1
|
Xu S, Teng X, Li Y. Optimization of Campesterol-Producing Yeast Strains as a Feasible Platform for the Functional Reconstitution of Plant Membrane-Bound Enzymes. ACS Synth Biol 2023; 12:1109-1118. [PMID: 36972300 PMCID: PMC11531777 DOI: 10.1021/acssynbio.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Campesterol is a major phytosterol that plays important roles in regulating membrane properties and serves as the precursor to multiple specialized metabolites, such as the phytohormone brassinosteroids. Recently, we established a campesterol-producing yeast strain and extended the bioproduction to 22-hydroxycampesterol and 22-hydroxycampest-4-en-3-one, the precursors to brassinolide. However, there is a trade-off in growth due to the disrupted sterol metabolism. In this study, we enhanced the growth of the campesterol-producing yeast by partially restoring the activity of the sterol acyltransferase and engineering upstream FPP supply. Furthermore, genome sequencing analysis also revealed a pool of genes possibly associated with the altered sterol metabolism. Retro engineering implies an essential role of ASG1, especially the C-terminal asparagine-rich domain of ASG1, in the sterol metabolism of yeast especially under stress. The performance of the campesterol-producing yeast strain was enhanced with the titer of campesterol to 18.4 mg/L, and the stationary OD600 was improved by ∼33% compared to the unoptimized strain. In addition, we examined the activity of a plant cytochrome P450 in the engineered strain, which exhibits more than 9-fold higher activity than when expressed in the wild-type yeast strain. Therefore, the engineered campesterol-producing yeast strain also serves as a robust host for the functional expression of plant membrane proteins.
Collapse
Affiliation(s)
- Shanhui Xu
- Department of Chemical and Environmental Engineering, University of California, 900 University Avenue, Bourns Hall, Suite A220, Riverside, California 92521, USA
| | - Xiaoxuan Teng
- Department of Chemical and Environmental Engineering, University of California, 900 University Avenue, Bourns Hall, Suite A220, Riverside, California 92521, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, 900 University Avenue, Bourns Hall, Suite A220, Riverside, California 92521, USA
| |
Collapse
|
2
|
Lipke PN, Ragonis-Bachar P. Sticking to the Subject: Multifunctionality in Microbial Adhesins. J Fungi (Basel) 2023; 9:jof9040419. [PMID: 37108873 PMCID: PMC10144551 DOI: 10.3390/jof9040419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Bacterial and fungal adhesins mediate microbial aggregation, biofilm formation, and adhesion to host. We divide these proteins into two major classes: professional adhesins and moonlighting adhesins that have a non-adhesive activity that is evolutionarily conserved. A fundamental difference between the two classes is the dissociation rate. Whereas moonlighters, including cytoplasmic enzymes and chaperones, can bind with high affinity, they usually dissociate quickly. Professional adhesins often have unusually long dissociation rates: minutes or hours. Each adhesin has at least three activities: cell surface association, binding to a ligand or adhesive partner protein, and as a microbial surface pattern for host recognition. We briefly discuss Bacillus subtilis TasA, pilin adhesins, gram positive MSCRAMMs, and yeast mating adhesins, lectins and flocculins, and Candida Awp and Als families. For these professional adhesins, multiple activities include binding to diverse ligands and binding partners, assembly into molecular complexes, maintenance of cell wall integrity, signaling for cellular differentiation in biofilms and in mating, surface amyloid formation, and anchorage of moonlighting adhesins. We summarize the structural features that lead to these diverse activities. We conclude that adhesins resemble other proteins with multiple activities, but they have unique structural features to facilitate multifunctionality.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11215, USA
- Correspondence:
| | - Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
3
|
Mei YC, Feng J, He F, Li YM, Liu Y, Li F, Chen Y, Du HN. Set2-mediated H3K36 methylation states redundantly repress the production of antisense transcripts: role in transcription regulation. FEBS Open Bio 2021. [PMID: 34115924 PMCID: PMC8329787 DOI: 10.1002/2211-5463.13226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
Methyltransferase Set2‐mediated methylation of histone H3 lysine 36 (H3K36), which involves the addition of up to three methyl groups at this site, has been demonstrated to function in many chromatin‐coupled events. The methylation of H3K36 is known to recruit different chromatin effector proteins, affecting transcription, mRNA splicing and DNA repair. In this study, we engineered two yeast set2 mutants that lack H3K36 mono/dimethylation (H3K36me1/2) and trimethylation (H3K36me3), respectively, and characterized their roles in the production of antisense transcripts under nutrient‐rich conditions. Using our new bioinformatics identification pipeline analysis, we are able to identify a larger number of antisense transcripts in set2∆ cells than has been published previously. We further show that H3K36me1/2 or H3K36me3 redundantly repressed the production of antisense transcripts. Moreover, gene ontology (GO) analysis implies that H3K36me3‐mediated antisense transcription might play a role in DNA replication and DNA damage repair, which is independent of regulation of the corresponding sense gene expression. Overall, our results validate a coregulatory mechanism of different H3K36 methylation states, particularly in the repression of antisense transcription.
