1
|
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, Wingfield BD, Wingfield MJ, Sun S, Heitman J. Tracing the evolution and genomic dynamics of mating-type loci in Cryptococcus pathogens and closely related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637874. [PMID: 39990455 PMCID: PMC11844451 DOI: 10.1101/2025.02.12.637874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sexual reproduction in basidiomycete fungi is governed by MAT loci (P/R and HD), which exhibit remarkable evolutionary plasticity, characterized by expansions, rearrangements, and gene losses often associated with mating system transitions. The sister genera Cryptococcus and Kwoniella provide a powerful framework for studying MAT loci evolution owing to their diverse reproductive strategies and distinct architectures, spanning bipolar and tetrapolar systems with either linked or unlinked MAT loci. Building on recent large-scale comparative genomic analyses, we generated additional chromosome-level assemblies uncovering distinct evolutionary trajectories shaping MAT loci organization. Contrasting with the small-scale expansions and gene acquisitions observed in Kwoniella, our analyses revealed independent expansions of the P/R locus in tetrapolar Cryptococcus, possibly driven by pheromone gene duplications. Notably, these expansions coincided with an enrichment of AT-rich codons and a pronounced GC-content reduction, likely associated with recombination suppression and relaxed codon usage selection. Diverse modes of MAT locus linkage were also identified, including three previously unrecognized transitions: one resulting in a pseudobipolar arrangement and two leading to bipolarity. All the three transitions involved translocations. In the pseudobipolar configuration, the P/R and HD loci remained on the same chromosome but genetically unlinked, whereas the bipolar transitions additionally featured rearrangements that fused the two loci into a nonrecombining region. Mating assays confirmed a sexual cycle in C. decagattii, demonstrating its ability to undergo mating and sporulation. Progeny analysis in K. mangrovensis revealed substantial ploidy variation and aneuploidy, likely stemming from haploid-diploid mating, yet evidence of recombination and loss of heterozygosity indicates that meiotic exchange occurs despite irregular chromosome segregation. Our findings underscore the importance of continued diversity sampling and provides further evidence for convergent evolution of fused MAT loci in basidiomycetes, offering new insights into the genetic and chromosomal changes driving reproductive transitions.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Seonju Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Nam Q. Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Ortiz SC, Hull CM. Biogenesis, germination, and pathogenesis of Cryptococcus spores. Microbiol Mol Biol Rev 2024; 88:e0019623. [PMID: 38440970 PMCID: PMC10966950 DOI: 10.1128/mmbr.00196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
SUMMARYSpores are primary infectious propagules for the majority of human fungal pathogens; however, relatively little is known about their fundamental biology. One strategy to address this deficiency has been to develop the basidiospores of Cryptococcus into a model for pathogenic spore biology. Here, we provide an update on the state of the field with a comprehensive review of the data generated from the study of Cryptococcus basidiospores from their formation (sporulation) and differentiation (germination) to their roles in pathogenesis. Importantly, we provide support for the presence of basidiospores in nature, define the key characteristics that distinguish basidiospores from yeast cells, and clarify their likely roles as infectious particles. This review is intended to demonstrate the importance of basidiospores in the field of Cryptococcus research and provide a solid foundation from which researchers who wish to study sexual spores in any fungal system can launch their studies.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Agustinho DP, Brown HL, Chen G, Gaylord EA, Geddes-McAlister J, Brent MR, Doering TL. Unbiased discovery of natural sequence variants that influence fungal virulence. Cell Host Microbe 2023; 31:1910-1920.e5. [PMID: 37898126 PMCID: PMC10842055 DOI: 10.1016/j.chom.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Isolates of Cryptococcus neoformans, a fungal pathogen that kills over 112,000 people each year, differ from a 19-Mb reference genome at a few thousand up to almost a million DNA sequence positions. We used bulked segregant analysis and association analysis, genetic methods that require no prior knowledge of sequence function, to address the key question of which naturally occurring sequence variants influence fungal virulence. We identified a region containing such variants, prioritized them, and engineered strains to test our findings in a mouse model of infection. At one locus, we identified a 4-nt variant in the PDE2 gene that occurs in common laboratory strains and severely truncates the encoded phosphodiesterase. The resulting loss of phosphodiesterase activity significantly impacts virulence. Our studies demonstrate a powerful and unbiased strategy for identifying key genomic regions in the absence of prior information and provide significant sequence and strain resources to the community.
Collapse
Affiliation(s)
- Daniel Paiva Agustinho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Holly Leanne Brown
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Guohua Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth Anne Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Michael Richard Brent
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA; Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Tamara Lea Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Sauters TJC, Roth C, Murray D, Sun S, Floyd Averette A, Onyishi CU, May RC, Heitman J, Magwene PM. Amoeba predation of Cryptococcus: A quantitative and population genomic evaluation of the accidental pathogen hypothesis. PLoS Pathog 2023; 19:e1011763. [PMID: 37956179 PMCID: PMC10681322 DOI: 10.1371/journal.ppat.1011763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/27/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The "Amoeboid Predator-Fungal Animal Virulence Hypothesis" posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungal pathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor Bzp4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions.
Collapse
Affiliation(s)
- Thomas J. C. Sauters
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Cullen Roth
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Debra Murray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Chinaemerem U. Onyishi
- School of Biosciences, College of Life and Environmental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Robin C. May
- School of Biosciences, College of Life and Environmental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
Hilbert ZA, Bednarek JM, Schwiesow MJW, Chung KY, Moreau CT, Brown JCS, Elde NC. Distinct pathways of adaptive evolution in Cryptococcus neoformans reveal a mutation in adenylyl cyclase with trade-offs for pathogenicity. Curr Biol 2023; 33:4136-4149.e9. [PMID: 37708888 PMCID: PMC10592076 DOI: 10.1016/j.cub.2023.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pathogenic fungi populate a wide range of environments and infect a diversity of host species. Despite this substantial biological flexibility, the impact of interactions between fungi and their hosts on the evolution of pathogenicity remains unclear. We studied how repeated interactions between the fungus Cryptococcus neoformans and relevant environmental and mammalian host cells-amoeba and mouse macrophages-shape the evolution of this model fungal pathogen. First, using a collection of clinical and environmental isolates of C. neoformans, we characterized a range of survival phenotypes for these strains when exposed to host cells of different species. We then performed serial passages of an environmentally isolated C. neoformans strain through either amoeba or macrophages for ∼75 generations to observe how these interactions select for improved replication within hosts. In one adapted population, we identified a single point mutation in the adenylyl cyclase gene, CAC1, that swept to fixation and confers a strong competitive advantage for growth inside macrophages. Strikingly, this growth advantage in macrophages is inversely correlated with disease severity during mouse infections, suggesting that adaptation to specific host niches can markedly reduce the pathogenicity of these fungi. These results raise intriguing questions about the influence of cyclic AMP (cAMP) signaling on pathogenicity and highlight the role of seemingly small adaptive changes in promoting fundamental shifts in the intracellular behavior and virulence of these important human pathogens.
Collapse
Affiliation(s)
- Zoë A Hilbert
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Joseph M Bednarek
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mara J W Schwiesow
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Krystal Y Chung
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian T Moreau
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Role of the Heme Activator Protein Complex in the Sexual Development of Cryptococcus neoformans. mSphere 2022; 7:e0017022. [PMID: 35638350 PMCID: PMC9241503 DOI: 10.1128/msphere.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CCAAT-binding heme activator protein (HAP) complex, comprising the DNA-binding heterotrimeric complex Hap2/3/5 and transcriptional activation subunit HapX, is a key regulator of iron homeostasis, mitochondrial functions, and pathogenicity in Cryptococcus neoformans, which causes fatal meningoencephalitis. However, its role in the development of human fungal pathogens remains unclear. To elucidate the role of the HAP complex in C. neoformans development, we constructed hap2Δ, hap3Δ, hap5Δ, and hapXΔ mutants and their complemented congenic MATα H99 and MATa YL99a strains. The HAP complex plays a conserved role in iron utilization and stress responses in cells of both mating types. Deletion of any of the HAP complex components markedly enhances filamentation during bisexual mating. However, the Hap2/3/5 complex, but not HapX, is crucial in repressing pheromone production and cell fusion and is thus a critical repressor of sexual differentiation of C. neoformans. Interestingly, deletion of the heterotrimeric complex transcriptionally regulated both positive and negative regulators in the pheromone-responsive Cpk1 mitogen-activated protein kinase (MAPK) pathway. Chromatin immunoprecipitation-quantitative PCR analysis revealed that the HAP complex physically bound to the CCAAT motif of the CRG1 and GPA2 promoter regions. Notably, the HAP complex was differentially localized depending on the mating type in basal conditions; it was enriched in the nuclei of MATα cells but diffused in the cytoplasm of MATa cells. Interestingly, however, a portion of the HAP complex in both mating types relocalized to the cell membrane during mating. In conclusion, the Hap2/3/5 heterotrimeric complex and HapX play major and minor roles, respectively, in repressing the sexual development of C. neoformans in association with the Cpk1 MAPK pathway. IMPORTANCECryptococcus neoformans isolates are of two mating types: MATα strains, which are predominant, and MATa strains, isolated from the sub-Saharan African region, where cryptococcosis is most abundant and severe. Here, we demonstrated the function of the CCAAT-binding HAP complex (Hap2/3/5/X) as a transcriptional repressor of Cpk1 pathway-related genes in cells of both mating types. Deletion of any HAP complex component markedly enhanced filamentation without affecting normal sporulation. In particular, deletion of the DNA-binding HAP complex components (Hap2/3/5), but not HapX, markedly enhanced pheromone production and cell fusion efficiency, validating its repressive role in the early stage of mating in C. neoformans. The HAP complex regulates the expression of both negative and positive mating regulators and is thus crucial for the regulation of the Cpk1 MAPK pathway during mating. This study provides insights into the complex signaling networks governing the sexual differentiation of C. neoformans.
