1
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Koch LB, Spanos C, Kelly V, Ly T, Marston AL. Rewiring of the phosphoproteome executes two meiotic divisions in budding yeast. EMBO J 2024; 43:1351-1383. [PMID: 38413836 PMCID: PMC10987667 DOI: 10.1038/s44318-024-00059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
The cell cycle is ordered by a controlled network of kinases and phosphatases. To generate gametes via meiosis, two distinct and sequential chromosome segregation events occur without an intervening S phase. How canonical cell cycle controls are modified for meiosis is not well understood. Here, using highly synchronous budding yeast populations, we reveal how the global proteome and phosphoproteome change during the meiotic divisions. While protein abundance changes are limited to key cell cycle regulators, dynamic phosphorylation changes are pervasive. Our data indicate that two waves of cyclin-dependent kinase (Cdc28Cdk1) and Polo (Cdc5Polo) kinase activity drive successive meiotic divisions. These two distinct phases of phosphorylation are ensured by the meiosis-specific Spo13 protein, which rewires the phosphoproteome. Spo13 binds to Cdc5Polo to promote phosphorylation in meiosis I, particularly of substrates containing a variant of the canonical Cdc5Polo motif. Overall, our findings reveal that a master regulator of meiosis directs the activity of a kinase to change the phosphorylation landscape and elicit a developmental cascade.
Collapse
Affiliation(s)
- Lori B Koch
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Van Kelly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Tony Ly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
3
|
Durant M, Mucelli X, Huang LS. Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure. J Fungi (Basel) 2024; 10:132. [PMID: 38392804 PMCID: PMC10890087 DOI: 10.3390/jof10020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, sporulation occurs during starvation of a diploid cell and results in the formation of four haploid spores forming within the mother cell ascus. Meiosis divides the genetic material that is encapsulated by the prospore membrane that grows to surround the haploid nuclei; this membrane will eventually become the plasma membrane of the haploid spore. Cellularization of the spores occurs when the prospore membrane closes to capture the haploid nucleus along with some cytoplasmic material from the mother cell, and thus, closure of the prospore membrane is the meiotic cytokinetic event. This cytokinetic event involves the removal of the leading-edge protein complex, a complex of proteins that localizes to the leading edge of the growing prospore membrane. The development and closure of the prospore membrane must be coordinated with other meiotic exit events such as spindle disassembly. Timing of the closure of the prospore membrane depends on the meiotic exit pathway, which utilizes Cdc15, a Hippo-like kinase, and Sps1, an STE20 family GCKIII kinase, acting in parallel to the E3 ligase Ama1-APC/C. This review describes the sporulation process and focuses on the development of the prospore membrane and the regulation of prospore membrane closure.
Collapse
Affiliation(s)
| | | | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; (M.D.); (X.M.)
| |
Collapse
|
4
|
Nunez G, Zhang K, Mogbheli K, Hollingsworth NM, Neiman AM. Recruitment of the lipid kinase Mss4 to the meiotic spindle pole promotes prospore membrane formation in Saccharomyces cerevisiae. Mol Biol Cell 2023; 34:ar33. [PMID: 36857169 PMCID: PMC10092644 DOI: 10.1091/mbc.e22-11-0515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Spore formation in the budding yeast, Saccharomyces cerevisiae, involves de novo creation of four prospore membranes, each of which surrounds a haploid nucleus resulting from meiosis. The meiotic outer plaque (MOP) is a meiosis-specific protein complex associated with each meiosis II spindle pole body (SPB). Vesicle fusion on the MOP surface creates an initial prospore membrane anchored to the SPB. Ady4 is a meiosis-specific MOP component that stabilizes the MOP-prospore membrane interaction. We show that Ady4 recruits the lipid kinase, Mss4, to the MOP. MSS4 overexpression suppresses the ady4∆ spore formation defect, suggesting that a specific lipid environment provided by Mss4 promotes maintenance of prospore membrane attachment to MOPs. The meiosis-specific Spo21 protein is an essential structural MOP component. We show that the Spo21 N terminus contains an amphipathic helix that binds to prospore membranes. A mutant in SPO21 that removes positive charges from this helix shares phenotypic similarities to ady4∆. We propose that Mss4 generates negatively charged lipids in prospore membranes that enhance binding by the positively charged N terminus of Spo21, thereby providing a mechanism by which the MOP-prospore membrane interaction is stabilized.
Collapse
Affiliation(s)
- Greisly Nunez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Kai Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Kaveh Mogbheli
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| |
Collapse
|
5
|
Oz T, Mengoli V, Rojas J, Jonak K, Braun M, Zagoriy I, Zachariae W. The Spo13/Meikin pathway confines the onset of gamete differentiation to meiosis II in yeast. EMBO J 2022; 41:e109446. [PMID: 35023198 PMCID: PMC8844990 DOI: 10.15252/embj.2021109446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022] Open
Abstract
Sexual reproduction requires genome haploidization by the two divisions of meiosis and a differentiation program to generate gametes. Here, we have investigated how sporulation, the yeast equivalent of gamete differentiation, is coordinated with progression through meiosis. Spore differentiation is initiated at metaphase II when a membrane-nucleating structure, called the meiotic plaque, is assembled at the centrosome. While all components of this structure accumulate already at entry into meiosis I, they cannot assemble because centrosomes are occupied by Spc72, the receptor of the γ-tubulin complex. Spc72 is removed from centrosomes by a pathway that depends on the polo-like kinase Cdc5 and the meiosis-specific kinase Ime2, which is unleashed by the degradation of Spo13/Meikin upon activation of the anaphase-promoting complex at anaphase I. Meiotic plaques are finally assembled upon reactivation of Cdk1 at entry into metaphase II. This unblocking-activation mechanism ensures that only single-copy genomes are packaged into spores and might serve as a paradigm for the regulation of other meiosis II-specific processes.
Collapse
Affiliation(s)
- Tugce Oz
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Valentina Mengoli
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Julie Rojas
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katarzyna Jonak
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marianne Braun
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Ievgeniia Zagoriy
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Zachariae
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
6
|
Barve G, Manjithaya R. Cross-talk between autophagy and sporulation in Saccharomyces cerevisiae. Yeast 2021; 38:401-413. [PMID: 33608896 DOI: 10.1002/yea.3556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
Unicellular organisms, like yeast, have developed mechanisms to overcome environmental stress conditions like nutrient starvation. Autophagy and sporulation are two such mechanisms employed by yeast cells. Autophagy is a well-conserved, catabolic process that degrades excess and unwanted cytoplasmic materials and provides building blocks during starvation conditions. Thus, autophagy maintains cellular homeostasis at basal conditions and acts as a survival mechanism during stress conditions. Sporulation is an essential process that, like autophagy, is triggered due to stress conditions in yeast. It involves the formation of ascospores that protect the yeast cells during extreme conditions and germinate when the conditions are favorable. Studies show that autophagy is required for the sporulation process in yeast. However, the exact mechanism of action is not clear. Furthermore, several of the core autophagy gene knockouts do not sporulate and at what stage of sporulation they are involved is not clear. Besides, many overlapping proteins function in both sporulation and autophagy and it is unclear how the pathway-specific roles of these proteins are determined. All these observations suggest that the two processes cross-talk. Individually, some key features from both the processes remain to be studied with respect to the source of membrane for autophagosomes, prospore membrane (PSM) formation, and closure of the membranes. Therefore, it becomes crucial to study the cross-talk between autophagy and sporulation. In this review, the cross-talk between the two pathways, the common protein machineries have been discussed.