Collapse
Affiliation(s)
- Yu-Chao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, RNA Institute, Wuhan University, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, College of Life Sciences, RNA Institute, Wuhan University, China
| | - Fei He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Min Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, RNA Institute, Wuhan University, China
| | - Yafei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, RNA Institute, Wuhan University, China
| | - Feng Li
- School of Basic Medical Sciences, Wuhan University, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, RNA Institute, Wuhan University, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, RNA Institute, Wuhan University, China
| |
Collapse
|
4
|
Impact of Fungal MAPK Pathway Targets on the Cell Wall. J Fungi (Basel) 2018; 4:jof4030093. [PMID: 30096860 PMCID: PMC6162559 DOI: 10.3390/jof4030093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
The fungal cell wall is an extracellular organelle that provides structure and protection to cells. The cell wall also influences the interactions of cells with each other and surfaces. The cell wall can be reorganized in response to changing environmental conditions and different types of stress. Signaling pathways control the remodeling of the cell wall through target proteins that are in many cases not well defined. The Mitogen Activated Protein Kinase pathway that controls filamentous growth in yeast (fMAPK) was required for normal growth in media containing the cell wall perturbing agent Calcofluor White (CFW). A mass spectrometry (MASS-SPEC) approach and analysis of expression profiling data identified cell wall proteins and modifying enzymes whose levels were influenced by the fMAPK pathway. These include Flo11p, Flo10p, Tip1p, Pry2p and the mannosyltransferase, Och1p. Cells lacking Flo11p or Och1p were sensitive to CFW. The identification of cell wall proteins controlled by a MAPK pathway may provide insights into how signaling pathways regulate the cell wall.
Collapse
|
5
|
Lipke PN. What We Do Not Know about Fungal Cell Adhesion Molecules. J Fungi (Basel) 2018; 4:jof4020059. [PMID: 29772751 PMCID: PMC6023273 DOI: 10.3390/jof4020059] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
There has been extensive research on structure and function of fungal cell adhesion molecules, but the most of the work has been about adhesins in Candida albicans and Saccharomyces cerevisiae. These yeasts are members of a single ascomycete order, and adhesion molecules from the six other fungal phyla are only sparsely described in the literature. In these other phyla, most of the research is at the cellular level, rather than at the molecular level, so there has been little characterization of the adhesion molecules themselves. A catalog of known adhesins shows some common features: high Ser/Thr content, tandem repeats, N- and O-glycosylations, GPI anchors, dibasic sequence motifs, and potential amyloid-forming sequences. However, none of these features is universal. Known ligands include proteins and glycans on homologous cells and host cells. Existing and novel tools can exploit the availability of genome sequences to identify and characterize new fungal adhesins. These include bioinformatics tools and well-established yeast surface display models, which could be coupled with an adhesion substrate array. Thus, new knowledge could be exploited to answer key questions in fungal ecology, animal and plant pathogenesis, and roles of biofilms in infection and biomass turnover.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
- The Graduate Center, City University of New York, New York, NY 10016, USA.