Collapse
|
7
|
Frerichs AB, Huang M, Ortiz SC, Hull CM. Methods for Manipulating Cryptococcus Spores. J Fungi (Basel) 2021; 8:jof8010004. [PMID: 35049944 PMCID: PMC8779225 DOI: 10.3390/jof8010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/02/2022] Open
Abstract
Spores are essential for the long-term survival of many diverse organisms, due to their roles in reproduction and stress resistance. In the environmental human fungal pathogen, Cryptococcus, basidiospores are robust cells with the ability to cause disease in animal models of infection. Here we describe methods for producing and purifying Cryptococcus basidiospores in quantities sufficient for large-scale analyses. The production of high numbers of pure spores has facilitated the development of new assays, including quantitative germination assays, and enabled transcriptomic, proteomic, and virulence studies, leading to discoveries of behaviors and properties unique to spores and spore-mediated disease.
Collapse
Affiliation(s)
- Anna B. Frerichs
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI 53706, USA; (A.B.F.); (M.H.); (S.C.O.)
| | - Mingwei Huang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI 53706, USA; (A.B.F.); (M.H.); (S.C.O.)
| | - Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI 53706, USA; (A.B.F.); (M.H.); (S.C.O.)
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI 53706, USA; (A.B.F.); (M.H.); (S.C.O.)
- Department of Medical Microbiology & Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence:
| |
Collapse
|
8
|
Nassar Tobón AC, Rivera Rojas NJ, Pulido Correa MA, León Rivera LA. Cryptococosis meníngea y el sistema inmune. A Propósito de un Caso. REVISTA CUARZO 2021. [DOI: 10.26752/cuarzo.v27.n1.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Accounting for the Biological Complexity of Pathogenic Fungi in Phylogenetic Dating. J Fungi (Basel) 2021; 7:jof7080661. [PMID: 34436200 PMCID: PMC8400180 DOI: 10.3390/jof7080661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
In the study of pathogen evolution, temporal dating of phylogenies provides information on when species and lineages may have diverged in the past. When combined with spatial and epidemiological data in phylodynamic models, these dated phylogenies can also help infer where and when outbreaks occurred, how pathogens may have spread to new geographic locations and/or niches, and how virulence or drug resistance has developed over time. Although widely applied to viruses and, increasingly, to bacterial pathogen outbreaks, phylogenetic dating is yet to be widely used in the study of pathogenic fungi. Fungi are complex organisms with several biological processes that could present issues with appropriate inference of phylogenies, clock rates, and divergence times, including high levels of recombination and slower mutation rates although with potentially high levels of mutation rate variation. Here, we discuss some of the key methodological challenges in accurate phylogeny reconstruction for fungi in the context of the temporal analyses conducted to date and make recommendations for future dating studies to aid development of a best practices roadmap in light of the increasing threat of fungal outbreaks and antifungal drug resistance worldwide.
Collapse
|
10
|
Yadav V, Sun S, Heitman J. Uniparental nuclear inheritance following bisexual mating in fungi. eLife 2021; 10:66234. [PMID: 34338631 PMCID: PMC8412948 DOI: 10.7554/elife.66234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
Some remarkable animal species require an opposite-sex partner for their sexual development but discard the partner’s genome before gamete formation, generating hemi-clonal progeny in a process called hybridogenesis. Here, we discovered a similar phenomenon, termed pseudosexual reproduction, in a basidiomycete human fungal pathogen, Cryptococcus neoformans, where exclusive uniparental inheritance of nuclear genetic material was observed during bisexual reproduction. Analysis of strains expressing fluorescent reporter proteins revealed instances where only one of the parental nuclei was present in the terminal sporulating basidium. Whole-genome sequencing revealed that the nuclear genome of the progeny was identical with one or the other parental genome. Pseudosexual reproduction was also detected in natural isolate crosses where it resulted in mainly MATα progeny, a bias observed in Cryptococcus ecological distribution as well. The mitochondria in these progeny were inherited from the MATa parent, resulting in nuclear-mitochondrial genome exchange. The meiotic recombinase Dmc1 was found to be critical for pseudosexual reproduction. These findings reveal a novel, and potentially ecologically significant, mode of eukaryotic microbial reproduction that shares features with hybridogenesis in animals. Sexual reproduction enables organisms to recombine their genes to generate progeny that have higher levels of evolutionary fitness. This process requires reproductive cells – like the sperm and egg – to fuse together and mix their two genomes, resulting in offspring that are genetically distinct from their parents. In a disease-causing fungus called Cryptococcus neoformans, sexual reproduction occurs when two compatible mating types (MATa and MATα) merge together to form long branched filaments called hyphae. Cells in the hyphae contain two nuclei – one from each parent – which fuse in specialized cells at the end of the branches called basidia. The fused nucleus is then divided into four daughter nuclei, which generate spores that can develop into new organisms. In nature, the mating types of C. neoformans exhibit a peculiar distribution where MATα represents 95% or more of the population. However, it is not clear how this fungus successfully reproduces with such an unusually skewed distribution of mating types. To investigate this further, Yadav et al. tracked the reproductive cycle of C. neoformans applying genetic techniques, fluorescence microscopy, and whole-genome sequencing. This revealed that during hyphal branching some cells lose the nucleus of one of the two mating types. As a result, the nuclei of the generated spores only contain genetic information from one parent. Yadav et al. named this process pseudosexual reproduction as it defies the central benefit of sex, which is to produce offspring with a new combination of genetic information. Further experiments showed that this unconventional mode of reproduction can be conducted by fungi isolated from both environmental samples and clinical patient samples. This suggests that pseudosexual reproduction is a widespread and conserved process that may provide significant evolutionary benefits. C. neoformans represents a flexible and adaptable model organism to explore the impact and evolutionary advantages of sex. Further studies of the unique reproductive strategies employed by this fungus may improve the understanding of similar processes in other eukaryotes, including animals and plants. This research may also have important implications for understanding and controlling the growth of other disease-causing microbes.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| |
Collapse
|
11
|
Maufrais C, de Oliveira L, Bastos RW, Moyrand F, Reis FCG, Valero C, Gimenez B, Josefowicz LJ, Goldman GH, Rodrigues ML, Janbon G. Population genomic analysis of Cryptococcus Brazilian isolates reveals an African type subclade distribution. G3 (BETHESDA, MD.) 2021; 11:jkab107. [PMID: 33822048 PMCID: PMC8495746 DOI: 10.1093/g3journal/jkab107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
The genomes of a large number of Cryptococcus neoformans isolates have been sequenced and analyzed in recent years. These genomes have been used to understand the global population structure of this opportunistic pathogen. However, only a small number of South American isolates have been considered in these studies, and the population structure of C. neoformans in this part of the world remains elusive. Here, we analyzed the genomic sequences of 53 Brazilian Cryptococcus isolates and deciphered the C. neoformans population structure in this country. Our data reveal an African-like structure that suggested repeated intercontinental transports from Africa to South America. We also identified a mutator phenotype in one VNBII Brazilian isolate, exemplifying how fast-evolving isolates can shape the Cryptococcus population structure. Finally, phenotypic analyses revealed wide diversity but not lineage specificity in the expression of classical virulence traits within the set of isolates.