Collapse
Affiliation(s)
- Gaurav Barve
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| |
Collapse
|
7
|
Wang F, Zhang R, Feng W, Tsuchiya D, Ballew O, Li J, Denic V, Lacefield S. Autophagy of an Amyloid-like Translational Repressor Regulates Meiotic Exit. Dev Cell 2020; 52:141-151.e5. [PMID: 31991104 DOI: 10.1016/j.devcel.2019.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/26/2019] [Accepted: 12/26/2019] [Indexed: 12/30/2022]
Abstract
We explored the potential for autophagy to regulate budding yeast meiosis. Following pre-meiotic DNA replication, we blocked autophagy by chemical inhibition of Atg1 kinase or engineered degradation of Atg14 and observed homologous chromosome segregation followed by sister chromatid separation; cells then underwent additional rounds of spindle formation and disassembly without DNA re-replication, leading to aberrant chromosome segregation. Analysis of cell-cycle regulators revealed that autophagy inhibition prevents meiosis II-specific expression of Clb3 and leads to the aberrant persistence of Clb1 and Cdc5, two substrates of a meiotic ubiquitin ligase activated by Ama1. Lastly, we found that during meiosis II, autophagy degrades Rim4, an amyloid-like translational repressor whose timed clearance regulates protein production from its mRNA targets, which include CLB3 and AMA1. Strikingly, engineered Clb3 or Ama1 production restored meiotic termination in the absence of autophagy. Thus, autophagy destroys a master regulator of meiotic gene expression to enable irreversible meiotic exit.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, Center for Autophagy Research, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rudian Zhang
- Department of Internal Medicine, Center for Autophagy Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wenzhi Feng
- Department of Internal Medicine, Center for Autophagy Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dai Tsuchiya
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Olivia Ballew
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jiajia Li
- Department of Internal Medicine, Center for Autophagy Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
8
|
Wabner D, Overhageböck T, Nordmann D, Kronenberg J, Kramer F, Schmitz HP. Analysis of the protein composition of the spindle pole body during sporulation in Ashbya gossypii. PLoS One 2019; 14:e0223374. [PMID: 31581259 PMCID: PMC6776394 DOI: 10.1371/journal.pone.0223374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022] Open
Abstract
The spores of fungi come in a wide variety of forms and sizes, highly adapted to the route of dispersal and to survival under specific environmental conditions. The ascomycete Ashbya gossypii produces needle shaped spores with a length of 30 μm and a diameter of 1 μm. Formation of these spores relies on actin and actin regulatory proteins and is, therefore, distinct from the minor role that actin plays for spore formation in Saccharomyces cerevisiae. Using in vivo FRET-measurements of proteins labeled with fluorescent proteins, we investigate how the formin AgBnr2, a protein that promotes actin polymerization, integrates into the structure of the spindle pole body during sporulation. We also investigate the role of the A. gossypii homologs to the S. cerevisiae meiotic outer plaque proteins Spo74, Mpc54 and Ady4 for sporulation in A. gossypii. We found highest FRET of AgBnr2 with AgSpo74. Further experiments indicated that AgSpo74 is a main factor for targeting AgBnr2 to the spindle pole body. In agreement with these results, the Agspo74 deletion mutant produces no detectable spores, whereas deletion of Agmpc54 only has an effect on spore length and deletion of Agady4 has no detectable sporulation phenotype. Based on this study and in relation to previous results we suggest a model where AgBnr2 resides within an analogous structure to the meiotic outer plaque of S. cerevisiae. There it promotes formation of actin cables important for shaping the needle shaped spore structure.
Collapse
Affiliation(s)
- Dario Wabner
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Tom Overhageböck
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Doris Nordmann
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Julia Kronenberg
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Florian Kramer
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
| | - Hans-Peter Schmitz
- Department of Genetics, University of Osnabrück, Osnabrück, Germany
- * E-mail:
| |
Collapse
|
9
|
Nakamura TS, Numajiri Y, Okumura Y, Hidaka J, Tanaka T, Inoue I, Suda Y, Takahashi T, Nakanishi H, Gao XD, Neiman AM, Tachikawa H. Dynamic localization of a yeast development-specific PP1 complex during prospore membrane formation is dependent on multiple localization signals and complex formation. Mol Biol Cell 2017; 28:3881-3895. [PMID: 29046399 PMCID: PMC5739302 DOI: 10.1091/mbc.e17-08-0521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/27/2022] Open
Abstract
Prospore membrane formation of Saccharomyces cerevisiae provides a powerful model for understanding the mechanisms of de novo membrane formation. Protein phosphatase type1, Glc7, and a sporulation-specific targeting subunit, Gip1, show dynamic localization using multiple localization signals and regulate membrane growth during sporulation. During the developmental process of sporulation in Saccharomyces cerevisiae, membrane structures called prospore membranes are formed de novo, expand, extend, acquire a round shape, and finally become plasma membranes of the spores. GIP1 encodes a regulatory/targeting subunit of protein phosphatase type 1 that is required for sporulation. Gip1 recruits the catalytic subunit Glc7 to septin structures that form along the prospore membrane; however, the molecular basis of its localization and function is not fully understood. Here we show that Gip1 changes its localization dynamically and is required for prospore membrane extension. Gip1 first associates with the spindle pole body as the prospore membrane forms, moves onto the prospore membrane and then to the septins as the membrane extends, distributes around the prospore membrane after closure, and finally translocates into the nucleus in the maturing spore. Deletion and mutation analyses reveal distinct sequences in Gip1 that are required for different localizations and for association with Glc7. Binding to Glc7 is also required for proper localization. Strikingly, localization to the prospore membrane, but not association with septins, is important for Gip1 function. Further, our genetic analysis suggests that a Gip1–Glc7 phosphatase complex regulates prospore membrane extension in parallel to the previously reported Vps13, Spo71, Spo73 pathway.
Collapse
Affiliation(s)
- Tsuyoshi S Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yumi Numajiri
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuuya Okumura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Junji Hidaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takayuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ichiro Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Tetsuo Takahashi
- Laboratory of Glycobiology and Glycotechnology, Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1292, Japan
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Hiroyuki Tachikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
The Mitotic Exit Network Regulates Spindle Pole Body Selection During Sporulation of Saccharomyces cerevisiae. Genetics 2017; 206:919-937. [PMID: 28450458 DOI: 10.1534/genetics.116.194522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/11/2017] [Indexed: 01/11/2023] Open
Abstract
Age-based inheritance of centrosomes in eukaryotic cells is associated with faithful chromosome distribution in asymmetric cell divisions. During Saccharomyces cerevisiae ascospore formation, such an inheritance mechanism targets the yeast centrosome equivalents, the spindle pole bodies (SPBs) at meiosis II onset. Decreased nutrient availability causes initiation of spore formation at only the younger SPBs and their associated genomes. This mechanism ensures encapsulation of nonsister genomes, which preserves genetic diversity and provides a fitness advantage at the population level. Here, by usage of an enhanced system for sporulation-induced protein depletion, we demonstrate that the core mitotic exit network (MEN) is involved in age-based SPB selection. Moreover, efficient genome inheritance requires Dbf2/20-Mob1 during a late step in spore maturation. We provide evidence that the meiotic functions of the MEN are more complex than previously thought. In contrast to mitosis, completion of the meiotic divisions does not strictly rely on the MEN whereas its activity is required at different time points during spore development. This is reminiscent of vegetative MEN functions in spindle polarity establishment, mitotic exit, and cytokinesis. In summary, our investigation contributes to the understanding of age-based SPB inheritance during sporulation of S. cerevisiae and provides general insights on network plasticity in the context of a specialized developmental program. Moreover, the improved system for a developmental-specific tool to induce protein depletion will be useful in other biological contexts.