| |
Collapse
|
6
|
Bereketoglu C, Arga KY, Eraslan S, Mertoglu B. Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure. Physiol Genomics 2017; 49:549-566. [PMID: 28887370 DOI: 10.1152/physiolgenomics.00034.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Bioaccumulative environmental estrogen, nonylphenol (NP; 4-nonylphenol), is widely used as a nonionic surfactant and can affect human health. Since genomes of Saccharomyces cerevisiae and higher eukaryotes share many structural and functional similarities, we investigated subcellular effects of NP on S. cerevisiae BY4742 cells by analyzing genome-wide transcriptional profiles. We examined effects of low (1 mg/l; <15% cell number reduction) and high (5 mg/l; >65% cell number reduction) inhibitory concentration exposures for 120 or 180 min. After 120 and 180 min of 1 mg/l NP exposure, 187 (63 downregulated, 124 upregulated) and 103 genes (56 downregulated, 47 upregulated), respectively, were differentially expressed. Similarly, 678 (168 repressed, 510 induced) and 688 genes (215 repressed, 473 induced) were differentially expressed in cells exposed to 5 mg/l NP for 120 and 180 min, respectively. Only 15 downregulated and 63 upregulated genes were common between low and high NP inhibitory concentration exposure for 120 min, whereas 16 downregulated and 31 upregulated genes were common after the 180-min exposure. Several processes/pathways were prominently affected by either low or high inhibitory concentration exposure, while certain processes were affected by both inhibitory concentrations, including ion transport, response to chemicals, transmembrane transport, cellular amino acids, and carbohydrate metabolism. While minimal expression changes were observed with low inhibitory concentration exposure, 5 mg/l NP treatment induced substantial expression changes in genes involved in oxidative phosphorylation, cell wall biogenesis, ribosomal biogenesis, and RNA processing, and encoding heat shock proteins and ubiquitin-conjugating enzymes. Collectively, these results provide considerable information on effects of NP at the molecular level.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey; .,Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gümüşhane University; Baglarbasi, Gumushane, Turkey; and
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Boğaziçi University, Bebek, Istanbul, Turkey
| | - Bulent Mertoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| |
Collapse
|
7
|
Vicedo E, Gasik Z, Dong YA, Goldberg T, Rost B. Protein disorder reduced in Saccharomyces cerevisiae to survive heat shock. F1000Res 2015; 4:1222. [PMID: 26673203 PMCID: PMC4670006 DOI: 10.12688/f1000research.7178.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Recent experiments established that a culture of
Saccharomyces cerevisiae (baker’s yeast) survives sudden high temperatures by specifically duplicating the entire chromosome III and two chromosomal fragments (from IV and XII). Heat shock proteins (HSPs) are not significantly over-abundant in the duplication. In contrast, we suggest a simple algorithm to “
postdict” the experimental results: Find a small enough chromosome with minimal protein disorder and duplicate this region. This algorithm largely explains all observed duplications. In particular, all regions duplicated in the experiment reduced the overall content of protein disorder. The differential analysis of the functional makeup of the duplication remained inconclusive. Gene Ontology (GO) enrichment suggested over-representation in processes related to reproduction and nutrient uptake. Analyzing the protein-protein interaction network (PPI) revealed that few network-central proteins were duplicated. The predictive hypothesis hinges upon the concept of reducing proteins with long regions of disorder in order to become less sensitive to heat shock attack.
Collapse
Affiliation(s)
- Esmeralda Vicedo
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany ; Institute of Experimental Physics, Division of Biophysics, University of Warsaw, Warsaw, Poland
| | - Zofia Gasik
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany ; Graduate School of Information Science in Health, TUM, Munich, Germany
| | - Yu-An Dong
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany ; Institute of Systems Biology, Shanghai University, Shanghai, China
| | - Tatyana Goldberg
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics & Computational Biology, TUM, Munich, Germany ; Institute of Advanced Study, TUM, Munich, Germany ; Institute for Food and Plant Sciences WZW, TUM, Freising, Germany
| |
Collapse
|
8
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
9
|
Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes Are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent. G3-GENES GENOMES GENETICS 2012; 2:131-41. [PMID: 22384390 PMCID: PMC3276193 DOI: 10.1534/g3.111.001644] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/21/2011] [Indexed: 01/01/2023]
Abstract
The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and directly affects cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. Flo mannoproteins have been implicated in phenotypes such as flocculation, substrate adhesion, biofilm formation, and pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather as the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11 has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8. Here we use genome-wide transcription analysis to identify genes that are directly or indirectly regulated by Mss11. Interestingly, many of these genes encode cell wall mannoproteins, in particular, members of the TIR and DAN families. To examine whether these genes play a role in the adhesion properties associated with Mss11 expression, we assessed deletion mutants of these genes in wild-type and flo11Δ genetic backgrounds. This analysis shows that only FLO genes, in particular FLO1/10/11, appear to significantly impact on such phenotypes. Thus adhesion-related phenotypes are primarily dependent on the balance of FLO gene expression.