Collapse
Affiliation(s)
- Corinne Maufrais
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, F-75015 Paris, France
- Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015 Paris, France
| | - Luciana de Oliveira
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, F-75015 Paris, France
| | - Rafael W Bastos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Frédérique Moyrand
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, F-75015 Paris, France
| | - Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), 81310-020 Curitiba, Brazil
- Centro de Desenvolvimento Tecnologico em Saude (CDTS-Fiocruz), 21040-361 Rio de Janeiro, Brazil
| | - Clara Valero
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Bianca Gimenez
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), 81310-020 Curitiba, Brazil
| | - Luisa J Josefowicz
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), 81310-020 Curitiba, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), 81310-020 Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, F-75015 Paris, France
| |
Collapse
|
12
|
Firacative C, Meyer W, Castañeda E. Cryptococcus neoformans and Cryptococcus gattii Species Complexes in Latin America: A Map of Molecular Types, Genotypic Diversity, and Antifungal Susceptibility as Reported by the Latin American Cryptococcal Study Group. J Fungi (Basel) 2021; 7:jof7040282. [PMID: 33918572 PMCID: PMC8069395 DOI: 10.3390/jof7040282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptococcosis, a potentially fatal mycosis, is caused by members of the Cryptococcus neoformans and Cryptococcus gattii species complexes. In Latin America, cryptococcal meningitis is still an important health threat with a significant clinical burden. Analysis of publicly available molecular data from 5686 clinical, environmental, and veterinary cryptococcal isolates from member countries of the Latin American Cryptococcal Study Group showed that, as worldwide, C. neoformans molecular type VNI is the most common cause of cryptococcosis (76.01%) in HIV-infected people, followed by C. gattii molecular type VGII (12.37%), affecting mostly otherwise healthy hosts. These two molecular types also predominate in the environment (68.60% for VNI and 20.70% for VGII). Among the scarce number of veterinary cases, VGII is the predominant molecular type (73.68%). Multilocus sequence typing analysis showed that, in Latin America, the C. neoformans population is less diverse than the C. gattii population (D of 0.7104 vs. 0.9755). Analysis of antifungal susceptibility data showed the presence of non-wild-type VNI, VGI, VGII, and VGIII isolates in the region. Overall, the data presented herein summarize the progress that has been made towards the molecular epidemiology of cryptococcal isolates in Latin America, contributing to the characterization of the genetic diversity and antifungal susceptibility of these globally spreading pathogenic yeasts.
Collapse
Affiliation(s)
- Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia
- Correspondence: ; Tel.: +57-1-297-0200 (ext. 3404)
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Research and Education Network Westmead Hospital, Faculty of Medicine and Health, Sydney Medical School-Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia;
| | - Elizabeth Castañeda
- Grupo de Microbiología, Instituto Nacional de Salud, Bogota 111321, Colombia;
| |
Collapse
|
13
|
Farrer RA, Borman AM, Inkster T, Fisher MC, Johnson EM, Cuomo CA. Genomic epidemiology of a Cryptococcus neoformans case cluster in Glasgow, Scotland, 2018. Microb Genom 2021; 7:mgen000537. [PMID: 33620303 PMCID: PMC8190611 DOI: 10.1099/mgen.0.000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
In 2018, a cluster of two cases of cryptococcosis occurred at the Queen Elizabeth University Hospital (QEUH) in Glasgow, Scotland (UK). It was postulated that these cases may have been linked to pigeon droppings found on the hospital site, given there have been previous reports of Cryptococcus neoformans associated with pigeon guano. Although some samples of pigeon guano taken from the site yielded culturable yeast from genera related to Cryptococcus, they have since been classified as Naganishia or Papiliotrema spp., and no isolates of C. neoformans were recovered from either the guano or subsequent widespread air sampling. In an attempt to further elucidate any possible shared source of the clinical isolates, we used whole-genome sequencing and phylogenetic analysis to examine the relationship of the two Cryptococcus isolates from the QEUH cases, along with two isolates from sporadic cases treated at a different Glasgow hospital earlier in 2018. Our work demonstrated that these four clinical isolates were not clonally related; while all isolates were from the VNI global lineage and of the same mating type (MATα), the genotypes of the two QEUH isolates were separated by 1885 base changes and belonged to different sub-lineages, recently described as the intercontinental sub-clades VNIa-93 and VNIa-5. In contrast, one of the two sporadic 2018 clinical isolates was determined to belong to the VNIb sub-lineage and the other classified as a VNIV/VNI hybrid. Our work demonstrated that the two 2018 QEUH isolates and the two prior C. neoformans clinical isolates were all genetically distinct. It was not possible to determine whether the QEUH genotypes stemmed from independent sources or from the same source, i.e. pigeons carrying different genotypes, but it should be noted that whilst members of allied genera within the Tremellomycetes were isolated from the hospital environment, there were no environmental isolations of C. neoformans.
Collapse
Affiliation(s)
- Rhys A. Farrer
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4PY, UK
| | - Andrew M. Borman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4PY, UK
- Public Health England National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK
| | - Teresa Inkster
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Matthew C. Fisher
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Elizabeth M. Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4PY, UK
- Public Health England National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK
| | | |
Collapse
|
14
|
Yu CH, Chen Y, Desjardins CA, Tenor JL, Toffaletti DL, Giamberardino C, Litvintseva A, Perfect JR, Cuomo CA. Landscape of gene expression variation of natural isolates of Cryptococcus neoformans in response to biologically relevant stresses. Microb Genom 2020; 6. [PMID: 31860441 PMCID: PMC7067042 DOI: 10.1099/mgen.0.000319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that at its peak epidemic levels caused an estimated million cases of cryptococcal meningitis per year worldwide. This species can grow in diverse environmental (trees, soil and bird excreta) and host niches (intracellular microenvironments of phagocytes and free-living in host tissues). The genetic basic for adaptation to these different conditions is not well characterized, as most experimental work has relied on a single reference strain of C. neoformans. To identify genes important for yeast infection and disease progression, we profiled the gene expression of seven C. neoformans isolates grown in five representative in vitro environmental and in vivo conditions. We characterized gene expression differences using RNA-Seq (RNA sequencing), comparing clinical and environmental isolates from two of the major lineages of this species, VNI and VNBI. These comparisons highlighted genes showing lineage-specific expression that are enriched in subtelomeric regions and in lineage-specific gene clusters. By contrast, we find few expression differences between clinical and environmental isolates from the same lineage. Gene expression specific to in vivo stages reflects available nutrients and stresses, with an increase in fungal metabolism within macrophages, and an induction of ribosomal and heat-shock gene expression within the subarachnoid space. This study provides the widest view to date of the transcriptome variation of C. neoformans across natural isolates, and provides insights into genes important for in vitro and in vivo growth stages.
Collapse
Affiliation(s)
- Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anastasia Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
15
|
Lin KH, Lin YP, Ho MW, Chen YC, Chung WH. Molecular epidemiology and phylogenetic analyses of environmental and clinical isolates of Cryptococcus gattii sensu lato in Taiwan. Mycoses 2020; 64:324-335. [PMID: 33037734 DOI: 10.1111/myc.13195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The rare occurrence of cryptococcosis caused by Cryptococcus gattii sensu lato (C. gattii s.l.) leads to the difficulties in studying the molecular epidemiology of this globally emerging disease. OBJECTIVES To establish the molecular epidemiological profile of C. gattii s.l. in Taiwan, and understand the genetic relationship between locally endemic and global isolates. METHODS A nationwide survey on environmental C. gattii s.l. in Taiwan was conducted from 2017 to 2019. The geographic distribution and molecular epidemiology based on multilocus sequence typing (MLST) data of the environmental isolates were compared with 18 previously collected clinical isolates. Phylogenetic analysis was performed to elucidate the genetic relationship between the global isolates and the isolates endemic to Taiwan. RESULTS From a total of 622 environmental samples, 104 (16.7%) were positive for C. gattii s.l.. Seven sequence types were identified among the environmental isolates. The genetic population structure showed that the environmental and clinical isolates were closely linked by sequence types and geographical locations. Phylogenetic analysis revealed the association between the C. gattii s.l. isolates in Taiwan and those from South America and South Asia. The recombination test suggested that, in Taiwan, the C. gattii sensu stricto (C. gattii s.s). isolates undergo clonal reproduction and sexual recombination, whereas C. deuterogattii isolates were clonal. CONCLUSIONS The molecular epidemiology of environmental C. gattii s.l. isolates is closely linked to the clinical isolates. Phylogenetic analysis of the environmental isolates provides an insight into the mechanisms underlying reproduction and dispersal of C. gattii s.l. in Taiwan.