Collapse
|
11
|
Argüello-Miranda O, Zagoriy I, Mengoli V, Rojas J, Jonak K, Oz T, Graf P, Zachariae W. Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II. Dev Cell 2017; 40:37-52. [PMID: 28017619 DOI: 10.1016/j.devcel.2016.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023]
Abstract
Meiosis consists of DNA replication followed by two consecutive nuclear divisions and gametogenesis or spore formation. While meiosis I has been studied extensively, less is known about the regulation of meiosis II. Here we show that Hrr25, the conserved casein kinase 1δ of budding yeast, links three mutually independent key processes of meiosis II. First, Hrr25 induces nuclear division by priming centromeric cohesin for cleavage by separase. Hrr25 simultaneously phosphorylates Rec8, the cleavable subunit of cohesin, and removes from centromeres the cohesin protector composed of shugoshin and the phosphatase PP2A. Second, Hrr25 initiates the sporulation program by inducing the synthesis of membranes that engulf the emerging nuclei at anaphase II. Third, Hrr25 mediates exit from meiosis II by activating pathways that trigger the destruction of M-phase-promoting kinases. Thus, Hrr25 synchronizes formation of the single-copy genome with gamete differentiation and termination of meiosis.
Collapse
Affiliation(s)
- Orlando Argüello-Miranda
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ievgeniia Zagoriy
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Valentina Mengoli
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julie Rojas
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katarzyna Jonak
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tugce Oz
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter Graf
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Zachariae
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
12
|
Cytochrome P450 complement (CYPome) of Candida oregonensis, a gut-associated yeast of bark beetle, Dendroctonus rhizophagus. Fungal Biol 2016; 120:1077-89. [PMID: 27567714 DOI: 10.1016/j.funbio.2016.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/20/2023]
Abstract
Bark beetles (Curculionidae: Scolytinae) and associated microorganisms must overcome a complex tree's defence system, which includes toxic monoterpenes, to successfully complete their life cycle. A number of studies have suggested these microorganisms could have ecological roles related with the nutrition, detoxification, and semiochemical production. In particular, in filamentous fungi symbionts, cytochrome P450 (CYP) have been involved with terpenoid detoxification and biotransformation processes. Candida oregonensis has been isolated from the gut, ovaries, and frass of different bark beetle species, and it is a dominant species in the Dendroctonus rhizophagus gut. In this study, we identify, characterise, and infer the phylogenetic relationships of C. oregonensis CYP genes. The results indicate that the cytochrome P450 complement (CYPome) is composed of nine genes (CYP51F1, CYP61A1, CYP56D1, CYP52A59, CYP52A60, CYP52A61, CYP52A62, CYP5217A8, and CYP5217B1), which might participate in primary metabolic reactions such as sterol biosynthesis, biodegradation of xenobiotic, and resistance to environmental stress. The prediction of the cellular location suggests that these CYPs to be anchored to the plasma membrane, membranes of the endoplasmic reticulum, mitochondria, and peroxisomes. These findings lay the foundation for future studies about the functional role of P450s, not only for yeasts, but also for the insects with which they interact.
Collapse
|
13
|
Wang Q, Nowak CM, Korde A, Oh DH, Dassanayake M, Donze D. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae. BMC Biol 2014; 12:89. [PMID: 25348158 PMCID: PMC4228148 DOI: 10.1186/s12915-014-0089-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/17/2014] [Indexed: 12/26/2022] Open
Abstract
Background Assembled RNA polymerase III (Pol III) complexes exert local effects on chromatin processes, including influencing transcription of neighboring RNA polymerase II (Pol II) transcribed genes. These properties have been designated as ‘extra-transcriptional’ effects of the Pol III complex. Previous coding sequence microarray studies using Pol III factor mutants to determine global effects of Pol III complex assembly on Pol II promoter activity revealed only modest effects that did not correlate with the proximity of Pol III complex binding sites. Results Given our recent results demonstrating that tDNAs block progression of intergenic Pol II transcription, we hypothesized that extra-transcriptional effects within intergenic regions were not identified in the microarray study. To reconsider global impacts of Pol III complex binding, we used RNA sequencing to compare transcriptomes of wild type versus Pol III transcription factor TFIIIC depleted mutants. The results reveal altered intergenic Pol II transcription near TFIIIC binding sites in the mutant strains, where we observe readthrough of upstream transcripts that normally terminate near these sites, 5′- and 3′-extended transcripts, and de-repression of adjacent genes and intergenic regions. Conclusions The results suggest that effects of assembled Pol III complexes on transcription of neighboring Pol II promoters are of greater magnitude than previously appreciated, that such effects influence expression of adjacent genes at transcriptional start site and translational levels, and may explain a function of the conserved ETC sites in yeast. The results may also be relevant to synthetic biology efforts to design a minimal yeast genome. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0089-x) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Tomar P, Bhatia A, Ramdas S, Diao L, Bhanot G, Sinha H. Sporulation genes associated with sporulation efficiency in natural isolates of yeast. PLoS One 2013; 8:e69765. [PMID: 23874994 PMCID: PMC3714247 DOI: 10.1371/journal.pone.0069765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022] Open
Abstract
Yeast sporulation efficiency is a quantitative trait and is known to vary among experimental populations and natural isolates. Some studies have uncovered the genetic basis of this variation and have identified the role of sporulation genes (IME1, RME1) and sporulation-associated genes (FKH2, PMS1, RAS2, RSF1, SWS2), as well as non-sporulation pathway genes (MKT1, TAO3) in maintaining this variation. However, these studies have been done mostly in experimental populations. Sporulation is a response to nutrient deprivation. Unlike laboratory strains, natural isolates have likely undergone multiple selections for quick adaptation to varying nutrient conditions. As a result, sporulation efficiency in natural isolates may have different genetic factors contributing to phenotypic variation. Using Saccharomyces cerevisiae strains in the genetically and environmentally diverse SGRP collection, we have identified genetic loci associated with sporulation efficiency variation in a set of sporulation and sporulation-associated genes. Using two independent methods for association mapping and correcting for population structure biases, our analysis identified two linked clusters containing 4 non-synonymous mutations in genes - HOS4, MCK1, SET3, and SPO74. Five regulatory polymorphisms in five genes such as MLS1 and CDC10 were also identified as putative candidates. Our results provide candidate genes contributing to phenotypic variation in the sporulation efficiency of natural isolates of yeast.