Collapse
|
10
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
11
|
Wendland J, Dünkler A, Walther A. Characterization of α-factor pheromone and pheromone receptor genes of Ashbya gossypii. FEMS Yeast Res 2011; 11:418-29. [DOI: 10.1111/j.1567-1364.2011.00732.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Abstract
Recent developments in genomics and proteomics provide evidence that yeast and other fungal cell walls share a common origin. The fibrous component of yeast cell walls usually consists of beta-glucan and/or chitin. N-glycosylated proteins form an amorphous, cross-linking matrix as well as fibres on the outer surfaces of the walls. While the enzymes responsible for cross-linking walls into covalent complexes are conserved, the wall-resident proteins have diversified rapidly. These cell wall proteins are usually members of multi-gene families, and paralogues are often subject to gene silencing through epigenetic mechanisms and environmentally induced expression regulation. Comparative studies of protein sequences reveal that there has been fast sequence divergence of the Saccharomyces sexual agglutinins, potentially serving as a driver for yeast speciation. In addition, cell wall proteins show an unusually high content of tandem and non-tandem repeats, and a high frequency of changes in the number of repeats both among paralogues and among orthologues from conspecific strains. The rapid diversification and regulated expression of yeast cell wall proteins help yeast cells to respond to different stimuli and adapt them to diverse biotic and abiotic environments.
Collapse
Affiliation(s)
- Xianfa Xie
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
13
|
Grünler A, Walther A, Lämmel J, Wendland J. Analysis of flocculins in Ashbya gossypii reveals FIG2 regulation by TEC1. Fungal Genet Biol 2010; 47:619-28. [PMID: 20380885 DOI: 10.1016/j.fgb.2010.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 01/09/2023]
Abstract
For 95% of the Ashbya gossypii protein-encoding genes there is a Saccharomyces cerevisiae homolog. Out of these 90% are arranged in a conserved, syntenic, gene order. Interestingly, A. gossypii adhesins, encoded by homologs of S. cerevisiae FLO-genes, are found in non-syntenic positions. A. gossypii contains only a small set of adhesins: two FLO5, a FLO11 and a FIG2 homolog, but no FLO1, FLO9, or FLO10 homolog. Here we present the functional analysis of the A. gossypii adhesins and their potential transcriptional regulators SFL1, FLO8, and TEC1. Deletion of individual classes of FLO-genes did not reveal any phenotype. Lack of SFL1 or FLO8 showed reduced growth. The expression of adhesins in different strain backgrounds was tested using promoter-lacZ-fusions. We found that SFL1 acts as a suppressor of one of the FLO5 genes and FLO8 but particularly of FIG2. Interestingly, FIG2 expression was abolished in a tec1 mutant. We identified three potential Tec1-binding sites in the FIG2-promoter by similarity to S. cerevisiae Tec1-binding sites. The AgCHT2 promoter, which regulates a sporulation specific chitinase, also harbours potential Tec1-binding sites. Consequently, expression of CHT2 was not detected in a tec1 strain. This suggests that Tec1- binding sites are conserved between A. gossypii and S. cerevisiae even though there are different Tec1 target genes in each of these organisms.
