulate the transcription activities of UAS1 and UAS2 include the activators Atf1p, Pcr1p, and Rst2p as well as the repressors Tup11p, Tup12p, and Pka1p. Strains lacking each of these proteins revealed that Atf1p alone mediated the sites of integration. These data indicate that Atf1p plays a direct and specific role in targeting integration in the promoter of fbp1.
Collapse
|
20
|
Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe. Genome Res 2010; 20:1250-61. [PMID: 20688779 DOI: 10.1101/gr.104513.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites.
Collapse
|
21
|
Guo Y, Levin HL. High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe. Genome Res 2009; 20:239-48. [PMID: 20040583 DOI: 10.1101/gr.099648.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The biological impact of transposons on the physiology of the host depends greatly on the frequency and position of integration. Previous studies of Tf1, a long terminal repeat retrotransposon in Schizosaccharomyces pombe, showed that integration occurs at the promoters of RNA polymerase II (Pol II) transcribed genes. To determine whether specific promoters are preferred targets of integration, we sequenced large numbers of insertions using high-throughput pyrosequencing. In four independent experiments we identified a total of 73,125 independent integration events. These data provided strong support for the conclusion that Pol II promoters are the targets of Tf1 integration. The size and number of the integration experiments resulted in reproducible measures of integration for each intergenic region and ORF in the S. pombe genome. The reproducibility of the integration activity from experiment to experiment demonstrates that we have saturated the full set of insertion sites that are actively targeted by Tf1. We found Tf1 integration was highly biased in favor of a specific set of Pol II promoters. The overwhelming majority (76%) of the insertions were distributed in intergenic sequences that contained 31% of the promoters of S. pombe. Interestingly, there was no correlation between the amount of integration at these promoters and their level of transcription. Instead, we found Tf1 had a strong preference for promoters that are induced by conditions of stress. This targeting of stress response genes coupled with the ability of Tf1 to regulate the expression of adjacent genes suggests Tf1 may improve the survival of S. pombe when cells are exposed to environmental stress.
Collapse
Affiliation(s)
- Yabin Guo
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
22
|
Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 2009; 4:41. [PMID: 19883502 PMCID: PMC2774666 DOI: 10.1186/1745-6150-4-41] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 11/02/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. RESULTS We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. CONCLUSION The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power-law distributed. This evidences an inflationary mode of evolution where the system diversity; 1) expands continuously alternating vertical and gradual processes of phylogenetic divergence with episodes of modular, saltatory and reticulate evolution; 2) is governed by the intrinsic capability of distinct LTR retroelement host-communities to self-organize their phenotypes according to emergent laws characteristic of complex systems. REVIEWERS This article was reviewed by Eugene V. Koonin, Eric Bapteste, and Enmanuelle Lerat (nominated by King Jordan).
Collapse
Affiliation(s)
- Carlos Llorens
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
| | - Alfonso Muñoz-Pomer
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
- Departamento de Sistemas Informáticos y Computación (DSIC), Universitat Politècnica de València, Valencia, Spain
| | - Lucia Bernad
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
| | - Hector Botella
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Área de Paleontología, Dpto. Geología, Universitat de València, Paterna, Valencia, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Centro Superior de Investigación en Salud Pública (CSISP), Valencia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
23
|
Meehan AM, Poeschla EM. Chromatin tethering and retroviral integration: recent discoveries and parallels with DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:182-91. [PMID: 19836475 DOI: 10.1016/j.bbagrm.2009.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/02/2009] [Indexed: 12/23/2022]
Abstract
Permanent integration of the viral genome into a host chromosome is an essential step in the life cycles of lentiviruses and other retroviruses. By archiving the viral genetic information in the genome of the host target cell and its progeny, integrated proviruses prevent curative therapy of HIV-1 and make the development of antiretroviral drug resistance irreversible. Although the integration reaction is known to be catalyzed by the viral integrase (IN), the manner in which retroviruses engage and attach to the chromatin target is only now becoming clear. Lens epithelium-derived growth factor (LEDGF/p75) is a ubiquitously expressed nuclear protein that binds to lentiviral IN protein dimers at its carboxyl terminus and to host chromatin at its amino terminus. LEDGF/p75 thus tethers ectopically expressed IN to chromatin. It also protects IN from proteosomal degradation and can stimulate IN catalysis in vitro. HIV-1 infection is inhibited at the integration step in LEDGF/p75-deficient cells, and the characteristic lentiviral preference for integration into active genes is also reduced. A model in which LEDGF/p75 acts to tether the viral preintegration complex to chromatin has emerged. Intriguingly, similar chromatin tethering mechanisms have been described for other retroelements and for large DNA viruses. Here we review the evidence supporting the LEDGF/p75 tethering model and consider parallels with these other viruses.