Collapse
Affiliation(s)
- Kuo-Hsi Lin
- Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Pei Lin
- Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Mao-Wang Ho
- China Medical University Hospital, Taichung, Taiwan
| | | | - Wen-Hsin Chung
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Innovation and Development Center of Sustainable Agriculture (IDCSA), Taichung, Taiwan
| |
Collapse
|
16
|
Molecular Epidemiology Reveals Low Genetic Diversity among Cryptococcus neoformans Isolates from People Living with HIV in Lima, Peru, during the Pre-HAART Era. Pathogens 2020; 9:pathogens9080665. [PMID: 32824653 PMCID: PMC7459599 DOI: 10.3390/pathogens9080665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cryptococcosis, a mycosis presenting mostly as meningoencephalitis, affecting predominantly human immunodeficiency virus (HIV)-infected people, is mainly caused by Cryptococcus neoformans. The genetic variation of 48 C. neoformans isolates, recovered from 20 HIV-positive people in Lima, Peru, during the pre-highly active antiretroviral therapy (HAART) era, was studied retrospectively. The mating type of the isolates was determined by PCR, and the serotype by agglutination and CAP59-restriction fragment length polymorphism (RFLP). Genetic diversity was assessed by URA5-RFLP, PCR-fingerprinting, amplified fragment length polymorphism (AFLP), and multilocus sequence typing (MLST). All isolates were mating type alpha, with 39 molecular type VNI, seven VNII, corresponding to C. neoformans var. grubii serotype A, and two VNIII AD hybrids. Overall, the cryptococcal population from HIV-positive people in Lima shows a low degree of genetic diversity. In most patients with persistent cryptococcal infection, the same genotype was recovered during the follow-up. In four patients with relapse and one with therapy failure, different genotypes were found in isolates from the re-infection and from the isolate recovered at the end of the treatment. In one patient, two genotypes were found in the first cryptococcosis episode. This study contributes data from Peru to the ongoing worldwide population genetic analysis of Cryptococcus.
Collapse
|
17
|
Sun S, Coelho MA, David-Palma M, Priest SJ, Heitman J. The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi. Annu Rev Genet 2019; 53:417-444. [PMID: 31537103 PMCID: PMC7025156 DOI: 10.1146/annurev-genet-120116-024755] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic Cryptococcus species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type (MAT) loci and influence pathogenesis, population dynamics, and lineage divergence in Cryptococcus. MAT has undergone significant evolutionary changes within the Cryptococcus genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and MAT in this genus, Cryptococcus species provide key insights into the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
18
|
Unisexual reproduction promotes competition for mating partners in the global human fungal pathogen Cryptococcus deneoformans. PLoS Genet 2019; 15:e1008394. [PMID: 31536509 PMCID: PMC6772093 DOI: 10.1371/journal.pgen.1008394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/01/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Courtship is pivotal for successful mating. However, courtship is challenging for the Cryptococcus neoformans species complex, comprised of opportunistic fungal pathogens, as the majority of isolates are α mating type. In the absence of mating partners of the opposite mating type, C. deneoformans can undergo unisexual reproduction, during which a yeast-to-hyphal morphological transition occurs. Hyphal growth during unisexual reproduction is a quantitative trait, which reflects a strain's ability to undergo unisexual reproduction. In this study, we determined whether unisexual reproduction confers an ecological benefit by promoting foraging for mating partners. Through competitive mating assays using strains with different abilities to produce hyphae, we showed that unisexual reproduction potential did not enhance competition for mating partners of the same mating type, but when cells of the opposite mating type were present, cells with enhanced hyphal growth were more competitive for mating partners of either the same or opposite mating type. Enhanced mating competition was also observed in a strain with increased hyphal production that lacks the mating repressor gene GPA3, which contributes to the pheromone response. Hyphal growth in unisexual strains also enables contact between adjacent colonies and enhances mating efficiency during mating confrontation assays. The pheromone response pathway activation positively correlated with unisexual reproduction hyphal growth during bisexual mating and exogenous pheromone promoted bisexual cell fusion. Despite the benefit in competing for mating partners, unisexual reproduction conferred a fitness cost. Taken together, these findings suggest C. deneoformans employs hyphal growth to facilitate contact between colonies at long distances and utilizes pheromone sensing to enhance mating competition.
Collapse
|
19
|
Samarasinghe H, Xu J. Hybrids and hybridization in the Cryptococcus neoformans and Cryptococcus gattii species complexes. INFECTION GENETICS AND EVOLUTION 2018; 66:245-255. [PMID: 30342094 DOI: 10.1016/j.meegid.2018.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022]
Abstract
The basidiomycetous yeasts of the Cryptococcus neoformans and Cryptococcus gattii species complexes (CNSC and CGSC respectively) are the causative agents of cryptococcosis, a set of life-threatening diseases affecting the central nervous system, lungs, skin, and other body sites of humans and other mammals. Both the CNSC and CGSC can be subdivided into varieties, serotypes, molecular types, and lineages based on structural variations, molecular characteristics and genetic sequences. Hybridization between the haploid lineages within and between the two species complexes is known to occur in natural and clinical settings, giving rise to intraspecific and interspecific diploid/aneuploid hybrid strains. Since their initial discovery in 1977, cryptococcal hybrids have been increasingly discovered in both clinical and environmental settings with over 30% of all cryptococcal infections in some regions of Europe being caused by hybrid strains. This review summarizes the major findings to date on cryptococcal hybrids, including their possible origins, prevalence, genomic profiles and phenotypic characteristics. Our analyses suggest that CNSC and CGSC can be an excellent model system for studying fungal hybridization.
Collapse
Affiliation(s)
- Himeshi Samarasinghe
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
20
|
Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz 2018; 113:e180057. [PMID: 29668825 PMCID: PMC5909089 DOI: 10.1590/0074-02760180057] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Collapse
Affiliation(s)
- Shannon K Esher
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| | - Oscar Zaragoza
- Instituto de Salud Carlos III, National Centre for Microbiology, Mycology Reference Laboratory, Madrid, Spain
| | - James Andrew Alspaugh
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| |
Collapse
|
21
|
A High-Resolution Map of Meiotic Recombination in Cryptococcus deneoformans Demonstrates Decreased Recombination in Unisexual Reproduction. Genetics 2018; 209:567-578. [PMID: 29625994 PMCID: PMC5972427 DOI: 10.1534/genetics.118.300996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Multiple species within the basidiomycete genus Cryptococcus cause cryptococcal disease. These species are estimated to affect nearly a quarter of a million people leading to ∼180,000 mortalities, annually. Sexual reproduction, which can occur between haploid yeasts of the same or opposite mating type, is a potentially important contributor to pathogenesis as recombination can generate novel genotypes and transgressive phenotypes. However, our quantitative understanding of recombination in this clinically important yeast is limited. Here, we describe genome-wide estimates of recombination rates in Cryptococcus deneoformans and compare recombination between progeny from α-α unisexual and a-α bisexual crosses. We find that offspring from bisexual crosses have modestly higher average rates of recombination than those derived from unisexual crosses. Recombination hot and cold spots across the C. deneoformans genome are also identified and are associated with increased GC content. Finally, we observed regions genome-wide with allele frequencies deviating from the expected parental ratio. These findings and observations advance our quantitative understanding of the genetic events that occur during sexual reproduction in C. deneoformans, and the impact that different forms of sexual reproduction are likely to have on genetic diversity in this important fungal pathogen.
Collapse
|
22
|
Herkert PF, Meis JF, Lucca de Oliveira Salvador G, Rodrigues Gomes R, Aparecida Vicente V, Dominguez Muro M, Lameira Pinheiro R, Lopes Colombo A, Vargas Schwarzbold A, Sakuma de Oliveira C, Simão Ferreira M, Queiroz-Telles F, Hagen F. Molecular characterization and antifungal susceptibility testing of Cryptococcus neoformans sensu stricto from southern Brazil. J Med Microbiol 2018; 67:560-569. [PMID: 29461182 DOI: 10.1099/jmm.0.000698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Cryptococcosis is acquired from the environment by the inhalation of Cryptococcus cells and may establish from an asymptomatic latent infection into pneumonia or meningoencephalitis. The genetic diversity of a Cryptococcus neoformans species complex has been investigated by several molecular tools, such as multi-locus sequence typing, amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism and microsatellite analysis. This study aimed to investigate the genotype distributions and antifungal susceptibility profiles of C. neoformans sensu lato isolates from southern Brazil. METHODOLOGY We studied 219 C. neoformans sensu lato isolates with mating- and serotyping, AFLP fingerprinting, microsatellite typing and antifungal susceptibility testing.Results/Key findings. Among the isolates, 136 (69 %) were from HIV-positive patients. Only C. neoformans mating-type α and serotype A were observed. AFLP fingerprinting analysis divided the isolates into AFLP1/VNI (n=172; 78.5 %), AFLP1A/VNII (n=19; 8.7 %), AFLP1B/VNII (n=4; 1.8 %) and a new AFLP pattern AFLP1C (n=23; 10.5 %). All isolates were susceptible to tested antifungals and no correlation between antifungal susceptibility and genotypes was observed. Through microsatellite analysis, most isolates clustered in a major microsatellite complex and Simpson's diversity index of this population was D=0.9856. CONCLUSION The majority of C. neoformans sensu stricto infections occurred in HIV-positive patients. C. neoformans AFLP1/VNI was the most frequent genotype and all antifungal drugs had high in vitro activity against this species. Microsatellite analyses showed a high genetic diversity within the regional C. neoformans sensu stricto population, and correlation between environmental and clinical isolates, as well as a temporal and geographic relationship.