Collapse
Affiliation(s)
- Anke Grünler
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, Valby, Denmark
| | | | | | | |
Collapse
|
14
|
Shi C, Kendall SC, Grote E, Kaminskyj S, Loewen MC. N-terminal residues of the yeast pheromone receptor, Ste2p, mediate mating events independently of G1-arrest signaling. J Cell Biochem 2009; 107:630-8. [DOI: 10.1002/jcb.22129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Role of the cell wall integrity and filamentous growth mitogen-activated protein kinase pathways in cell wall remodeling during filamentous growth. EUKARYOTIC CELL 2009; 8:1118-33. [PMID: 19502582 DOI: 10.1128/ec.00006-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many fungal species including pathogens exhibit filamentous growth (FG) as a means of foraging for nutrients. Genetic screens were performed to identify genes required for FG in the budding yeast Saccharomyces cerevisiae. Genes encoding proteins with established functions in transcriptional activation (MCM1, MATalpha2, PHD1, MSN2, SIR4, and HMS2), cell wall integrity (MPT5, WSC2, and MID2), and cell polarity (BUD5) were identified as potential regulators of FG. The transcription factors MCM1 and MATalpha2 induced invasive growth by promoting diploid-specific bipolar budding in haploid cells. Components of the cell wall integrity pathway including the cell surface proteins Slg1p/Wsc1p, Wsc2p, Mid2p, and the mitogen-activated protein kinase (MAPK) Slt2p/Mpk1p contributed to multiple aspects of the FG response including cell elongation, cell-cell adherence, and agar invasion. Mid2p and Wsc2p stimulated the FG MAPK pathway through the signaling mucin Msb2p and components of the MAPK cascade. The FG pathway contributed to cell wall integrity in parallel with the cell wall integrity pathway and in opposition with the high osmolarity glycerol response pathway. Mass spectrometry approaches identified components of the filamentous cell wall including the mucin-like proteins Msb2p, Flo11p, and subtelomeric (silenced) mucin Flo10p. Secretion of Msb2p, which occurs as part of the maturation of the protein, was inhibited by the ss-1,3-glucan layer of the cell wall, which highlights a new regulatory aspect to cell wall remodeling in this organism. Disruption of ss-1,3-glucan linkages induced mucin shedding and resulted in defects in cell-cell adhesion and invasion of cells into the agar matrix.
Collapse
|
16
|
Conserved WCPL and CX4C domains mediate several mating adhesin interactions in Saccharomyces cerevisiae. Genetics 2009; 182:173-89. [PMID: 19299340 DOI: 10.1534/genetics.108.100073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several adhesins are induced by pheromones during mating in Saccharomyces cerevisiae, including Aga1p, Aga2p, Sag1p (Agalpha1p), and Fig2p. These four proteins all participate in or influence a well-studied agglutinin interaction mediated by Aga1p-Aga2p complexes and Sag1p; however, they also play redundant and essential roles in mating via an unknown mechanism. Aga1p and Fig2p both contain repeated, conserved WCPL and CX(4)C domains. This study was directed toward understanding the mechanism underlying the collective requirement of agglutinins and Fig2p for mating. Apart from the well-known agglutinin interaction between Aga2p and Sag1p, three more pairs of interactions in cells of opposite mating type were revealed by this study, including bilateral heterotypic interactions between Aga1p and Fig2p and a homotypic interaction between Fig2p and Fig2p. These four pairs of adhesin interactions are collectively required for maximum mating efficiency and normal zygote morphogenesis. GPI-less, epitope-tagged forms of Aga1p and Fig2p can be co-immunoprecipitated from the culture medium of mating cells in a manner dependent on the WCPL and CX(4)C domains in the R1 repeat of Aga1p. Using site-directed mutagenesis, the conserved residues in Aga1p that interact with Fig2p were identified. Aga1p is involved in two distinct adhesive functions that are independent of each other, which raises the possibility for combinatorial interactions of this protein with its different adhesion receptors, Sag1 and Fig2p, a property of many higher eukaryotic adhesins.
Collapse
|
17
|
Abstract
Haploid yeast cells mate to form a zygote, whose progeny are diploid cells. A fundamentally sexual event, related to fertilization, yeast mating nevertheless exhibits cytological properties that appear similar to somatic cell fusion. A large collection of mutations that lead to defects in various stages of mating, including cell fusion, has allowed a detailed dissection of the overall pathway. Recent advances in imaging methods, together with powerful methods of genetic analysis, make yeast mating a superb platform for investigation of cell fusion. An understanding of yeast cell fusion will provide insight into fundamental mechanisms of cell signaling, cell polarization, and membrane fusion.