Collapse
Affiliation(s)
- Parul Tomar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Aatish Bhatia
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Shweta Ramdas
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Liyang Diao
- BioMaPS Institute for Quantitative Biology, Busch Campus, Rutgers University, Piscataway, New Jersey, United States of America
| | - Gyan Bhanot
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, United States of America
- BioMaPS Institute for Quantitative Biology, Busch Campus, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, United States of America
| | - Himanshu Sinha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- * E-mail:
| |
Collapse
|
15
|
Acetate regulation of spore formation is under the control of the Ras/cyclic AMP/protein kinase A pathway and carbon dioxide in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:1021-32. [PMID: 22660623 DOI: 10.1128/ec.05240-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Saccharomyces cerevisiae, the Ras/cyclic AMP (cAMP)/protein kinase A (PKA) pathway is a nutrient-sensitive signaling cascade that regulates vegetative growth, carbohydrate metabolism, and entry into meiosis. How this pathway controls later steps of meiotic development is largely unknown. Here, we have analyzed the role of the Ras/cAMP/PKA pathway in spore formation by the meiosis-specific manipulation of Ras and PKA or by the disturbance of cAMP production. We found that the regulation of spore formation by acetate takes place after commitment to meiosis and depends on PKA and appropriate A kinase activation by Ras/Cyr1 adenylyl cyclase but not by activation through the Gpa2/Gpr1 branch. We further discovered that spore formation is regulated by carbon dioxide/bicarbonate, and an analysis of mutants defective in acetate transport (ady2Δ) or carbonic anhydrase (nce103Δ) provided evidence that these metabolites are involved in connecting the nutritional state of the meiotic cell to spore number control. Finally, we observed that the potential PKA target Ady1 is required for the proper localization of the meiotic plaque proteins Mpc70 and Spo74 at spindle pole bodies and for the ability of these proteins to initiate spore formation. Overall, our investigation suggests that the Ras/cAMP/PKA pathway plays a crucial role in the regulation of spore formation by acetate and indicates that the control of meiotic development by this signaling cascade takes places at several steps and is more complex than previously anticipated.
Collapse
|
16
|
Abstract
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.
Collapse
|
17
|
Nakamura-Kubo M, Hirata A, Shimoda C, Nakamura T. The fission yeast pleckstrin homology domain protein Spo7 is essential for initiation of forespore membrane assembly and spore morphogenesis. Mol Biol Cell 2011; 22:3442-55. [PMID: 21775631 PMCID: PMC3172268 DOI: 10.1091/mbc.e11-02-0125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/17/2011] [Accepted: 07/14/2011] [Indexed: 11/12/2022] Open
Abstract
Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the SPB play an indispensable role in SPB modification, and therefore in sporulation. In this paper, we report the identification of a novel SPB component, Spo7, which has a pleckstrin homology (PH) domain. We found that Spo7 was essential for initiation of FSM assembly, but not for SPB modification. Spo7 directly bound to Meu14, a component of the leading edge of the FSM, and was essential for proper localization of Meu14. The PH domain of Spo7 had affinity for phosphatidylinositol 3-phosphate (PI3P). spo7 mutants lacking the PH domain showed aberrant spore morphology, similar to that of meu14 and phosphatidylinositol 3-kinase (pik3) mutants. Our study suggests that Spo7 coordinates formation of the leading edge and initiation of FSM assembly, thereby accomplishing accurate formation of the FSM.
Collapse
Affiliation(s)
- Michiko Nakamura-Kubo
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
18
|
Mathieson EM, Schwartz C, Neiman AM. Membrane assembly modulates the stability of the meiotic spindle-pole body. J Cell Sci 2010; 123:2481-90. [PMID: 20592185 DOI: 10.1242/jcs.062794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spore formation in Saccharomyces cerevisiae is driven by de novo assembly of new membranes termed prospore membranes. A vesicle-docking complex called the meiosis II outer plaque (MOP) forms on the cytoplasmic faces of the spindle-pole bodies at the onset of meiosis II and serves as the initiation site for membrane formation. In this study, a fluorescence-recovery assay was used to demonstrate that the dynamics of the MOP proteins change coincident with the coalescence of precursor vesicles into a membrane. Proteins within the MOP exchange freely with a soluble pool prior to membrane assembly, but after membranes are formed they remain stably within the MOP. By contrast, constitutive spindle-pole-body proteins display low exchange in both conditions. The MOP component Ady4p plays a role in maintaining the integrity of the MOP complex, but this role differs depending on whether the MOP is associated with docked vesicles or a fully formed membrane. These results suggest an architectural rearrangement of the MOP coincident with vesicle fusion.
Collapse
Affiliation(s)
- Erin M Mathieson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
19
|
Mathieson EM, Suda Y, Nickas M, Snydsman B, Davis TN, Muller EGD, Neiman AM. Vesicle docking to the spindle pole body is necessary to recruit the exocyst during membrane formation in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:3693-707. [PMID: 20826607 PMCID: PMC2965686 DOI: 10.1091/mbc.e10-07-0563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The meiosis II outer plaque (MOP) acts a vesicle tethering complex that is a site for de novo membrane formation. Novel mutants in a MOP protein reveal that interaction of vesicles with the MOP surface is required to recruit a second tethering complex, the exocyst, to the vesicles, suggesting a mechanism by which the MOP promotes vesicle fusion. During meiosis II in Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body, referred to as the meiosis II outer plaque (MOP), is modified in both composition and structure to become the initiation site for de novo formation of a membrane called the prospore membrane. The MOP serves as a docking complex for precursor vesicles that are targeted to its surface. Using fluorescence resonance energy transfer analysis, the orientation of coiled-coil proteins within the MOP has been determined. The N-termini of two proteins, Mpc54p and Spo21p, were oriented toward the outer surface of the structure. Mutations in the N-terminus of Mpc54p resulted in a unique phenotype: precursor vesicles loosely tethered to the MOP but did not contact its surface. Thus, these mpc54 mutants separate the steps of vesicle association and docking. Using these mpc54 mutants, we determined that recruitment of the Rab GTPase Sec4p, as well as the exocyst components Sec3p and Sec8p, to the precursor vesicles requires vesicle docking to the MOP. This suggests that the MOP promotes membrane formation both by localization of precursor vesicles to a particular site and by recruitment of a second tethering complex, the exocyst, that stimulates downstream events of fusion.