Collapse
Affiliation(s)
- Anne M Meehan
- Department of Molecular Medicine and Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
24
|
Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosome Res 2009; 17:379-96. [PMID: 19322668 DOI: 10.1007/s10577-009-9029-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 12/18/2022]
Abstract
LTR retrotransposons belong to a major group of DNA sequences that are often localized in plant centromeres. Using BAC inserts originating from the centromere of a monosomic wild beet (Beta procumbens) chromosome fragment in Beta vulgaris, two complete LTR retrotransposons were identified. Both elements, designated Beetle1 and Beetle2, possess a coding region with genes in the order characteristic for Ty3-gypsy retrotransposons. Beetle1 and Beetle2 have a chromodomain in the C-terminus of the integrase gene and are highly similar to the centromeric retrotransposons (CRs) of rice, maize, and barley. Both retroelements were localized in the centromeric region of B. procumbens chromosomes by fluorescence in-situ hybridization. They can therefore be classified as centromere-specific chromoviruses. PCR analysis using RNA as template indicated that Beetle1 and Beetle2 are transcriptionally active. On the basis of the sequence diversity between the LTR sequences, it was estimated that Beetle1 and Beetle2 transposed within the last 60,000 years and 130,000 years, respectively. The centromeric localization of Beetle1 and Beetle2 and their transcriptional activity combined with high sequence conservation within each family play an important structural role in the centromeres of B. procumbens chromosomes.
Collapse
|
25
|
The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection. J Virol 2008; 83:2675-85. [PMID: 19109383 DOI: 10.1128/jvi.01588-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDDelta, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDDelta caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting.
Collapse
|
26
|
Llorens C, Fares MA, Moya A. Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis. BMC Evol Biol 2008; 8:276. [PMID: 18842133 PMCID: PMC2577118 DOI: 10.1186/1471-2148-8-276] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 10/08/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The origin of vertebrate retroviruses (Retroviridae) is yet to be thoroughly investigated, but due to their similarity and identical gag-pol (and env) genome structure, it is accepted that they evolve from Ty3/Gypsy LTR retroelements the retrotransposons and retroviruses of plants, fungi and animals. These 2 groups of LTR retroelements code for 3 proteins rarely studied due to the high variability - gag polyprotein, protease and GPY/F module. In relation to 3 previously proposed Retroviridae classes I, II and II, investigation of the above proteins conclusively uncovers important insights regarding the ancient history of Ty3/Gypsy and Retroviridae LTR retroelements. RESULTS We performed a comprehensive study of 120 non-redundant Ty3/Gypsy and Retroviridae LTR retroelements. Phylogenetic reconstruction inferred based on the concatenated analysis of the gag and pol polyproteins shows a robust phylogenetic signal regarding the clustering of OTUs. Evaluation of gag and pol polyproteins separately yields discordant information. While pol signal supports the traditional perspective (2 monophyletic groups), gag polyprotein describes an alternative scenario where each Retroviridae class can be distantly related with one or more Ty3/Gypsy lineages. We investigated more in depth this evidence through comparative analyses performed based on the gag polyprotein, the protease and the GPY/F module. Our results indicate that contrary to the traditional monophyletic view of the origin of vertebrate retroviruses, the Retroviridae class I is a molecular fossil, preserving features that were probably predominant among Ty3/Gypsy ancestors predating the split of plants, fungi and animals. In contrast, classes II and III maintain other phenotypes that emerged more recently during Ty3/Gypsy evolution. CONCLUSION The 3 Retroviridae classes I, II and III exhibit phenotypic differences that delineate a network never before reported between Ty3/Gypsy and Retroviridae LTR retroelements. This new scenario reveals how the diversity of vertebrate retroviruses is polyphyletically recurrent into the Ty3/Gypsy evolution, i.e. older than previously thought. The simplest hypothesis to explain this finding is that classes I, II and III trace back to at least 3 Ty3/Gypsy ancestors that emerged at different evolutionary times prior to protostomes-deuterostomes divergence. We have called this "the three kings hypothesis" concerning the origin of vertebrate retroviruses.
Collapse
Affiliation(s)
- Carlos Llorens
- Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, Polígono de la coma S/N, Paterna, Valencia, Spain
- Biotechvana, Parc Cientific, Universitat de Valencia, Paterna, Lab 16D Polígono de la coma S/N, Paterna, Valencia, Spain
| | - Mario A Fares
- Department of Genetics, University of Dublín, Trinity Collage Dublín, Dublín 2, Ireland
| | - Andres Moya
- Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, Polígono de la coma S/N, Paterna, Valencia, Spain
- CIBER de Epidemiología y Sal ud Pública (CIBERESP), Spain
| |
Collapse
|
27
|
Insulator and Ovo proteins determine the frequency and specificity of insertion of the gypsy retrotransposon in Drosophila melanogaster. Genetics 2008; 180:1367-78. [PMID: 18791225 DOI: 10.1534/genetics.108.094318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The gypsy retrovirus of Drosophila is quite unique among retroviruses in that it shows a strong preference for integration into specific sites in the genome. In particular, gypsy integrates with a frequency of > 10% into the regulatory region of the ovo gene. We have used in vivo transgenic assays to dissect the role of Ovo proteins and the gypsy insulator during the process of gypsy site-specific integration. Here we show that DNA containing binding sites for the Ovo protein is required to promote site-specific gypsy integration into the regulatory region of the ovo gene. Using a synthetic sequence, we find that Ovo binding sites alone are also sufficient to promote gypsy site-specific integration into transgenes. These results indicate that Ovo proteins can determine the specificity of gypsy insertion. In addition, we find that interactions between a gypsy provirus and the gypsy preintegration complex may also participate in the process leading to the selection of gypsy integration sites. Finally, the results suggest that the relative orientation of two integrated gypsy sequences has an important role in the enhancer-blocking activity of the gypsy insulator.