Collapse
|
18
|
Paterson JM, Ydenberg CA, Rose MD. Dynamic localization of yeast Fus2p to an expanding ring at the cell fusion junction during mating. ACTA ACUST UNITED AC 2008; 181:697-709. [PMID: 18474625 PMCID: PMC2386108 DOI: 10.1083/jcb.200801101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fus2p is a pheromone-induced protein associated with the amphiphysin homologue Rvs161p, which is required for cell fusion during mating in Saccharomyces cerevisiae. We constructed a functional Fus2p–green fluorescent protein (GFP), which exhibits highly dynamic localization patterns in pheromone-responding cells (shmoos): diffuse nuclear, mobile cytoplasmic dots and stable cortical patches concentrated at the shmoo tip. In mitotic cells, Fus2p-GFP is nuclear but becomes cytoplasmic as cells form shmoos, dependent on the Fus3p protein kinase and high levels of pheromone signaling. The rapid cytoplasmic movement of Fus2p-GFP dots requires Rvs161p and polymerized actin and is aberrant in mutants with compromised actin organization, which suggests that the Fus2p dots are transported along actin cables, possibly in association with vesicles. Maintenance of Fus2p-GFP patches at the shmoo tip cortex is jointly dependent on actin and a membrane protein, Fus1p, which suggests that Fus1p is an anchor for Fus2p. In zygotes, Fus2p-GFP forms a dilating ring at the cell junction, returning to the nucleus at the completion of cell fusion.
Collapse
|
19
|
Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 2007; 71:282-94. [PMID: 17554046 PMCID: PMC1899881 DOI: 10.1128/mmbr.00037-06] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi are nonmotile eukaryotes that rely on their adhesins for selective interaction with the environment and with other fungal cells. Glycosylphosphatidylinositol (GPI)-cross-linked adhesins have essential roles in mating, colony morphology, host-pathogen interactions, and biofilm formation. We review the structure and binding properties of cell wall-bound adhesins of ascomycetous yeasts and relate them to their effects on cellular interactions, with particular emphasis on the agglutinins and flocculins of Saccharomyces and the Als proteins of Candida. These glycoproteins share common structural motifs tailored to surface activity and biological function. After being secreted to the outer face of the plasma membrane, they are covalently anchored in the wall through modified GPI anchors, with their binding domains elevated beyond the wall surface on highly glycosylated extended stalks. N-terminal globular domains bind peptide or sugar ligands, with between millimolar and nanomolar affinities. These affinities and the high density of adhesins and ligands at the cell surface determine microscopic and macroscopic characteristics of cell-cell associations. Central domains often include Thr-rich tandemly repeated sequences that are highly glycosylated. These domains potentiate cell-to-cell binding, but the molecular mechanism of such an association is not yet clear. These repeats also mediate recombination between repeats and between genes. The high levels of recombination and epigenetic regulation are sources of variation which enable the population to continually exploit new niches and resources.
Collapse
Affiliation(s)
- Anne M Dranginis
- Department of Biological Science, St John's University, Queens, New York, USA
| | | | | | | |
Collapse
|
20
|
Frýdlová I, Basler M, Vasicová P, Malcová I, Hasek J. Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae. Curr Genet 2007; 52:87-95. [PMID: 17639399 DOI: 10.1007/s00294-007-0141-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/22/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
The ability to invade a solid substrate is an important phenomenon due to its connection with pathogenic activity of fungi. We report here on invasion displayed by MATalpha cells of Saccharomyces cerevisiae lacking Isw2p, a subunit of the ISW2 chromatin remodelling complex. We found that on minimal medium, where the isw2Delta MATalpha mutant is not invasive, additional absence of another ISW2 complex subunit, Dls1p or Dpb4p, promoted invasion. Our microarray data showed that derepression of MAT a-specific genes caused by absence of Isw2p is very low. Their expression is increased only by the autocrine activation of the mating pathway. Invasion of isw2Delta MATalpha cells thus resembles the pheromone-induced invasion, including dependence on Fig2p. We show here that another pheromone-induced protein, mating agglutinin Aga1p, can play a role in the agar adhesion necessary for invasion. In contrast with MAT a-cells invading agar under low alpha-pheromone concentration, the invasive growth of isw2Delta cells specifically requires Fus3 kinase. Its function in the invasion of isw2Delta MATalpha cells cannot be completely substituted by Kss1 kinase, which plays a basic role in invasive growth signalling. We suggest that partial dependence of the isw2Delta MATalpha invasion on Fus3p and Aga1p corresponds to a weaker pheromone response of this mutant.