Collapse
Affiliation(s)
- Patricia Fernanda Herkert
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | - Renata Rodrigues Gomes
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
- Department of Biological Science, State University of Parana/Campus Paranaguá, Paranaguá, PR, Brazil
| | - Vania Aparecida Vicente
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Marisol Dominguez Muro
- Laboratory of Mycology, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | | | | | | | - Carla Sakuma de Oliveira
- Hospital Universitário do Oeste do Paraná, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | | | - Flávio Queiroz-Telles
- Comunnitarian Health Department, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | - Ferry Hagen
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Desjardins CA, Giamberardino C, Sykes SM, Yu CH, Tenor JL, Chen Y, Yang T, Jones AM, Sun S, Haverkamp MR, Heitman J, Litvintseva AP, Perfect JR, Cuomo CA. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res 2018; 27:1207-1219. [PMID: 28611159 PMCID: PMC5495072 DOI: 10.1101/gr.218727.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/01/2017] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes approximately 625,000 deaths per year from nervous system infections. Here, we leveraged a unique, genetically diverse population of C. neoformans from sub-Saharan Africa, commonly isolated from mopane trees, to determine how selective pressures in the environment coincidentally adapted C. neoformans for human virulence. Genome sequencing and phylogenetic analysis of 387 isolates, representing the global VNI and African VNB lineages, highlighted a deep, nonrecombining split in VNB (herein, VNBI and VNBII). VNBII was enriched for clinical samples relative to VNBI, while phenotypic profiling of 183 isolates demonstrated that VNBI isolates were significantly more resistant to oxidative stress and more heavily melanized than VNBII isolates. Lack of melanization in both lineages was associated with loss-of-function mutations in the BZP4 transcription factor. A genome-wide association study across all VNB isolates revealed sequence differences between clinical and environmental isolates in virulence factors and stress response genes. Inositol transporters and catabolism genes, which process sugars present in plants and the human nervous system, were identified as targets of selection in all three lineages. Further phylogenetic and population genomic analyses revealed extensive loss of genetic diversity in VNBI, suggestive of a history of population bottlenecks, along with unique evolutionary trajectories for mating type loci. These data highlight the complex evolutionary interplay between adaptation to natural environments and opportunistic infections, and that selection on specific pathways may predispose isolates to human virulence.
Collapse
Affiliation(s)
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sean M Sykes
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Timothy Yang
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alexander M Jones
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Miriam R Haverkamp
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anastasia P Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Christina A Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
24
|
Cuomo CA, Rhodes J, Desjardins CA. Advances in Cryptococcus genomics: insights into the evolution of pathogenesis. Mem Inst Oswaldo Cruz 2018. [PMID: 29513784 PMCID: PMC5851040 DOI: 10.1590/0074-02760170473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cryptococcus species are the causative agents of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals. Initial work on the molecular epidemiology of this fungal pathogen utilized genotyping approaches to describe the genetic diversity and biogeography of two species, Cryptococcus neoformans and Cryptococcus gattii. Whole genome sequencing of representatives of both species resulted in reference assemblies enabling a wide array of downstream studies and genomic resources. With the increasing availability of whole genome sequencing, both species have now had hundreds of individual isolates sequenced, providing fine-scale insight into the evolution and diversification of Cryptococcus and allowing for the first genome-wide association studies to identify genetic variants associated with human virulence. Sequencing has also begun to examine the microevolution of isolates during prolonged infection and to identify variants specific to outbreak lineages, highlighting the potential role of hyper-mutation in evolving within short time scales. We can anticipate that further advances in sequencing technology and sequencing microbial genomes at scale, including metagenomics approaches, will continue to refine our view of how the evolution of Cryptococcus drives its success as a pathogen.
Collapse
Affiliation(s)
| | - Johanna Rhodes
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | |
Collapse
|
25
|
Vreulink JM, Khayhan K, Hagen F, Botes A, Moller L, Boekhout T, Vismer H, Botha A. Presence of pathogenic cryptococci on trees situated in two recreational areas in South Africa. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Boral H, Metin B, Döğen A, Seyedmousavi S, Ilkit M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 2017; 111:92-107. [PMID: 29102684 DOI: 10.1016/j.fgb.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
The incidence of fungal diseases has been increasing since 1980, and is associated with excessive morbidity and mortality, particularly among immunosuppressed patients. Of the known 625 pathogenic fungal species, infections caused by the genera Aspergillus, Candida, Cryptococcus, and Trichophyton are responsible for more than 300 million estimated episodes of acute or chronic infections worldwide. In addition, a rather neglected group of opportunistic fungi known as black yeasts and their filamentous relatives cause a wide variety of recalcitrant infections in both immunocompetent and immunosuppressed hosts. This article provides an overview of selected virulence factors that are known to suppress host immunity and enhance the infectivity of these fungi.
Collapse
Affiliation(s)
- Hazal Boral
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Center of Excellence for Infection Biology and Antimicrobial Pharmacology, Tehran, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey.
| |
Collapse
|
27
|
Restrepo CM, Llanes A, Lleonart R. Use of AFLP for the study of eukaryotic pathogens affecting humans. INFECTION GENETICS AND EVOLUTION 2017; 63:360-369. [PMID: 28935612 DOI: 10.1016/j.meegid.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/29/2022]
Abstract
Amplified fragment length polymorphism (AFLP) is a genotyping technique based on PCR amplification of specific restriction fragments from a particular genome. The methodology has been extensively used in plant biology to solve a variety of scientific questions, including taxonomy, molecular epidemiology, systematics, population genetics, among many others. The AFLP share advantages and disadvantages with other types of molecular markers, being particularly useful in organisms with no previous DNA sequence knowledge. In eukaryotic pathogens, the technique has not been extensively used, although it has the potential to solve many important issues as it allows the simultaneous examination of hundreds or even thousands of polymorphic sites in the genome of the organism. Here we describe the main applications published on the use of AFLP in eukaryotic pathogens, with emphasis in species of the groups fungi, protozoa and helminths, and discuss the role of this methodology in the context of new techniques derived from the advances of the next generation sequencing.
Collapse
Affiliation(s)
- Carlos M Restrepo
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama.; Department of Biotechnology, Acharya Nagarjuna University, Guntur, India..
| | - Alejandro Llanes
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama.; Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Ricardo Lleonart
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama..
| |
Collapse
|
28
|
Tracing Genetic Exchange and Biogeography of Cryptococcus neoformans var. grubii at the Global Population Level. Genetics 2017; 207:327-346. [PMID: 28679543 PMCID: PMC5586382 DOI: 10.1534/genetics.117.203836] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/28/2017] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans var. grubii is the causative agent of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals, typically human immunodeficiency virus/AIDS patients from developing countries. Despite the worldwide emergence of this ubiquitous infection, little is known about the global molecular epidemiology of this fungal pathogen. Here we sequence the genomes of 188 diverse isolates and characterize the major subdivisions, their relative diversity, and the level of genetic exchange between them. While most isolates of C. neoformans var. grubii belong to one of three major lineages (VNI, VNII, and VNB), some haploid isolates show hybrid ancestry including some that appear to have recently interbred, based on the detection of large blocks of each ancestry across each chromosome. Many isolates display evidence of aneuploidy, which was detected for all chromosomes. In diploid isolates of C. neoformans var. grubii (serotype AA) and of hybrids with C. neoformans var. neoformans (serotype AD) such aneuploidies have resulted in loss of heterozygosity, where a chromosomal region is represented by the genotype of only one parental isolate. Phylogenetic and population genomic analyses of isolates from Brazil reveal that the previously "African" VNB lineage occurs naturally in the South American environment. This suggests migration of the VNB lineage between Africa and South America prior to its diversification, supported by finding ancestral recombination events between isolates from different lineages and regions. The results provide evidence of substantial population structure, with all lineages showing multi-continental distributions; demonstrating the highly dispersive nature of this pathogen.