Collapse
Affiliation(s)
- Erin M Mathieson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Yang HJ, Neiman AM. A guaninine nucleotide exchange factor is a component of the meiotic spindle pole body in Schizosaccharomyces pombe. Mol Biol Cell 2010; 21:1272-81. [PMID: 20130084 PMCID: PMC2847530 DOI: 10.1091/mbc.e09-10-0842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spore morphogenesis in yeast is driven by the formation of membrane compartments that initiate growth at the spindle poles during meiosis II and grow to encapsulate daughter nuclei. Vesicle docking complexes, called meiosis II outer plaques (MOPs), form on each meiosis II spindle pole body (SPB) and serve as sites of membrane nucleation. How the MOP stimulates membrane assembly is not known. Here, we report that SpSpo13, a component of the MOP in Schizosaccharomyces pombe, shares homology with the guanine nucleotide exchange factor (GEF) domain of the Saccharomyces cerevisiae Sec2 protein. ScSec2 acts as a GEF for the small Rab GTPase ScSec4, which regulates vesicle trafficking from the late-Golgi to the plasma membrane. A chimeric protein in which the ScSec2-GEF domain is replaced with SpSpo13 is capable of supporting the growth of a sec2Delta mutant. SpSpo13 binds preferentially to the nucleotide-free form of ScSec4 and facilitates nucleotide exchange in vitro. In vivo, a Spspo13 mutant defective in GEF activity fails to support membrane assembly. In vitro specificity experiments suggest that SpYpt2 is the physiological substrate of SpSpo13. These results demonstrate that stimulation of Rab-GTPase activity is a property of the S. pombe MOP essential for the initiation of membrane formation.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
21
|
Protein phosphatase type 1-interacting protein Ysw1 is involved in proper septin organization and prospore membrane formation during sporulation. EUKARYOTIC CELL 2009; 8:1027-37. [PMID: 19465564 DOI: 10.1128/ec.00095-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sporulation of Saccharomyces cerevisiae is a developmental process in which four haploid spores are generated inside a diploid cell. Gip1, a sporulation-specific targeting subunit of protein phosphatase type 1, together with its catalytic subunit, Glc7, colocalizes with septins along the extending prospore membrane and is required for septin organization and spore wall formation. However, the mechanism by which Gip1-Glc7 phosphatase promotes these events is unclear. We show here that Ysw1, a sporulation-specific coiled-coil protein, has a functional relationship to Gip1-Glc7 phosphatase. Overexpression of YSW1 partially suppresses the sporulation defect of a temperature-sensitive allele of gip1. Ysw1 interacts with Gip1 in a two-hybrid assay, and this interaction is required for suppression. Ysw1 tagged with green fluorescent protein colocalizes with septins and Gip1 along the extending prospore membrane during spore formation. Sporulation is partially defective in ysw1Delta mutant, and cytological analysis revealed that septin structures are perturbed and prospore membrane extension is aberrant in ysw1Delta cells. These results suggest that Ysw1 functions with the Gip1-Glc7 phosphatase to promote proper septin organization and prospore membrane formation.
Collapse
|
22
|
Barral Y, Liakopoulos D. Role of spindle asymmetry in cellular dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:149-213. [PMID: 19815179 DOI: 10.1016/s1937-6448(09)78004-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mitotic spindle is mostly perceived as a symmetric structure. However, in many cell divisions, the two poles of the spindle organize asters with different dynamics, associate with different biomolecules or subcellular domains, and perform different functions. In this chapter, we describe some of the most prominent examples of spindle asymmetry. These are encountered during cell-cycle progression in budding and fission yeast and during asymmetric cell divisions of stem cells and embryos. We analyze the molecular mechanisms that lead to generation of spindle asymmetry and discuss the importance of spindle-pole differentiation for the correct outcome of cell division.
Collapse
Affiliation(s)
- Yves Barral
- Institute of Biochemistry, ETH Hönggerberg, HPM, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
23
|
A refined two-hybrid system reveals that SCF(Cdc4)-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proc Natl Acad Sci U S A 2008; 105:14497-502. [PMID: 18787112 DOI: 10.1073/pnas.0806253105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ubiquitin-dependent degradation is implicated in various cellular regulatory mechanisms. The SCF(Cdc4) (Skp1, Cullin/Cdc53, and the F-box protein Cdc4) complex is an ubiquitin ligase complex that acts as a regulator of cell cycle, signal transduction, and transcription. These regulatory mechanisms are not well defined because of the difficulty in identifying the interaction between ubiquitin ligases and their substrates. To identify substrates of the yeast SCF(Cdc4) ubiquitin ligase complex, we refined the yeast two-hybrid system to allow screening Cdc4-substrate interactions under conditions of substrate stabilization, and identified Swi5 as a substrate of the SCF(Cdc4) complex. Swi5 is the transcriptional activator of Sic1, the inhibitor of S phase cyclin-dependent kinases (CDKs). We showed that Swi5 is indeed ubiquitinated and degraded through the SCF(Cdc4) complex. Furthermore, the SCF(Cdc4)-dependent degradation of Swi5 was required to terminate SIC1 transcription at early G(1) phase, which ensured efficient entry into S phase: Hyperaccumulation of Sic1 was noted in cells expressing stabilized Swi5, and expression of stabilized Swi5 delayed S phase entry, which was dominantly suppressed by SIC1 deletion. These findings indicate that the SCF(Cdc4) complex regulates S phase entry not only through degradation of Sic1, but also through degradation of Swi5.
Collapse
|
24
|
Lo HC, Wan L, Rosebrock A, Futcher B, Hollingsworth NM. Cdc7-Dbf4 regulates NDT80 transcription as well as reductional segregation during budding yeast meiosis. Mol Biol Cell 2008; 19:4956-67. [PMID: 18768747 DOI: 10.1091/mbc.e08-07-0755] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In budding yeast, as in other eukaryotes, the Cdc7 protein kinase is important for initiation of DNA synthesis in vegetative cells. In addition, Cdc7 has crucial meiotic functions: it facilitates premeiotic DNA replication, and it is essential for the initiation of recombination. This work uses a chemical genetic approach to demonstrate that Cdc7 kinase has additional roles in meiosis. First, Cdc7 allows expression of NDT80, a meiosis-specific transcriptional activator required for the induction of genes involved in exit from pachytene, meiotic progression, and spore formation. Second, Cdc7 is necessary for recruitment of monopolin to sister kinetochores, and it is necessary for the reductional segregation occurring at meiosis I. The use of the same kinase to regulate several distinct meiosis-specific processes may be important for the coordination of these processes during meiosis.
Collapse
Affiliation(s)
- Hsiao-Chi Lo
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
25
|
Sorting signals within the Saccharomyces cerevisiae sporulation-specific dityrosine transporter, Dtr1p, C terminus promote Golgi-to-prospore membrane transport. EUKARYOTIC CELL 2008; 7:1674-84. [PMID: 18676951 DOI: 10.1128/ec.00151-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During sporulation in Saccharomyces cerevisiae, the dityrosine transporter Dtr1p, which is required for formation of the outermost layer of the spore wall, is specifically expressed and transported to the prospore membrane, a novel double-lipid-bilayer membrane. Dtr1p consists of 572 amino acids with predicted N- and C-terminal cytoplasmic extensions and 12 transmembrane domains. Dtr1p missing the largest internal cytoplasmic loop was trapped in the endoplasmic reticulum in both mitotically dividing cells and cells induced to sporulate. Deletion of the carboxyl 15 amino acids, but not the N-terminal extension of Dtr1p, resulted in a protein that failed to localize to the prospore membrane and was instead observed in cytoplasmic puncta. The puncta colocalized with a cis-Golgi marker, suggesting that Dtr1p missing the last 15 amino acids was trapped in an early Golgi compartment. Deletion of the C-terminal 10 amino acids resulted in a protein that localized to the prospore membrane with a delay and accumulated in cytoplasmic puncta that partially colocalized with a trans-Golgi marker. Both full-length Dtr1p and Dtr1p missing the last 10 amino acids expressed in vegetative cells localized to the plasma membrane and vacuoles, while Dtr1p deleted for the carboxyl-terminal 15 amino acids was observed only at vacuoles, suggesting that transport to the prospore membrane is mediated by distinct signals from those that specify plasma membrane localization. Transfer-of-function experiments revealed that both the carboxyl transmembrane domain and the C-terminal tail are important for Golgi complex-to-prospore membrane transport.