Collapse
Affiliation(s)
- Ivana Frýdlová
- Institute of Microbiology of AS CR, v.v.i, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
21
|
Friesen H, Humphries C, Ho Y, Schub O, Colwill K, Andrews B. Characterization of the yeast amphiphysins Rvs161p and Rvs167p reveals roles for the Rvs heterodimer in vivo. Mol Biol Cell 2006; 17:1306-21. [PMID: 16394103 PMCID: PMC1382319 DOI: 10.1091/mbc.e05-06-0476] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 12/13/2005] [Accepted: 12/27/2005] [Indexed: 11/11/2022] Open
Abstract
We have used comprehensive synthetic lethal screens and biochemical assays to examine the biological role of the yeast amphiphysin homologues Rvs161p and Rvs167p, two proteins that play a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. We found that unlike some forms of amphiphysin, Rvs161p-Rvs167p acts as an obligate heterodimer during vegetative growth and neither Rvs161p nor Rvs167p forms a homodimer in vivo. RVS161 and RVS167 have an identical set of 49 synthetic lethal interactions, revealing functions for the Rvs proteins in cell polarity, cell wall synthesis, and vesicle trafficking as well as a shared role in mating. Consistent with these roles, we show that the Rvs167p-Rvs161p heterodimer, like its amphiphysin homologues, can bind to phospholipid membranes in vitro, suggesting a role in vesicle formation and/or fusion. Our genetic screens also reveal that the interaction between Abp1p and the Rvs167p Src homology 3 (SH3) domain may be important under certain conditions, providing the first genetic evidence for a role for the SH3 domain of Rvs167p. Our studies implicate heterodimerization of amphiphysin family proteins in various functions related to cell polarity, cell integrity, and vesicle trafficking during vegetative growth and the mating response.
Collapse
Affiliation(s)
- Helena Friesen
- Department of Medical Genetics and Microbiology, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
22
|
Barale S, McCusker D, Arkowitz RA. The exchange factor Cdc24 is required for cell fusion during yeast mating. EUKARYOTIC CELL 2005; 3:1049-61. [PMID: 15302837 PMCID: PMC500890 DOI: 10.1128/ec.3.4.1049-1061.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Saccharomyces cerevisiae mating, chemotropic growth and cell fusion are critical for zygote formation. Cdc24p, the guanine nucleotide exchange factor for the Cdc42 G protein, is necessary for oriented growth along a pheromone gradient during mating. To understand the functions of this critical Cdc42p activator, we identified additional cdc24 mating mutants. Two mating-specific mutants, the cdc24-m5 and cdc24-m6 mutants, each were isolated with a mutated residue in the conserved catalytic domain. The cdc24-m6 mutant responds normally to pheromone and orients its growth towards a mating partner yet accumulates prezygotes during mating. cdc24-m6 prezygotes have two apposed intact cell walls and do not correctly localize proteins required for cell fusion, despite normal exocytosis. Our results indicate that the exchange factor Cdc24p is necessary for maintaining or restricting specific proteins required for cell fusion to the cell contact region during mating.
Collapse
Affiliation(s)
- Sophie Barale
- Institute of Signaling, Developmental Biology, and Cancer, CNRS UMR 6543, Faculté des Sciences-Parc Valrose, Université de Nice, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
23
|
Pinto-de-Oliveira A, McCance D, de Magalhães-Sant'Ana AC, Marques JM, Gonçalves T. Expression of HPV16 E6 oncoprotein increases resistance to several stress conditions in Saccharomyces cerevisiae. FEMS Yeast Res 2005; 5:777-87. [PMID: 15851106 DOI: 10.1016/j.femsyr.2005.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 11/26/2004] [Accepted: 02/03/2005] [Indexed: 11/23/2022] Open
Abstract
The E6 protein of human papillomavirus type 16 is essential for the oncogenic transformation process induced by these viruses. Here we expressed the E6 protein in Saccharomyces cerevisiae (which lacks p53) in order to determine if E6 interacts with normal cell functioning, independently of the p53 tumour suppressor factor. We observed a higher resistance to caffeine, hydrogen peroxide and to pheromone, but not to high temperature, starvation and osmostress. Measurement of the relative expression levels of target genes of the signalling pathways, involved in the latter stressful stimuli, led us to conclude that such pathways are differently regulated in the presence of E6.