Collapse
|
28
|
Ebina H, Chatterjee AG, Judson RL, Levin HL. The GP(Y/F) domain of TF1 integrase multimerizes when present in a fragment, and substitutions in this domain reduce enzymatic activity of the full-length protein. J Biol Chem 2008; 283:15965-74. [PMID: 18397885 PMCID: PMC2414268 DOI: 10.1074/jbc.m801354200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/04/2008] [Indexed: 11/06/2022] Open
Abstract
Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the gamma-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining.
Collapse
Affiliation(s)
| | | | | | - Henry L. Levin
- Section on Eukaryotic Transposable Elements, Laboratory of Gene
Regulation and Development, NICHD, National Institutes of Health, Bethesda,
Maryland 20892
| |
Collapse
|
29
|
Leem YE, Ripmaster T, Kelly F, Ebina H, Heincelman M, Zhang K, Grewal SIS, Hoffman CS, Levin HL. Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators. Mol Cell 2008; 30:98-107. [PMID: 18406330 PMCID: PMC2423209 DOI: 10.1016/j.molcel.2008.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 10/29/2007] [Accepted: 02/06/2008] [Indexed: 11/22/2022]
Abstract
The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of Pol II-transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed, indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly, we found Tf1 contained sequences that activated transcription, and these substituted for elements of the ade6 promoter disrupted by integration.
Collapse
Affiliation(s)
- Young-Eun Leem
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tracy Ripmaster
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Felice Kelly
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hirotaka Ebina
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marc Heincelman
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ke Zhang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Shiv I. S. Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Henry L. Levin
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
30
|
Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 2008; 18:359-69. [PMID: 18256242 DOI: 10.1101/gr.7146408] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The enrichment of mobile genetic elements in heterochromatin may be due, in part, to targeted integration. The chromoviruses are Ty3/gypsy retrotransposons with chromodomains at their integrase C termini. Chromodomains are logical determinants for targeting to heterochromatin, because the chromodomain of heterochromatin protein 1 (HP1) typically recognizes histone H3 K9 methylation, an epigenetic mark characteristic of heterochromatin. We describe three groups of chromoviruses based on amino acid sequence relationships of their integrase C termini. Genome sequence analysis indicates that representative chromoviruses from each group are enriched in gene-poor regions of the genome relative to other retrotransposons, and when fused to fluorescent marker proteins, the chromodomains target proteins to specific subnuclear foci coincident with heterochromatin. The chromodomain of the fungal element, MAGGY, interacts with histone H3 dimethyl- and trimethyl-K9, and when the MAGGY chromodomain is fused to integrase of the Schizosaccharomyces pombe Tf1 retrotransposon, new Tf1 insertions are directed to sites of H3 K9 methylation. Repetitive sequences such as transposable elements trigger the RNAi pathway resulting in their epigenetic modification. Our results suggest a dynamic interplay between retrotransposons and heterochromatin, wherein mobile elements recognize heterochromatin at the time of integration and then perpetuate the heterochromatic mark by triggering epigenetic modification.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
31
|
Brady TL, Fuerst PG, Dick RA, Schmidt C, Voytas DF. Retrotransposon target site selection by imitation of a cellular protein. Mol Cell Biol 2008; 28:1230-9. [PMID: 18086891 PMCID: PMC2258757 DOI: 10.1128/mcb.01502-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/19/2007] [Accepted: 11/27/2007] [Indexed: 11/20/2022] Open
Abstract
Mobile elements rely on cellular processes to replicate, and therefore, mobile element proteins frequently interact with a variety of cellular factors. The integrase (IN) encoded by the retrotransposon Ty5 interacts with the heterochromatin protein Sir4, and this interaction determines Ty5's preference to integrate into heterochromatin. We explored the hypothesis that Ty5's targeting mechanism arose by mimicking an interaction between Sir4 and another cellular protein(s). Mutational analyses defined the requirements for the IN-Sir4 interaction, providing criteria to screen for cellular analogues. Esc1, a protein associated with the inner nuclear membrane, interacted with the same domain of Sir4 as IN, and 75% of mutations that disrupted IN-Sir4 interactions also abrogated Esc1-Sir4 interactions. A small motif critical for recognizing Sir4 was identified in Esc1. The functional equivalency of this motif and the Sir4-interacting domain of IN was demonstrated by swapping these motifs and showing that the chimeric IN and Esc1 proteins effectively target integration and partition DNA, respectively. We conclude that Ty5 targets integration by imitating the Esc1-Sir4 interaction and suggest molecular mimicry as a general mechanism that enables mobile elements to interface with cellular processes.