Collapse
|
26
|
Nakase Y, Nakamura-Kubo M, Ye Y, Hirata A, Shimoda C, Nakamura T. Meiotic spindle pole bodies acquire the ability to assemble the spore plasma membrane by sequential recruitment of sporulation-specific components in fission yeast. Mol Biol Cell 2008; 19:2476-87. [PMID: 18367542 DOI: 10.1091/mbc.e08-02-0118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle pole body (SPB) of Schizosaccharomyces pombe is required for assembly of the forespore membrane (FSM) during meiosis. Before de novo biogenesis of the FSM, the meiotic SPB forms outer plaques, an event referred to as SPB modification. A constitutive SPB component, Spo15, plays an indispensable role in SPB modification and sporulation. Here, we analyzed two sporulation-specific genes, spo13(+) and spo2(+), which are not required for progression of meiotic nuclear divisions, but are essential for sporulation. Spo13 is a 16-kDa coiled-coil protein, and Spo2 is a 15-kDa nonconserved protein. Both Spo13 and Spo2 specifically associated with the meiotic SPB. The respective deletion mutants are viable, but defective in SPB modification and in the onset of FSM formation. Spo13 and Spo2 localized on the cytoplasmic side of the SPB in close contact with the nascent FSM. Localization of Spo13 to the SPB was dependent on Spo15 and Spo2; that of Spo2 depended only on Spo15, suggesting that their recruitment to the SPB is strictly controlled. Spo2 physically associated with both Spo15 and Spo13, but Spo13 and Spo15 did not interact directly. Taken together, these observations indicate that Spo2 is recruited to the SPB during meiosis and then assists in the localization of Spo13 to the outer surface of the SPB.
Collapse
Affiliation(s)
- Yukiko Nakase
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Suda Y, Nakanishi H, Mathieson EM, Neiman AM. Alternative modes of organellar segregation during sporulation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:2009-17. [PMID: 17905927 PMCID: PMC2168413 DOI: 10.1128/ec.00238-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Formation of ascospores in the yeast Saccharomyces cerevisiae is driven by an unusual cell division in which daughter nuclei are encapsulated within de novo-formed plasma membranes, termed prospore membranes. Generation of viable spores requires that cytoplasmic organelles also be captured along with nuclei. In mitotic cells segregation of mitochondria into the bud requires a polarized actin cytoskeleton. In contrast, genes involved in actin-mediated transport are not essential for sporulation. Instead, efficient segregation of mitochondria into spores requires Ady3p, a component of a protein coat found at the leading edge of the prospore membrane. Other organelles whose mitotic segregation is promoted by actin, such as the vacuole and the cortical endoplasmic reticulum, are not actively segregated during sporulation but are regenerated within spores. These results reveal that organellar segregation into spores is achieved by mechanisms distinct from those in mitotic cells.
Collapse
Affiliation(s)
- Yasuyuki Suda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
28
|
Liu S, Wilson KA, Rice-Stitt T, Neiman AM, McNew JA. In vitro fusion catalyzed by the sporulation-specific t-SNARE light-chain Spo20p is stimulated by phosphatidic acid. Traffic 2007; 8:1630-43. [PMID: 17714435 DOI: 10.1111/j.1600-0854.2007.00628.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sec9p and Spo20p are two SNAP25 family SNARE proteins specialized for different developmental stages in yeast. Sec9p interacts with Sso1/2p and Snc1/2p to mediate intracellular trafficking between post-Golgi vesicles and the plasma membrane during vegetative growth. Spo20p replaces Sec9p in the generation of prospore membranes during sporulation. The function of Spo20p requires enzymatically active Spo14p, which is a phosphatidylcholine (PC)-specific phospholipase D that hydrolyzes PC to generate phosphatidic acid (PA). Phosphatidic acid is required to localize Spo20p properly during sporulation; however, it seems to have additional roles that are not fully understood. Here we compared the fusion mediated by all combinations of the Sec9p or Spo20p C-terminal domains with Sso1p/Sso2p and Snc1p/Snc2p. Our results show that Spo20p forms a less efficient SNARE complex than Sec9p. The combination of Sso2p/Spo20c is the least fusogenic t-SNARE complex. Incorporation of PA in the lipid bilayer stimulates SNARE-mediated membrane fusion by all t-SNARE complexes, likely by decreasing the energetic barrier during membrane merger. This effect may allow the weak SNARE complex containing Spo20p to function during sporulation. In addition, PA can directly interact with the juxtamembrane region of Sso1p, which contributes to the stimulatory effects of PA on membrane fusion. Our results suggest that the fusion strength of SNAREs, the composition of organelle lipids and lipid-SNARE interactions may be coordinately regulated to control the rate and specificity of membrane fusion.
Collapse
Affiliation(s)
- Song Liu
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, TX 77251-1892, USA
| | | | | | | | | |
Collapse
|
29
|
Pablo-Hernando ME, Arnaiz-Pita Y, Nakanishi H, Dawson D, del Rey F, Neiman AM, Vázquez de Aldana CR. Cdc15 is required for spore morphogenesis independently of Cdc14 in Saccharomyces cerevisiae. Genetics 2007; 177:281-93. [PMID: 17660551 PMCID: PMC2013696 DOI: 10.1534/genetics.107.076133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.
Collapse
Affiliation(s)
- M Evangelina Pablo-Hernando
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Maier P, Rathfelder N, Finkbeiner MG, Taxis C, Mazza M, Panse SL, Haguenauer-Tsapis R, Knop M. Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBO J 2007; 26:1843-52. [PMID: 17347652 PMCID: PMC1847655 DOI: 10.1038/sj.emboj.7601621] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 01/26/2007] [Indexed: 01/21/2023] Open
Abstract
Intracellular budding is a developmentally regulated type of cell division common to many fungi and protists. In Saccaromyces cerevisiae, intracellular budding requires the de novo assembly of membranes, the prospore membranes (PSMs) and occurs during spore formation in meiosis. Ssp1p is a sporulation-specific protein that has previously been shown to localize to secretory vesicles and to recruit the leading edge protein coat (LEP coat) proteins to the opening of the PSM. Here, we show that Ssp1p is a multidomain protein with distinct domains important for PI(4,5)P(2) binding, binding to secretory vesicles and inhibition of vesicle fusion, interaction with LEP coat components and that it is subject to sumoylation and degradation. We found non-essential roles for Ssp1p on the level of vesicle transport and an essential function of Ssp1p to regulate the opening of the PSM. Together, our results indicate that Ssp1p has a domain architecture that resembles to some extent the septin class of proteins, and that the regulated removal of Ssp1p from the PSM is the major step underlying cytokinesis in yeast sporulation.