Collapse
|
29
|
Vanhove M, Beale MA, Rhodes J, Chanda D, Lakhi S, Kwenda G, Molloy S, Karunaharan N, Stone N, Harrison TS, Bicanic T, Fisher MC. Genomic epidemiology of Cryptococcus yeasts identifies adaptation to environmental niches underpinning infection across an African HIV/AIDS cohort. Mol Ecol 2017; 26:1991-2005. [PMID: 27862555 PMCID: PMC5412878 DOI: 10.1111/mec.13891] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Emerging infections caused by fungi have become a widely recognized global phenomenon and are causing an increasing burden of disease. Genomic techniques are providing new insights into the structure of fungal populations, revealing hitherto undescribed fine-scale adaptations to environments and hosts that govern their emergence as infections. Cryptococcal meningitis is a neglected tropical disease that is responsible for a large proportion of AIDS-related deaths across Africa; however, the ecological determinants that underlie a patient's risk of infection remain largely unexplored. Here, we use genome sequencing and ecological genomics to decipher the evolutionary ecology of the aetiological agents of cryptococcal meningitis, Cryptococcus neoformans and Cryptococcus gattii, across the central African country of Zambia. We show that the occurrence of these two pathogens is differentially associated with biotic (macroecological) and abiotic (physical) factors across two key African ecoregions, Central Miombo woodlands and Zambezi Mopane woodlands. We show that speciation of Cryptococcus has resulted in adaptation to occupy different ecological niches, with C. neoformans found to occupy Zambezi Mopane woodlands and C. gattii primarily recovered from Central Miombo woodlands. Genome sequencing shows that C. neoformans causes 95% of human infections in this region, of which over three-quarters belonged to the globalized lineage VNI. We show that VNI infections are largely associated with urbanized populations in Zambia. Conversely, the majority of C. neoformans isolates recovered in the environment belong to the genetically diverse African-endemic lineage VNB, and we show hitherto unmapped levels of genomic diversity within this lineage. Our results reveal the complex evolutionary ecology that underpins the reservoirs of infection for this, and likely other, deadly pathogenic fungi.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Cryptococcus gattii/genetics
- Cryptococcus neoformans/genetics
- DNA Barcoding, Taxonomic
- DNA, Fungal/genetics
- DNA, Ribosomal Spacer/genetics
- Forests
- Genetics, Population
- Genome, Fungal
- Genomics
- Humans
- Meningitis, Cryptococcal/epidemiology
- Meningitis, Cryptococcal/microbiology
- Models, Biological
- Phylogeny
- Plant Bark/microbiology
- Polymorphism, Single Nucleotide
- Soil Microbiology
- Trees/microbiology
- Zambia
Collapse
Affiliation(s)
- Mathieu Vanhove
- Department of Infectious Disease Epidemiology, St Mary's Hospital, Imperial College London, London, W2 1PG, UK
| | - Mathew A Beale
- Department of Infectious Disease Epidemiology, St Mary's Hospital, Imperial College London, London, W2 1PG, UK
- Institute of Infection and Immunity, St. George's University of London, Blackshaw Road, London SW17 0QT, UK
- Division of Infection & Immunity, University College London, Gower St, London WC1E 6BT, UK
| | - Johanna Rhodes
- Department of Infectious Disease Epidemiology, St Mary's Hospital, Imperial College London, London, W2 1PG, UK
| | - Duncan Chanda
- School of Medicine, University of Zambia, Nationalist Road, PO Box 50110, Lusaka, Zambia
| | - Shabir Lakhi
- School of Medicine, University of Zambia, Nationalist Road, PO Box 50110, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Sile Molloy
- Institute of Infection and Immunity, St. George's University of London, Blackshaw Road, London SW17 0QT, UK
| | - Natasha Karunaharan
- Institute of Infection and Immunity, St. George's University of London, Blackshaw Road, London SW17 0QT, UK
| | - Neil Stone
- Institute of Infection and Immunity, St. George's University of London, Blackshaw Road, London SW17 0QT, UK
| | - Thomas S Harrison
- Institute of Infection and Immunity, St. George's University of London, Blackshaw Road, London SW17 0QT, UK
| | - Tihana Bicanic
- Institute of Infection and Immunity, St. George's University of London, Blackshaw Road, London SW17 0QT, UK
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, St Mary's Hospital, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
30
|
Abstract
Cryptococcosis is an invasive mycosis caused by pathogenic encapsulated yeasts in the genus Cryptococcus. Cryptococcus gained prominence as a pathogen capable of widespread disease outbreaks in vulnerable populations. We have gained insight into the pathobiology of Cryptococcus, including the yeast' s capacity to adapt to environmental pressures, exploit new geographic environments, and cause disease in both immunocompromised and apparently immunocompetent hosts. Inexpensive, point-of-care testing makes diagnosis more feasible than ever. The associated worldwide burden and mortality remains unacceptably high. Novel screening strategies and preemptive therapy offer promise at making a sustained and much needed impact on this sugar-coated opportunistic mycosis.
Collapse
Affiliation(s)
- Eileen K Maziarz
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, DUMC Box 102359, 315 Trent Drive, Durham, NC 27710, USA.
| | - John R Perfect
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, DUMC Box 102359, 315 Trent Drive, Durham, NC 27710, USA
| |
Collapse
|
31
|
Odilbekov F, Edin E, Garkava-Gustavsson L, Hovmalm HP, Liljeroth E. Genetic diversity and occurrence of the F129L substitutions among isolates of Alternaria solani in south-eastern Sweden. Hereditas 2016; 153:10. [PMID: 28096772 PMCID: PMC5226105 DOI: 10.1186/s41065-016-0014-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early blight, caused by the fungus Alternaria solani, occurs on potato mainly in the south-eastern part of Sweden, but also in other parts of the country. The aim of this study was to investigate the genetic diversity of A. solani populations from different potato growing regions in south-eastern Sweden using AFLP marker analysis. In addition, the cultured isolates were examined for substitutions in the gene encoding cytochrome b, associated with loss of sensitivity against QoI fungicides. RESULTS Nei's gene diversity index for the Swedish populations of A. solani revealed a gene diversity of up to 0.20. Also genetic differentiation was observed among populations of A. solani from different locations in south-eastern Sweden. The mitochondrial genotype of the isolates of A. solani was determined and both known genotypes, GI (genotype 1) and GII (genotype 2), were found among the isolates. The occurrence of the F129L substitution associated with a loss of sensitivity to strobilurins was confirmed among the GII isolates. In vitro conidial germination tests verified that isolates containing the F129L substitution had reduced sensitivity to azoxystrobin and, at a lower extent, to pyraclostrobin. CONCLUSIONS Genetic diversity was relatively high among isolates of A. solani in south-eastern part of Sweden. F129L substitutions, leading to reduced sensitivity to strobilurins, have been established in field populations, which may have implications for the future efficacy of QoI fungicides.
Collapse
Affiliation(s)
- Firuz Odilbekov
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, SE-230 53 Alnarp, Sweden
| | - Eva Edin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Larisa Garkava-Gustavsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box, 101, SE-230 53 Alnarp, Sweden
| | - Helena Persson Hovmalm
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box, 101, SE-230 53 Alnarp, Sweden
| | - Erland Liljeroth
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, SE-230 53 Alnarp, Sweden
| |
Collapse
|
32
|
Nyazika TK, Hagen F, Machiridza T, Kutepa M, Masanganise F, Hendrickx M, Boekhout T, Magombei-Majinjiwa T, Siziba N, Chin'ombe N, Mateveke K, Meis JF, Robertson VJ. Cryptococcus neoformans population diversity and clinical outcomes of HIV-associated cryptococcal meningitis patients in Zimbabwe. J Med Microbiol 2016; 65:1281-1288. [PMID: 27638836 DOI: 10.1099/jmm.0.000354] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV and cryptococcal meningitis co-infection is a major public health problem in most developing countries. Cryptococcus neoformans sensu stricto is responsible for the majority of HIV-associated cryptococcosis cases in sub-Saharan Africa. Despite the available information, little is known about cryptococcal population diversity and its association with clinical outcomes in patients with HIV-associated cryptococcal meningitis in sub-Saharan Africa. In a prospective cohort, we investigated the prevalence and clinical outcome of Cryptococcusneoformans sensu stricto meningitis among HIV-infected patients in Harare, Zimbabwe, and compared the genotypic diversity of the isolates with those collected from other parts of Africa. Molecular typing was done using amplified fragment length polymorphism genotyping and microsatellite typing. The majority of patients with HIV-associated Cryptococcusneoformans sensu stricto meningitis in this cohort were males (n=33/55; 60.0 %). The predominant Cryptococcus neoformans sensu stricto genotype among the Zimbabwean isolates was genotype AFLP1/VNI (n=40; 72.7 %), followed by AFLP1A/VNB/VNII (n=8; 14.6 %), and AFLP1B/VNII was the least isolated (n=7; 12.7 %). Most of the isolates were mating-type α (n=51; 92.7 %), and only four (7.3 %) were mating-type a. Overall in-hospital mortality was 55.6 % (n=30), and no difference between infecting genotype and clinical outcome of patient (P=0.73) or CD4+ counts (P=0.79) was observed. Zimbabwean Cryptococcusneoformans sensu stricto genotypes demonstrated a high level of genetic diversity by microsatellite typing, and 51 genotypes within the main molecular types AFLP1/VNI, AFLP1A/VNB/VNII and AFLP1B/VNII were identified. This study demonstrates that Cryptococcusneoformans sensu stricto in Zimbabwe has a high level of genetic diversity when compared to other regional isolates.