Collapse
Affiliation(s)
- Troy L Brady
- 1035A Roy J. Carver Co-Laboratory, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
32
|
Transposon–Host Cell Interactions in the Regulation of Sleeping Beauty Transposition. TRANSPOSONS AND THE DYNAMIC GENOME 2008. [DOI: 10.1007/7050_2008_042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
33
|
The hermes transposon of Musca domestica is an efficient tool for the mutagenesis of Schizosaccharomyces pombe. Genetics 2007; 177:2519-23. [PMID: 17947404 DOI: 10.1534/genetics.107.081075] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, no transposon-based method for the mutagenesis of Schizosaccharomyces pombe exists. We have developed such a system based on the introduction of the hermes transposon from the housefly into S. pombe. This system efficiently disrupts open reading frames and allows the insertion sites to be readily identified.
Collapse
|
34
|
Crouch JA, Glasheen BM, Giunta MA, Clarke BB, Hillman BI. The evolution of transposon repeat-induced point mutation in the genome of Colletotrichum cereale: reconciling sex, recombination and homoplasy in an ''asexual" pathogen. Fungal Genet Biol 2007; 45:190-206. [PMID: 17962053 DOI: 10.1016/j.fgb.2007.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 06/29/2007] [Accepted: 08/03/2007] [Indexed: 12/21/2022]
Abstract
Mobile transposable elements are among the primary drivers of the evolution of eukaryotic genomes. For fungi, repeat-induced point mutation (RIP) silencing minimizes deleterious effects of transposons by mutating multicopy DNA during meiosis. In this study we identify five transposon species from the mitosporic fungus Colletotrichum cereale and report the signature pattern of RIP acting in a lineage-specific manner on 21 of 35 unique transposon copies, providing the first evidence for sexual recombination for this species. Sequence analysis of genomic populations of the retrotransposon Ccret2 showed repeated rounds of RIP mutation acting on different copies of the element. In the RIPped Ccret2 population, there were multiple inferences of incongruence primarily attributed to RIP-induced homoplasy. This study supports the view that the sequence variability of transposon populations in filamentous fungi reflects the activities of evolutionary processes that fall outside of typical phylogenetic or population genetic reconstructions.
Collapse
Affiliation(s)
- Jo Anne Crouch
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | |
Collapse
|
35
|
Sehgal A, Lee CYS, Espenshade PJ. SREBP controls oxygen-dependent mobilization of retrotransposons in fission yeast. PLoS Genet 2007; 3:e131. [PMID: 17696611 PMCID: PMC1941750 DOI: 10.1371/journal.pgen.0030131] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/22/2007] [Indexed: 01/21/2023] Open
Abstract
Retrotransposons are mobile genetic elements that proliferate through an RNA intermediate. Transposons do not encode transcription factors and thus rely on host factors for mRNA expression and survival. Despite information regarding conditions under which elements are upregulated, much remains to be learned about the regulatory mechanisms or factors controlling retrotransposon expression. Here, we report that low oxygen activates the fission yeast Tf2 family of retrotransposons. Sre1, the yeast ortholog of the mammalian membrane-bound transcription factor sterol regulatory element binding protein (SREBP), directly induces the expression and mobilization of Tf2 retrotransposons under low oxygen. Sre1 binds to DNA sequences in the Tf2 long terminal repeat that functions as an oxygen-dependent promoter. We find that Tf2 solo long terminal repeats throughout the genome direct oxygen-dependent expression of adjacent coding and noncoding sequences, providing a potential mechanism for the generation of oxygen-dependent gene expression.
Collapse
Affiliation(s)
- Alfica Sehgal
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, Unites States of America
| | - Chih-Yung S Lee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, Unites States of America
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, Unites States of America
| |
Collapse
|
36
|
Derse D, Crise B, Li Y, Princler G, Lum N, Stewart C, McGrath CF, Hughes SH, Munroe DJ, Wu X. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J Virol 2007; 81:6731-41. [PMID: 17409138 PMCID: PMC1900082 DOI: 10.1128/jvi.02752-06] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 03/29/2007] [Indexed: 12/23/2022] Open
Abstract
Retroviral integration into the host genome is not entirely random, and integration site preferences vary among different retroviruses. Human immunodeficiency virus (HIV) prefers to integrate within active genes, whereas murine leukemia virus (MLV) prefers to integrate near transcription start sites and CpG islands. On the other hand, integration of avian sarcoma-leukosis virus (ASLV) shows little preference either for genes, transcription start sites, or CpG islands. While host cellular factors play important roles in target site selection, the viral integrase is probably the major viral determinant. It is reasonable to hypothesize that retroviruses with similar integrases have similar preferences for target site selection. Although integration profiles are well defined for members of the lentivirus, spumaretrovirus, alpharetrovirus, and gammaretrovirus genera, no members of the deltaretroviruses, for example, human T-cell leukemia virus type 1 (HTLV-1), have been evaluated. We have mapped 541 HTLV-1 integration sites in human HeLa cells and show that HTLV-1, like ASLV, does not specifically target transcription units and transcription start sites. Comparing the integration sites of HTLV-1 with those of ASLV, HIV, simian immunodeficiency virus, MLV, and foamy virus, we show that global and local integration site preferences correlate with the sequence/structure of virus-encoded integrases, supporting the idea that integrase is the major determinant of retroviral integration site selection. Our results suggest that the global integration profiles of other retroviruses could be predicted from phylogenetic comparisons of the integrase proteins. Our results show that retroviruses that engender different insertional mutagenesis risks can have similar integration profiles.