Collapse
Affiliation(s)
- Ana Pinto-de-Oliveira
- Centre for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
24
|
Huang G, Zhang M, Erdman SE. Posttranslational modifications required for cell surface localization and function of the fungal adhesin Aga1p. EUKARYOTIC CELL 2004; 2:1099-114. [PMID: 14555493 PMCID: PMC219368 DOI: 10.1128/ec.2.5.1099-1114.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adherence of fungal cells to host substrates and each other affects their access to nutrients, sexual conjugation, and survival in hosts. Adhesins are cell surface proteins that mediate these different cell adhesion interactions. In this study, we examine the in vivo functional requirements for specific posttranslational modifications to these proteins, including glycophosphatidylinositol (GPI) anchor addition and O-linked glycosylation. The processing of some fungal GPI anchors, creating links to cell wall beta-1,6 glucans, is postulated to facilitate postsecretory traffic of proteins to cell wall domains conducive to their functions. By studying the yeast sexual adhesin subunit Aga1p, we found that deletion of its signal sequence for GPI addition eliminated its activity, while deletions of different internal domains had various effects on function. Substitution of the Aga1p GPI signal domain with those of other GPI-anchored proteins, a single transmembrane domain, or a cysteine capable of forming a disulfide all produced functional adhesins. A portion of the cellular pool of Aga1p was determined to be cell wall resident. Aga1p and the alpha-agglutinin Agalpha1p were shown to be under glycosylated in cells lacking the protein mannosyltransferase genes PMT1 and PMT2, with phenotypes manifested only in MATalpha cells for single mutants but in both cell types when both genes are absent. We conclude that posttranslational modifications to Aga1p are necessary for its biogenesis and activity. Our studies also suggest that in addition to GPI-glucan linkages, other cell surface anchorage mechanisms, such as transmembrane domains or disulfides, may be employed by fungal species to localize adhesins.
Collapse
Affiliation(s)
- Guohong Huang
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA.
| | | | | |
Collapse
|
25
|
Mackin NA, Sousou TJ, Erdman SE. The PXL1 gene of Saccharomyces cerevisiae encodes a paxillin-like protein functioning in polarized cell growth. Mol Biol Cell 2004; 15:1904-17. [PMID: 14767053 PMCID: PMC379286 DOI: 10.1091/mbc.e04-01-0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae open reading frame YKR090w encodes a predicted protein displaying similarity in organization to paxillin, a scaffolding protein that organizes signaling and actin cytoskeletal regulating activities in many higher eucaryotic cell types. We found that YKR090w functions in a manner analogous to paxillin as a mediator of polarized cell growth; thus, we have named this gene PXL1 (Paxillin-like protein 1). Analyses of pxl1Delta strains show that PXL1 is required for the selection and maintenance of polarized growth sites during vegetative growth and mating. Genetic analyses of strains lacking both PXL1 and the Rho GAP BEM2 demonstrate that such cells display pronounced growth defects in response to different conditions causing Rho1 pathway activation. PXL1 also displays genetic interactions with the Rho1 effector FKS1. Pxl1p may therefore function as a modulator of Rho-GTPase signaling. A GFP::Pxl1 fusion protein localizes to sites of polarized cell growth. Experiments mapping the localization determinants of Pxl1p demonstrate the existence of localization mechanisms conserved between paxillin and Pxl1p and indicate an evolutionarily ancient and conserved role for LIM domain proteins in acting to modulate cell signaling and cytoskeletal organization during polarized growth.
Collapse
Affiliation(s)
- Nancy A Mackin
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | | | |
Collapse
|
26
|
Abstract
In W303-derived strains, disruption of FIG2 increased agglutinability of alpha cells, but not a cells, and did not alter expression of alpha-agglutinin, binding of 125I-labeled alpha-agglutinin, or mating efficiency. Fig2p overexpression led to alpha-cell-specfic suppression of agglutinability. These results imply that Fig2p is an indirect masker of the active sites in alpha-agglutinin.
Collapse
Affiliation(s)
- Chong K Jue
- Department of Biological Sciences and the Center for Gene Structure and Function, Hunter College, City University of New York, New York 10021, USA
| | | |
Collapse
|