Collapse
Affiliation(s)
- Tinashe K Nyazika
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe.,Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands.,Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands
| | - Tendai Machiridza
- Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Melody Kutepa
- Parirenyatwa Group of Hospitals, Causeway, Harare, Zimbabwe
| | | | - Marijke Hendrickx
- Section Mycology and Aerobiology, Scientific Institute of Public Health, Brussels, Belgium
| | - Teun Boekhout
- Department of Basidiomycetous & Yeast Research, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Tricia Magombei-Majinjiwa
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Nonthokozo Siziba
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Nyasha Chin'ombe
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kudzanai Mateveke
- Research Support Centre, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands.,Radboudumc/CWZ Centre of Expertise in Mycology, Nijmegen, The Netherlands
| | - Valerie J Robertson
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
33
|
Kusai NA, Azmi MMZ, Zainudin NAIM, Yusof MT, Razak AA. Morphological and molecular characterization, sexual reproduction, and pathogenicity of Setosphaeria rostrata isolates from rice leaf spot. Mycologia 2016; 108:905-914. [PMID: 27474518 DOI: 10.3852/15-175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/02/2016] [Indexed: 11/10/2022]
Abstract
Setosphaeria rostrata, a common plant pathogen causing leaf spot disease, affects a wide range of plant species, mainly grasses. Fungi were isolated from brown spots on rice leaves throughout Peninsular Malaysia, and 45 isolates were identified as Setosphaeria rostrata The isolates were then characterized using morphological and molecular approaches. The mating type was determined using PCR amplification of the mating type alleles, and isolates of opposite mating types were crossed to examine sexual reproduction. Based on nuclear ribosomal DNA ITS1-5.8S-ITS2 region (ITS) and beta-tubulin (BT2) sequences, two phylogenetic trees were constructed using the maximum likelihood method; S. rostrata was clustered in one well-supported clade. Pathogenicity tests showed that S. rostrata isolates are pathogenic, suggesting that it is the cause of the symptoms. Mating-type analyses indicated that three isolates carried the MAT1-1 allele, and the other 42 isolates carried MAT1-2 After isolates with opposite mating types were crossed on Sach's medium and incubated for 3 wk, six crosses produced pseudothecia that contained eight mature ascospores, and 12 other crosses produced numerous pseudothecia with no ascospores. To our knowledge, this is the first report on S. rostrata isolated from leaf spots on rice.
Collapse
Affiliation(s)
- Nor Azizah Kusai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Madihah Mior Zakuan Azmi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology, and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Azmi Abd Razak
- Malaysian Agricultural Research and Development Institute Seberang Perai, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
34
|
Cogliati M, D'Amicis R, Zani A, Montagna MT, Caggiano G, De Giglio O, Balbino S, De Donno A, Serio F, Susever S, Ergin C, Velegraki A, Ellabib MS, Nardoni S, Macci C, Oliveri S, Trovato L, Dipineto L, Rickerts V, McCormick-Smith I, Akcaglar S, Tore O, Mlinaric-Missoni E, Bertout S, Mallié M, Martins MDL, Vencà ACF, Vieira ML, Sampaio AC, Pereira C, Criseo G, Romeo O, Ranque S, Al-Yasiri MHY, Kaya M, Cerikcioglu N, Marchese A, Vezzulli L, Ilkit M, Desnos-Ollivier M, Pasquale V, Korem M, Polacheck I, Scopa A, Meyer W, Ferreira-Paim K, Hagen F, Theelen B, Boekhout T, Lockhart SR, Tintelnot K, Tortorano AM, Dromer F, Varma A, Kwon-Chung KJ, Inácio J, Alonso B, Colom MF. Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin. FEMS Yeast Res 2016; 16:fow045. [PMID: 27188887 PMCID: PMC5975981 DOI: 10.1093/femsyr/fow045] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 11/15/2022] Open
Abstract
In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts.
Collapse
Affiliation(s)
- Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Roberta D'Amicis
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Alberto Zani
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Maria Teresa Montagna
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Caggiano
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Osvalda De Giglio
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Stella Balbino
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonella De Donno
- Dip. di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Serio
- Dip. di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Serdar Susever
- Dept. of Nutrition and Dietetics, Cyprus Near East University, Near East Boulevard, 99138 Nicosia, Cyprus
| | - Cagri Ergin
- Medical School, Pamukkale University, Kliniki Kampusu, 20160 Denizli, Turkey
| | - Aristea Velegraki
- Medical School National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Mohamed S Ellabib
- Medical College, University of Tripoli, Tripoli University Road, Tripoli, Libya
| | - Simona Nardoni
- Dip. Scienze Veterinarie, Università di Pisa, Via delle Piagge 2, 56124 Pisa, Italy
| | - Cristina Macci
- Istituto per lo Studio degli Ecosistemi (ISE), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Salvatore Oliveri
- Dip. di Scienze Microbiologiche e Scienze Ginecologiche, Università degli Studi di Catania, Via Androne 81, 95124 Catania, Italy
| | - Laura Trovato
- Dip. di Scienze Microbiologiche e Scienze Ginecologiche, Università degli Studi di Catania, Via Androne 81, 95124 Catania, Italy
| | - Ludovico Dipineto
- Dip. di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, C.so Umberto I 40, 80138 Napoli, Italy
| | - Volker Rickerts
- Dept. of Infeciuos Diseases, Robert-Koch Institute, D-13302 Berlin, Germany
| | | | - Sevim Akcaglar
- School of Medicine, Uludag University, Gorukle Kampusu, 16059 Bursa, Turkey
| | - Okan Tore
- School of Medicine, Uludag University, Gorukle Kampusu, 16059 Bursa, Turkey
| | | | - Sebastien Bertout
- Unité Mixte Internationale 'Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses', Université de Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Michele Mallié
- Unité Mixte Internationale 'Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses', Université de Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Maria da Luz Martins
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Ana C F Vencà
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Maria L Vieira
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Ana C Sampaio
- CITAB, Universidade de Trás-os-Montes e Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Cheila Pereira
- CITAB, Universidade de Trás-os-Montes e Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Stéphane Ranque
- IP-TPT Infections Parasitaires Transmission Pphysiopathologie et Therapeutiques, Aix-Marseille University, 27 Blv. Jean Moulin, 13005 Marseille, France
| | - Mohammed H Y Al-Yasiri
- IP-TPT Infections Parasitaires Transmission Pphysiopathologie et Therapeutiques, Aix-Marseille University, 27 Blv. Jean Moulin, 13005 Marseille, France
| | - Meltem Kaya
- School of Medicine, Marmara University, MÜ Göztepe Kampüsü, 34722 Istanbul, Turkey
| | - Nilgun Cerikcioglu
- School of Medicine, Marmara University, MÜ Göztepe Kampüsü, 34722 Istanbul, Turkey
| | - Anna Marchese
- Sezione di Microbiologia del DISC, Università di Genova-IRCCS San Martino IST Genova, Largo Benzi 10, 16132 Genova, Italy
| | - Luigi Vezzulli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, C.so europa 26, 16132 Genova, Italy
| | - Macit Ilkit
- Dept. of Microbiology, University of Çukurova Sariçam, Çukurova Üniversitesi Rektörlüğü, 01330 Adana, Turkey
| | - Marie Desnos-Ollivier
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Vincenzo Pasquale
- Dip. di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Via Amm. F. Acton 38, 80133 Napoli, Italy
| | - Maya Korem
- Div. of Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, P.O. Box 12271 Jerusalem, Israel
| | - Itzhack Polacheck
- Div. of Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, P.O. Box 12271 Jerusalem, Israel
| | - Antonio Scopa
- Facoltà di Scienze Agrarie, Forestali e Ambientali, Università degli Studi della Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital, University of Sydney/Westmead Millennium Institute, 176 Hawkesbury Rd, NSW 2145 Westmead, NSW, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital, University of Sydney/Westmead Millennium Institute, 176 Hawkesbury Rd, NSW 2145 Westmead, NSW, Australia
| | - Ferry Hagen
- Canisius-Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands
| | - Bart Theelen
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333 Atlanta, USA
| | - Kathrin Tintelnot
- Dept. of Infeciuos Diseases, Robert-Koch Institute, D-13302 Berlin, Germany
| | - Anna Maria Tortorano
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Françoise Dromer
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Ashok Varma
- National Institute of Allergy and Infectious Diseases, 31 Center Dr, Bethesda, MD 20892 Bethesda, USA
| | - Kyung J Kwon-Chung
- National Institute of Allergy and Infectious Diseases, 31 Center Dr, Bethesda, MD 20892 Bethesda, USA
| | - Joäo Inácio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, BN2 4GJ Brighton, UK
| | - Beatriz Alonso
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, BN2 4GJ Brighton, UK
| | - Maria F Colom
- Medical School, Universidad Miguel Hernández, Avenida de la Universidad, 03202 Alicante, Spain
| |
Collapse
|
35
|
Mead ME, Hull CM. Transcriptional control of sexual development in Cryptococcus neoformans. J Microbiol 2016; 54:339-46. [PMID: 27095452 DOI: 10.1007/s12275-016-6080-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
Developmental processes are essential for the normal life cycles of many pathogenic fungi, and they can facilitate survival in challenging environments, including the human host. Sexual development of the human fungal pathogen Cryptococcus neoformans not only produces infectious particles (spores) but has also enabled the evolution of new disease-related traits such as drug resistance. Transcription factor networks are essential to the development and pathogenesis of C. neoformans, and a variety of sequence-specific DNA-binding proteins control both key developmental transitions and virulence by regulating the expression of their target genes. In this review we discuss the roles of known transcription factors that harbor important connections to both development and virulence. Recent studies of these transcription factors have identified a common theme in which metabolic, stress, and other responses that are required for sexual development appear to have been co-opted for survival in the human host, thus facilitating pathogenesis. Future work elucidating the connection between development and pathogenesis will provide vital insights into the evolution of complex traits in eukaryotes as well as mechanisms that may be used to combat fungal pathogens.