Collapse
Affiliation(s)
- David Derse
- HIV Drug Resistance Program, Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, 915 Toll House Avenue, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gelvin SB, Kim SI. Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. ACTA ACUST UNITED AC 2007; 1769:410-21. [PMID: 17544520 DOI: 10.1016/j.bbaexp.2007.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/09/2007] [Accepted: 04/12/2007] [Indexed: 11/22/2022]
Abstract
Agrobacterium tumefaciens transfers DNA (T-DNA) to plant cells, where it integrates into the plant genome. Little is known about how T-DNA chooses sites within the plant chromosome for integration. Previous studies indicated that T-DNA preferentially integrates into transcriptionally active regions of the genome, especially in 5'-promoter regions. This would make sense, considering that chromatin structure surrounding active promoters may be more "open" and accessible to foreign DNA. However, recent results suggest that this seemingly non-random pattern of integration may be an artifact of selection bias, and that T-DNA may integrate more randomly than previously thought. In this chapter, I discuss the history of these observations and the role chromatin proteins may play in T-DNA integration and transgene expression. Understanding how chromatin conformation may influence T-DNA integration will be important in developing strategies for reproducible and stable transgene expression, and for gene targeting.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA.
| | | |
Collapse
|
38
|
Robart AR, Seo W, Zimmerly S. Insertion of group II intron retroelements after intrinsic transcriptional terminators. Proc Natl Acad Sci U S A 2007; 104:6620-5. [PMID: 17420455 PMCID: PMC1871835 DOI: 10.1073/pnas.0700561104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mobile DNAs use many mechanisms to minimize damage to their hosts. Here we show that a subclass of group II introns avoids host damage by inserting directly after transcriptional terminator motifs in bacterial genomes (stem-loops followed by Ts). This property contrasts with the site-specific behavior of most group II introns, which insert into homing site sequences. Reconstituted ribonucleo protein particles of the Bacillus halodurans intron B.h.I1 are shown to reverse-splice into DNA targets in vitro but require the DNA to be single-stranded and fold into a stem-loop analogous to the RNA structure that forms during transcription termination. Recognition of this DNA stem-loop motif accounts for in vivo target specificity. Insertion after terminators is a previously unrecognized strategy for a selfish DNA because it prevents interruption of coding sequences and restricts expression of the mobile DNA after integration.
Collapse
Affiliation(s)
- Aaron R. Robart
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Wooseok Seo
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Steven Zimmerly
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Kelly FD, Levin HL. The evolution of transposons in Schizosaccharomyces pombe. Cytogenet Genome Res 2005; 110:566-74. [PMID: 16093710 DOI: 10.1159/000084990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 07/20/2004] [Indexed: 11/19/2022] Open
Abstract
Recent studies of the LTR-retrotransposons of Schizosaccharomyces pombe have shed considerable light on their evolution and function. The sequencing of the S. pombe genome allowed analysis of its transposon content. This analysis provides information about the maintenance and loss of transposons in the genome. The results of transposition assays and biochemical analyses demonstrate that the N-terminal protein of Tf1 is functionally equivalent to the Gag proteins of retroviruses and retrotransposons. Despite this conservation of function, the N-terminal protein of Tf1 lacks any sequence similarity to other known Gag proteins. Sequence analysis and experimental data also indicate that the Tf1 transposons of S. pombe target their integration into specific sites in the host genome. Transposition events resulting from the expression of Tf1 reveal a strong preference for intergenic regions, specifically at pol II promoters in a window 100-400 bp upstream of open reading frames. The complete and partial copies of Tf transposons in the sequenced genome of S. pombe show the same association of integration with promoter regions. This body of work explores how the transposon interacts with the host, the balance between the transposons propagation and loss, and how different families of transposons evolve.
Collapse
Affiliation(s)
- F D Kelly
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
40
|
Hizi A, Levin HL. The integrase of the long terminal repeat-retrotransposon tf1 has a chromodomain that modulates integrase activities. J Biol Chem 2005; 280:39086-94. [PMID: 16188891 DOI: 10.1074/jbc.m506363200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromodomains in a variety of proteins mediate the formation of heterochromatin by interacting directly with histone H3, DNA, or RNA. A diverse family of long terminal repeat (LTR)-retrotransposons possesses chromodomains in their integrases (IN), suggesting that the chromodomains may control integration. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is highly active and possesses a chromodomain in the COOH terminus of its IN. To test this chromodomain for a role in integration, recombinant INs with and without the chromodomain were assayed for activity in in vitro reactions. The full-length IN had integration activity with oligonucleotide substrates that modeled both the insertion reaction and a reverse reaction known as disintegration. The INs of retroviruses possess an additional activity termed 3' processing that must remove 2-3 nucleotides from the 3' ends of the viral cDNA before insertion can occur. These additional nucleotides are added during reverse transcription because of the position of the minus strand primer downstream of the LTR. The position of the primer for Tf1 suggests no nucleotides are added 3' of the LTR. It was therefore surprising that Tf1 IN was capable of 3' cleavage. The most unexpected result reported here was that the IN lacking the chromodomain had significantly higher activity and substantially reduced substrate specificity. These results reveal that both the activity and specificity of enzymes can be modulated by their chromodomains.