Collapse
Affiliation(s)
- Peter Maier
- EMBL, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | | | | | - Christof Taxis
- EMBL, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | | | | | | | - Michael Knop
- EMBL, Cell Biology and Biophysics Unit, Heidelberg, Germany
- EMBL, Cell Biology and Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany. Tel.: +49 6221 387631; Fax: +49 6221 387512; E-mail:
| |
Collapse
|
31
|
Taxis C, Maeder C, Reber S, Rathfelder N, Miura K, Greger K, Stelzer EHK, Knop M. Dynamic organization of the actin cytoskeleton during meiosis and spore formation in budding yeast. Traffic 2007; 7:1628-42. [PMID: 17118118 DOI: 10.1111/j.1600-0854.2006.00496.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During sporulation in Saccharomyces cerevisiae, the four daughter cells (spores) are formed inside the boundaries of the mother cell. Here, we investigated the dynamics of spore assembly and the actin cytoskeleton during this process, as well as the requirements for filamentous actin during the different steps of spore formation. We found no evidence for a polarized actin cytoskeleton during sporulation. Instead, a highly dynamic network of non-polarized actin cables is present underneath the plasma membrane of the mother cell. We found that a fraction of prospore membrane (PSM) precursors are transported along the actin cables. The velocity of PSM precursors is diminished if Myo2p or Tpm1/2p function is impaired. Filamentous actin is not essential for meiotic progression, for shaping of the PSMs or for post-meiotic cytokinesis. However, actin is essential for spore wall formation. This requires the function of the Arp2/3p complex and involves large carbohydrate-rich compartments, which may be chitosome analogous structures.
Collapse
Affiliation(s)
- Christof Taxis
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstr. 1, Heidelberg 69117, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gordon O, Taxis C, Keller PJ, Benjak A, Stelzer EHK, Simchen G, Knop M. Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis. EMBO J 2006; 25:3856-68. [PMID: 16888627 PMCID: PMC1553201 DOI: 10.1038/sj.emboj.7601254] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 07/03/2006] [Indexed: 12/30/2022] Open
Abstract
Nud1p, a protein homologous to the mammalian centrosome and midbody component Centriolin, is a component of the budding yeast spindle pole body (SPB), with roles in anchorage of microtubules and regulation of the mitotic exit network during vegetative growth. Here we analyze the function of Nud1p during yeast meiosis. We find that a nud1-2 temperature-sensitive mutant has two meiosis-related defects that reflect genetically distinct functions of Nud1p. First, the mutation affects spore formation due to its late function during spore maturation. Second, and most important, the mutant loses its ability to distinguish between the ages of the four spindle pole bodies, which normally determine which SPB would be preferentially included in the mature spores. This affects the regulation of genome inheritance in starved meiotic cells and leads to the formation of random dyads instead of non-sister dyads under these conditions. Both functions of Nud1p are connected to the ability of Spc72p to bind to the outer plaque and half-bridge (via Kar1p) of the SPB.
Collapse
Affiliation(s)
- Oren Gordon
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
33
|
Nakanishi H, Morishita M, Schwartz CL, Coluccio A, Engebrecht J, Neiman AM. Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. J Cell Sci 2006; 119:1406-15. [PMID: 16554438 DOI: 10.1242/jcs.02841] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore formation in Saccharomyces cerevisiae requires the de novo formation of prospore membranes. The coalescence of secretory vesicles into a membrane sheet occurs on the cytoplasmic surface of the spindle pole body. Spo14p, the major yeast phospholipase D, is necessary for prospore membrane formation; however, the specific function of Spo14p in this process has not been elucidated. We report that loss of Spo14p blocks vesicle fusion, leading to the accumulation of prospore membrane precursor vesicles docked on the spindle pole body. A similar phenotype was seen when the t-SNARE Sso1p, or the partially redundant t-SNAREs Sec9p and Spo20p were mutated. Although phosphatidic acid, the product of phospholipase D action, was necessary to recruit Spo20p to the precursor vesicles, independent targeting of Spo20p to the membrane was not sufficient to promote fusion in the absence of SPO14. These results demonstrate a role for phospholipase D in vesicle fusion and suggest that phospholipase D-generated phosphatidic acid plays multiple roles in the fusion process.
Collapse
Affiliation(s)
- Hideki Nakanishi
- Department of Biochemistry and Cell Biology, SUNY Stony Brook, Stony Brook, NY 4-5215, USA
| | | | | | | | | | | |
Collapse
|
34
|
Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y. Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 2006; 125:59-69. [PMID: 16615890 DOI: 10.1016/j.cell.2006.01.048] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/14/2005] [Accepted: 01/09/2006] [Indexed: 11/25/2022]
Abstract
In many organisms, meiotic chromosomes are bundled at their telomeres to form a "bouquet" arrangement. The bouquet formation plays an important role in homologous chromosome pairing and therefore progression of meiosis. As meiotic telomere clustering occurs in response to mating pheromone signaling in fission yeast, we looked for factors essential for bouquet formation among genes induced under mating pheromone signaling. This genome-wide search identified two proteins, Bqt1 and Bqt2, that connect telomeres to the spindle-pole body (SPB; the centrosome equivalent in fungi). Neither Bqt1 nor Bqt2 alone functions as a connector, but together the two proteins form a bridge between Rap1 (a telomere protein) and Sad1 (an SPB protein). Significantly, when both Bqt1 and Bqt2 are ectopically expressed in mitotic cells, they also form a bridge between Rap1 and Sad1. Thus, a complex including Bqt1 and Bqt2 is essential for connecting telomeres to the SPB.
Collapse
Affiliation(s)
- Yuji Chikashige
- Cell Biology Group and CREST Research Project, Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Sporulation of the baker's yeast Saccharomyces cerevisiae is a response to nutrient depletion that allows a single diploid cell to give rise to four stress-resistant haploid spores. The formation of these spores requires a coordinated reorganization of cellular architecture. The construction of the spores can be broadly divided into two phases. The first is the generation of new membrane compartments within the cell cytoplasm that ultimately give rise to the spore plasma membranes. Proper assembly and growth of these membranes require modification of aspects of the constitutive secretory pathway and cytoskeleton by sporulation-specific functions. In the second phase, each immature spore becomes surrounded by a multilaminar spore wall that provides resistance to environmental stresses. This review focuses on our current understanding of the cellular rearrangements and the genes required in each of these phases to give rise to a wild-type spore.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, SUNY Stony Brook, Stony Brook, New York 11794-5215, USA.
| |
Collapse
|
36
|
Iwamoto MA, Fairclough SR, Rudge SA, Engebrecht J. Saccharomyces cerevisiae Sps1p regulates trafficking of enzymes required for spore wall synthesis. EUKARYOTIC CELL 2005; 4:536-44. [PMID: 15755916 PMCID: PMC1087804 DOI: 10.1128/ec.4.3.536-544.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SPS1 encodes a sporulation-specific protein with homology to the Ste20/p21-activated kinase family. Deletion of SPS1 impinges on the formation of the spore wall, which surrounds each of the haploid nuclei generated by the meiotic divisions. Here, we demonstrate that the new internal membranes that surround the meiotic nuclei appear normal in the absence of Sps1p. Analyses of spore wall layers by immunohistochemistry suggest that the inner layers are not efficiently deposited. The defect in spore wall morphogenesis is most likely a consequence of mislocalization of enzymes required for the synthesis of the spore wall layers as both Chs3p, the major chitin synthase in yeast, and Gsc2/Fks2p, a glucan synthase transcriptionally upregulated during sporulation, fail to reach the prospore membrane in the sps1 mutant. Furthermore, localization of Chs3p to the prospore membrane is not dependent on Shc1p, a sporulation-specific homolog of Chs4p, which is required for recruitment of Chs3p to the bud neck in vegetative cells. Sps1p colocalized with Chs3p to peripheral and internal punctate structures and prospore membranes. We propose that Sps1p promotes sporulation, in part, by regulating the intracellular movement of proteins required for spore wall formation.