Collapse
Affiliation(s)
- Amnon Hizi
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
41
|
Jern P, Sperber GO, Blomberg J. Use of endogenous retroviral sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. Retrovirology 2005; 2:50. [PMID: 16092962 PMCID: PMC1224870 DOI: 10.1186/1742-4690-2-50] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/10/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endogenous retroviral sequences (ERVs) are integral parts of most eukaryotic genomes and vastly outnumber exogenous retroviruses (XRVs). ERVs with a relatively complete structure were retrieved from the genetic archives of humans and chickens, diametrically opposite representatives of vertebrate retroviruses (over 3300 proviruses), and analyzed, using a bioinformatic program, RetroTector, developed by us. This rich source of proviral information, accumulated in a local database, and a collection of XRV sequences from the literature, allowed the reconstruction of a Pol based phylogenetic tree, more extensive than previously possible. The aim was to find traits useful for classification and evolutionary studies of retroviruses. Some of these traits have been used by others, but they are here tested in a wider context than before. RESULTS In the ERV collection we found sequences similar to the XRV-based genera: alpha-, beta-, gamma-, epsilon- and spumaretroviruses. However, the occurrence of intermediates between them indicated an evolutionary continuum and suggested that taxonomic changes eventually will be necessary. No delta or lentivirus representatives were found among ERVs. Classification based on Pol similarity is congruent with a number of structural traits. Acquisition of dUTPase occurred three times in retroviral evolution. Loss of one or two NC zinc fingers appears to have occurred several times during evolution. Nucleotide biases have been described earlier for lenti-, delta- and betaretroviruses and were here confirmed in a larger context. CONCLUSION Pol similarities and other structural traits contribute to a better understanding of retroviral phylogeny. "Global" genomic properties useful in phylogenies are i.) translational strategy, ii.) number of Gag NC zinc finger motifs, iii.) presence of Pro N-terminal dUTPase (dUTPasePro), iv.) presence of Pro C-terminal G-patch and v.) presence of a GPY/F motif in the Pol integrase (IN) C-terminal domain. "Local" retroviral genomic properties useful for delineation of lower level taxa are i.) host species range, ii.) nucleotide compositional bias and iii.) LTR lengths.
Collapse
Affiliation(s)
- Patric Jern
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran O Sperber
- Unit of Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jonas Blomberg
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Andersson AC, Yun Z, Sperber GO, Larsson E, Blomberg J. ERV3 and related sequences in humans: structure and RNA expression. J Virol 2005; 79:9270-84. [PMID: 15994821 PMCID: PMC1168766 DOI: 10.1128/jvi.79.14.9270-9284.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ERV3 locus at chromosome 7q11 is a much studied human endogenous retroviral (HERV) sequence, owing to an env open reading frame (ORF) and placental RNA and protein expression. An analysis of the human genome demonstrated that ERV3 is one of a group of 41 highly related elements (ERV3-like HERVs) which use proline, isoleucine, or arginine tRNA in their primer binding sites. In addition to elements closely related to ERV3, the group included the previously known retinoic acid-inducible element, RRHERVI, also referred to as HERV15, but was separate from the related HERV-E elements. The ERV3-like elements are defective. The only element with an ORF among gag, pro, pol, and env genes was the env ORF of the original ERV3 locus. A search in dbEST revealed ERV3 RNA expression in placenta, skin, carcinoid tumor, and adrenal glands. Expression was also studied with newly developed real-time quantitative PCRs (QPCR) of ERV3 and HERV-E(4-1) env sequences. Results from a novel histone 3.3 RNA QPCR result served as the expression control. QPCR results for ERV3 were compatible with previously published results, with a stronger expression in adrenal gland and placenta than in 15 other human tissues. The expression of the envelope (env) of ERV3 at chromosome 7q11 was also studied by using stringent in situ hybridization. Expression was found in corpus luteum, testis, adrenal gland, Hassal's bodies in thymus, brown fat, pituitary gland, and epithelium of the lung. We conclude that ERV3 env is most strongly expressed in adrenal and sebaceous glands as well as in placenta.
Collapse
|
43
|
Jern P, Sperber GO, Ahlsén G, Blomberg J. Sequence variability, gene structure, and expression of full-length human endogenous retrovirus H. J Virol 2005; 79:6325-37. [PMID: 15858016 PMCID: PMC1091717 DOI: 10.1128/jvi.79.10.6325-6337.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we identified and classified 926 human endogenous retrovirus H (HERV-H)-like proviruses in the human genome. In this paper, we used the information to, in silico, reconstruct a putative ancestral HERV-H. A calculated consensus sequence was nearly open in all genes. A few manual adjustments resulted in a putative 9-kb HERV-H provirus with open reading frames (ORFs) in gag, pro, pol, and env. Long terminal repeats (LTRs) differed by 1.1%, indicating proximity to an integration event. The gag ORF was extended upstream of the normal myristylation start site. There was a long leader (including a "pre-gag" ORF) region positioned like the N terminus of murine leukemia virus (MLV) "glyco-Gag," potentially encoding a proline- and serine-rich domain remotely similar to MLV pp12. Another ORF, starting inside the 5' LTR, had no obvious similarity to known protein domains. Unlike other hitherto described gammaretroviruses, the reconstructed Gag had two zinc finger motifs. Alternative splicing of sequences related to the HERV-H consensus was confirmed using dbEST data. env transcripts were most prevalent in colon tumors, but also in normal testis. We found no evidence for full length env transcripts in the dbEST. HERV-H had a markedly skewed nucleotide composition, disfavoring guanine and favoring cytidine. We conclude that the HERV-H consensus shared a gene arrangement common to gammaretroviruses with gag separated by stop codon from pro-pol in the same reading frame, while env resides in another reading frame. There was also alternative splicing. HERV-H consensus yielded new insights in gammaretroviral evolution and will be useful as a model in studies on expression and function.
Collapse
Affiliation(s)
- Patric Jern
- Section of Virology, Department of Medical Sciences, Uppsala University, Academic Hospital, Dag Hammarskjolds v. 17, SE-751 85 Uppsala, Sweden.
| | | | | | | |
Collapse
|
44
|
Hansen KR, Burns G, Mata J, Volpe TA, Martienssen RA, Bähler J, Thon G. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol Cell Biol 2005; 25:590-601. [PMID: 15632061 PMCID: PMC543407 DOI: 10.1128/mcb.25.2.590-601.2005] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone modifications influence gene expression in complex ways. The RNA interference (RNAi) machinery can repress transcription by recruiting histone-modifying enzymes to chromatin, although it is not clear whether this is a general mechanism for gene silencing or whether it requires repeated sequences such as long terminal repeats (LTRs). We analyzed the global effects of the Clr3 and Clr6 histone deacetylases, the Clr4 methyltransferase, the zinc finger protein Clr1, and the RNAi proteins Dicer, RdRP, and Argonaute on the transcriptome of Schizosaccharomyces pombe (fission yeast). The clr mutants derepressed similar subsets of genes, many of which also became transcriptionally activated in cells that were exposed to environmental stresses such as nitrogen starvation. Many genes that were repressed by the Clr proteins clustered in extended regions close to the telomeres. Surprisingly few genes were repressed by both the silencing and RNAi machineries, with transcripts from centromeric repeats and Tf2 retrotransposons being notable exceptions. We found no correlation between repression by RNAi and proximity to LTRs, and the wtf family of repeated sequences seems to be repressed by histone deacetylation independent of RNAi. Our data indicate that the RNAi and Clr proteins show only a limited functional overlap and that the Clr proteins play more global roles in gene silencing.
Collapse
Affiliation(s)
- Klavs R Hansen
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen 1353 K, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Kordis D. A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses. Gene 2005; 347:161-73. [PMID: 15777633 DOI: 10.1016/j.gene.2004.12.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 12/01/2004] [Accepted: 12/07/2004] [Indexed: 12/31/2022]
Abstract
Chromoviruses, chromodomain-containing retrotransposons, are the only Metaviridae (Ty3/gypsy group of retrotransposons) clade with a Eukaryota-wide distribution. They have a common evolutionary origin and are the most prolific and diverse Metaviridae clade. The fusion of a retrotransposon and a chromodomain, was most probably responsible for their extreme evolutionary success in Eukaryota. Analysis of the massive amount of genome sequence data for different eukaryotic lineages has provided an in depth insight into the diversity, evolution, neofunctionalization, high rate of genomic turnover and origin of chromoviruses in Eukaryota. This review attempts to summarise the unique aspects of chromoviruses from a genomic perspective.
Collapse
Affiliation(s)
- Dusan Kordis
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova 39, 1001 Ljubljana, Slovenia.