Collapse
Affiliation(s)
- Michelle A Iwamoto
- Department of Pharmacology, State University of New York, Stony Brook, USA
| | | | | | | |
Collapse
|
37
|
Taxis C, Keller P, Kavagiou Z, Jensen LJ, Colombelli J, Bork P, Stelzer EHK, Knop M. Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system. J Cell Biol 2005; 171:627-40. [PMID: 16286509 PMCID: PMC2171547 DOI: 10.1083/jcb.200507168] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 10/19/2005] [Indexed: 12/17/2022] Open
Abstract
Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1-4) that are formed by a single cell. This is regulated by the concentration of three structural meiotic SPB components, which is dependent on available amounts of carbon source. Using experiments and computer simulation, we show that the molecular mechanism relies on a self-organizing system, which is able to generate particular patterns (different numbers of spores) in dependency on one single stimulus (gradually increasing amounts of SPB constituents). We also show that SNC enhances intratetrad mating, whereby maximal amounts of germinated spores are able to return to a diploid lifestyle without intermediary mitotic division. This is beneficial for the immediate fitness of the population of postmeiotic cells.
Collapse
Affiliation(s)
- Christof Taxis
- The European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Baluska F, Volkmann D, Barlow PW. Eukaryotic cells and their cell bodies: Cell Theory revised. ANNALS OF BOTANY 2004; 94:9-32. [PMID: 15155376 PMCID: PMC4242365 DOI: 10.1093/aob/mch109] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cell Theory, also known as cell doctrine, states that all eukaryotic organisms are composed of cells, and that cells are the smallest independent units of life. This Cell Theory has been influential in shaping the biological sciences ever since, in 1838/1839, the botanist Matthias Schleiden and the zoologist Theodore Schwann stated the principle that cells represent the elements from which all plant and animal tissues are constructed. Some 20 years later, in a famous aphorism Omnis cellula e cellula, Rudolf Virchow annunciated that all cells arise only from pre-existing cells. General acceptance of Cell Theory was finally possible only when the cellular nature of brain tissues was confirmed at the end of the 20th century. Cell Theory then rapidly turned into a more dogmatic cell doctrine, and in this form survives up to the present day. In its current version, however, the generalized Cell Theory developed for both animals and plants is unable to accommodate the supracellular nature of higher plants, which is founded upon a super-symplasm of interconnected cells into which is woven apoplasm, symplasm and super-apoplasm. Furthermore, there are numerous examples of multinucleate coenocytes and syncytia found throughout the eukaryote superkingdom posing serious problems for the current version of Cell Theory. SCOPE To cope with these problems, we here review data which conform to the original proposal of Daniel Mazia that the eukaryotic cell is composed of an elemental Cell Body whose structure is smaller than the cell and which is endowed with all the basic attributes of a living entity. A complement to the Cell Body is the Cell Periphery Apparatus, which consists of the plasma membrane associated with other periphery structures. Importantly, boundary structures of the Cell Periphery Apparatus, although capable of some self-assembly, are largely produced and maintained by Cell Body activities and can be produced from it de novo. These boundary structures serve not only as mechanical support for the Cell Bodies but they also protect them from the hostile external environment and from inappropriate interactions with adjacent Cell Bodies within the organism. CONCLUSIONS From the evolutionary perspective, Cell Bodies of eukaryotes are proposed to represent vestiges of hypothetical, tubulin-based 'guest' proto-cells. After penetrating the equally hypothetical actin-based 'host' proto-cells, tubulin-based 'guests' became specialized for transcribing, storing and partitioning DNA molecules via the organization of microtubules. The Cell Periphery Apparatus, on the other hand, represents vestiges of the actin-based 'host' proto-cells which have become specialized for Cell Body protection, shape control, motility and for actin-mediated signalling across the plasma membrane.
Collapse
Affiliation(s)
- Frantisek Baluska
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53175 Bonn, Germany.
| | | | | |
Collapse
|
39
|
|
40
|
Shimoda C. Forespore membrane assembly in yeast: coordinating SPBs and membrane trafficking. J Cell Sci 2004; 117:389-96. [PMID: 14702385 DOI: 10.1242/jcs.00980] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, sporulation involves de novo synthesis of forespore membrane (FSM) within the cytoplasm of mother cells. The FSM ultimately becomes the plasma membrane of the developing ascospores. Several protein components of the FSM have been identified. Visualization of these proteins has demonstrated the dynamic nature of the genesis and development of the FSM. It begins to develop at the differentiated outer plaque of the spindle pole bodies (SPBs) and extends outwards, encapsulating each of the haploid nuclei produced by meiosis. Several coiled-coil proteins are specifically recruited to the SPBs and play indispensable roles in FSM assembly. Temporal and spatial coordination of meiotic nuclear divisions and membrane assembly is of special importance. Comparison of the processes of FSM assembly in these yeasts shows that the basic mechanism has been conserved, even though the individual proteins involved are often different. Understanding these dynamic aspects of yeast sporulation will help to elucidate a general mechanism for the cellularization of cytoplasm containing multiple nuclei.
Collapse
Affiliation(s)
- Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
41
|
Nickas ME, Diamond AE, Yang MJ, Neiman AM. Regulation of spindle pole function by an intermediary metabolite. Mol Biol Cell 2004; 15:2606-16. [PMID: 15034143 PMCID: PMC420086 DOI: 10.1091/mbc.e04-02-0128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spore formation in the yeast Saccharomyces cerevisiae depends on a modification of spindle pole bodies (SPBs) at the onset of meiosis II that allows them to promote de novo membrane formation. Depletion of the environmental carbon source during sporulation results in modification of only one SPB from each meiosis II spindle and formation of a two-spored ascus, called a nonsister dyad (NSD). We have found that mutants impaired in the glyoxylate pathway, which is required for the conversion of acetate to glucose, make NSDs when acetate is the primary carbon source. Wild-type cells make NSDs when the carbon source is glycerol, which is converted to glucose independently of the glyoxylate pathway. During NSD formation in glycerol, only the two SPBs created at the meiosis I/II transition ("daughters") are modified. In these conditions, the SPB components Mpc70p and Spo74p are not recruited to mother SPBs. Moreover, cooverexpression of Mpc70p and Spo74p suppresses NSD formation in glycerol. Our findings indicate that flux through the glyoxylate pathway during sporulation regulates modification of mother SPBs via recruitment of Mpc70p and Spo74p. These results define a cellular response in which the accumulation of an intermediary metabolite serves as a measure of biosynthetic capacity to regulate the number of daughter cells formed.
Collapse
Affiliation(s)
- Mark E Nickas
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | |
Collapse
|
42
|
Current awareness on yeast. Yeast 2003; 20:1309-16. [PMID: 14664230 DOI: 10.1002/yea.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|