| |
Collapse
|
46
|
Shapiro JA. A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering. Gene 2005; 345:91-100. [PMID: 15716117 DOI: 10.1016/j.gene.2004.11.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Revised: 10/20/2004] [Accepted: 11/09/2004] [Indexed: 10/26/2022]
Abstract
The last 50 years of molecular genetics have produced an abundance of new discoveries and data that make it useful to revisit some basic concepts and assumptions in our thinking about genomes and evolution. Chief among these observations are the complex modularity of genome organization, the biological ubiquity of mobile and repetitive DNA sequences, and the fundamental importance of DNA rearrangements in the evolution of sequenced genomes. This review will take a broad overview of these developments and suggest some new ways of thinking about genomes as sophisticated informatic storage systems and about evolution as a systems engineering process.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
47
|
Aye M, Irwin B, Beliakova-Bethell N, Chen E, Garrus J, Sandmeyer S. Host factors that affect Ty3 retrotransposition in Saccharomyces cerevisiae. Genetics 2004; 168:1159-76. [PMID: 15579677 PMCID: PMC1448793 DOI: 10.1534/genetics.104.028126] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 06/18/2004] [Indexed: 11/18/2022] Open
Abstract
The retrovirus-like element Ty3 of Saccharomyces cerevisiae integrates at the transcription initiation region of RNA polymerase III. To identify host genes that affect transposition, a collection of insertion mutants was screened using a genetic assay in which insertion of Ty3 activates expression of a tRNA suppressor. Fifty-three loci were identified in this screen. Corresponding knockout mutants were tested for the ability to mobilize a galactose-inducible Ty3, marked with the HIS3 gene. Of 42 mutants tested, 22 had phenotypes similar to those displayed in the original assay. The proteins encoded by the defective genes are involved in chromatin dynamics, transcription, RNA processing, protein modification, cell cycle regulation, nuclear import, and unknown functions. These mutants were induced for Ty3 expression and assayed for Gag3p protein, integrase, cDNA, and Ty3 integration upstream of chromosomal tDNA(Val(AAC)) genes. Most mutants displayed differences from the wild type in one or more intermediates, although these were typically not as severe as the genetic defect. Because a relatively large number of genes affecting retrotransposition can be identified in yeast and because the majority of these genes have mammalian homologs, this approach provides an avenue for the identification of potential antiviral targets.
Collapse
Affiliation(s)
- Michael Aye
- Department of Biological Chemistry, University of California College of Medicine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
48
|
Thon MR, Martin SL, Goff S, Wing RA, Dean RA. BAC end sequences and a physical map reveal transposable element content and clustering patterns in the genome of Magnaporthe grisea. Fungal Genet Biol 2004; 41:657-66. [PMID: 15275661 DOI: 10.1016/j.fgb.2004.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Accepted: 02/19/2004] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs) are viewed as major contributors to the evolution of fungal genomes. Genomic resources such as BAC libraries are an underutilized resource for studying genome-wide TE distribution. Using the BAC end sequences and physical map that are available for the rice blast fungus, Magnaporthe grisea, we describe a likelihood ratio test designed to identify clustering of TEs in the genome. A significant variation in the distribution of three TEs, MAGGY, MGL, and Pot2 was observed among the fingerprint contigs of the physical map. We utilized a draft sequence of M. grisea chromosome 7 to validate our results and found a similar pattern of clustering. By examining individual BAC end sequences, we found evidence for 11 unique integrations of MAGGY or MGL into Pot2 but no evidence for the reciprocal integration of Pot2 into another TE. This suggests that: (a) the presence of Pot2 in the genome predates that of the other TEs, (b) Pot2 was less transpositionally active than other TEs, or (c) that MAGGY and MGL have integration site preference for Pot2. High transition/transversion mutation ratios as well as bias in transition site context was observed in MAGGY and MGL elements, but not in Pot2 elements. These features are consistent with the effects of a Repeat-Induced Point (RIP) mutation-like process occurring in MAGGY and MGL elements. This study illustrates the general utility of a physical map and BAC end sequences for the study of genome-wide repetitive DNA content and organization.
Collapse
Affiliation(s)
- Michael R Thon
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh 27695-7251, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
The diversity, origin, and evolution of chromoviruses in Eukaryota were examined using the massive amount of genome sequence data for different eukaryotic lineages. A surprisingly large number of novel full-length chromoviral elements were found, greatly exceeding the number of the known chromoviruses. These new elements are mostly structurally intact and highly conserved. Chromoviruses in the key Amniota lineage, the reptiles, have been analyzed by PCR to explain their evolutionary dynamics in amniotes. Phylogenetic analyses provide evidence for a novel centromere-specific chromoviral clade that is widespread and highly conserved in all seed plants. Chromoviral diversity in plants, fungi, and vertebrates, as shown by phylogenetic analyses, was found to be much greater than previously expected. The age of plant chromoviruses has been significantly extended by finding their representatives in the most basal plant lineages, the green and the red algae. The evolutionary origin of chromoviruses has been found to be no earlier than in Cercozoa. The evolutionary history and dynamics of chromoviruses can be explained simply by strict vertical transmission in plants, followed by more complex evolution in fungi and in Metazoa. The currently available data clearly show that chromoviruses indeed represent the oldest and the most widespread clade of Metaviridae.
Collapse
Affiliation(s)
- Benjamin Gorinsek
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | |
Collapse
|
50
|
Abstract
Replication of retroviruses and retrotransposons depends on selecting a favorable chromosomal site for integration of their genomic DNA. Different retroelements meet this challenge by targeting distinctive chromosomal regions. Despite these differences, recent data hints at a common targeting mechanism-tethering of integration complexes to proteins bound at favorable sites.
Collapse
Affiliation(s)
- Frederic D Bushman
- Infectious Disease Laboratory, The Salk Institute, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|