Collapse
Affiliation(s)
- Matthew E Mead
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christina M Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,Department of Medical Microbiology & Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
36
|
Abstract
While sexual reproduction is universal in eukaryotes, and shares conserved core features, the specific aspects of sexual reproduction can differ dramatically from species to species. This is also true in Fungi. Among fungal species, mating determination can vary from tetrapolar with more than a thousand different mating types, to bipolar with only two opposite mating types, and finally to unipolar without the need of a compatible mating partner for sexual reproduction. Cryptococcus neoformans is a human pathogenic fungus that belongs to the Basidiomycota. While C. neoformans has a well-defined bipolar mating system with two opposite mating types, MATa and MATα, it can also undergo homothallic unisexual reproduction from one single cell or between two cells of the same mating type. Recently, it was shown that, as in a-α bisexual reproduction, meiosis is also involved in α-α unisexual reproduction in C. neoformans. Briefly, recombination frequencies, the number of crossovers along chromosomes, as well as frequencies at which aneuploid and diploid progeny are produced, are all comparable between a-α bisexual and α-α unisexual reproduction. The plasticity observed in C. neoformans sexual reproduction highlights the extensive diversity in mating type determination, mating recognition, as well as modes of sexual reproduction across fungal species.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
37
|
Chen Y, Litvintseva AP, Frazzitta AE, Haverkamp MR, Wang L, Fang C, Muthoga C, Mitchell TG, Perfect JR. Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana. Mol Ecol 2015; 24:3559-71. [PMID: 26053414 PMCID: PMC4758399 DOI: 10.1111/mec.13260] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 06/02/2015] [Indexed: 01/11/2023]
Abstract
Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans.
Collapse
Affiliation(s)
- Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, 163 Hanes House, Trent Drive, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, RM 214 Jones Building, Research Drive, Durham, NC, 27710, USA
| | - Anastasia P Litvintseva
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, RM 214 Jones Building, Research Drive, Durham, NC, 27710, USA
| | - Aubrey E Frazzitta
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, 163 Hanes House, Trent Drive, Durham, NC, 27710, USA
| | - Miriam R Haverkamp
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.,Botswana-UPenn Partnership, National Health Laboratory, PO Box AC 157 ACH, Plot 5353 Extension 10 Church Road, Gaborone, Botswana
| | - Liuyang Wang
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, 163 Hanes House, Trent Drive, Durham, NC, 27710, USA
| | - Charles Fang
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, 163 Hanes House, Trent Drive, Durham, NC, 27710, USA
| | - Charles Muthoga
- Botswana-UPenn Partnership, National Health Laboratory, PO Box AC 157 ACH, Plot 5353 Extension 10 Church Road, Gaborone, Botswana
| | - Thomas G Mitchell
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, RM 214 Jones Building, Research Drive, Durham, NC, 27710, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, 163 Hanes House, Trent Drive, Durham, NC, 27710, USA
| |
Collapse
|
38
|
Abstract
Cryptococcus neoformans is a human opportunistic fungal pathogen causing severe disseminated meningoencephalitis, mostly in patients with cellular immune defects. This species is divided into three serotypes: A, D, and the AD hybrid. Our objectives were to compare population structures of serotype A and D clinical isolates and to assess whether infections with AD hybrids differ from infections with the other serotypes. For this purpose, we analyzed 483 isolates and the corresponding clinical data from 234 patients enrolled during the CryptoA/D study or the nationwide survey on cryptococcosis in France. Isolates were characterized in terms of ploidy, serotype, mating type, and genotype, utilizing flow cytometry, serotype- and mating type-specific PCR amplifications, and multilocus sequence typing (MLST) methods. Our results suggest that C. neoformans serotypes A and D have different routes of multiplication (primarily clonal expansion versus recombination events for serotype A and serotype D, respectively) and important genomic differences. Cryptococcosis includes a high proportion of proven or probable infections (21.5%) due to a mixture of genotypes, serotypes, and/or ploidies. Multivariate analysis showed that parameters independently associated with failure to achieve cerebrospinal fluid (CSF) sterilization by week 2 were a high serum antigen titer, the lack of flucytosine during induction therapy, and the occurrence of mixed infection, while infections caused by AD hybrids were more likely to be associated with CSF sterilization. Our study provides additional evidence for the possible speciation of C. neoformans var. neoformans and grubii and highlights the importance of careful characterization of causative isolates. Cryptococcus neoformans is an environmental fungus causing severe disease, estimated to be responsible for 600,000 deaths per year worldwide. This species is divided into serotypes A and D and an AD hybrid, and these could be considered two different species and an interspecies hybrid. The objectives of our study were to compare population structures of serotype A and serotype D and to assess whether infections with AD hybrids differ from infections with serotype A or D isolates in terms of clinical presentation and outcome. For this purpose, we used clinical data and strains from patients diagnosed with cryptococcosis in France. Our results suggest that, according to the serotype, isolates have different routes of multiplication and high genomic differences, confirming the possible speciation of serotypes A and D. Furthermore, we observed a better prognosis for infections caused by AD hybrid than those caused by serotype A or D, at least for those diagnosed in France.
Collapse
|
39
|
Fu C, Sun S, Billmyre RB, Roach KC, Heitman J. Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genet Biol 2015; 78:65-75. [PMID: 25173822 PMCID: PMC4344436 DOI: 10.1016/j.fgb.2014.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 11/22/2022]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen and can undergo both bisexual and unisexual mating. Despite the fact that one mating type is dispensable for unisexual mating, the two sexual cycles share surprisingly similar features. Both mating cycles are affected by similar environmental factors and regulated by the same pheromone response pathway. Recombination takes place during unisexual reproduction in a fashion similar to bisexual reproduction and can both admix pre-existing genetic diversity and also generate diversity de novo just like bisexual reproduction. These common features may allow the unisexual life cycle to provide phenotypic and genotypic plasticity for the natural Cryptococcus population, which is predominantly α mating type, and to avoid Muller's ratchet. The morphological transition from yeast to hyphal growth during both bisexual and unisexual mating may provide increased opportunities for outcrossing and the ability to forage for nutrients at a distance. The unisexual life cycle is a key evolutionary factor for Cryptococcus as a highly successful global fungal pathogen.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - R B Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin C Roach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Mead ME, Stanton BC, Kruzel EK, Hull CM. Targets of the Sex Inducer homeodomain proteins are required for fungal development and virulence in Cryptococcus neoformans. Mol Microbiol 2015; 95:804-18. [PMID: 25476490 PMCID: PMC4339537 DOI: 10.1111/mmi.12898] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2014] [Indexed: 01/14/2023]
Abstract
In the yeast Saccharomyces cerevisiae, the regulation of cell types by homeodomain transcription factors is a key paradigm; however, many questions remain regarding this class of developmental regulators in other fungi. In the human fungal pathogen Cryptococcus neoformans, the homeodomain transcription factors Sxi1α and Sxi2a are required for sexual development that produces infectious spores, but the molecular mechanisms by which they drive this process are unknown. To better understand homeodomain control of fungal development, we determined the targets of the Sxi2a-Sxi1α heterodimer using whole genome expression analyses paired with in silico and in vitro binding site identification methods. We identified Sxi-regulated genes that contained a site bound directly by the Sxi proteins that is required for full regulation in vivo. Among the targets of the Sxi2a-Sxi1α complex were many genes known to be involved in sexual reproduction, as well as several well-studied virulence genes. Our findings suggest that genes involved in sexual development are also important in mammalian disease. Our work advances the understanding of how homeodomain transcription factors control complex developmental events and suggests an intimate link between fungal development and virulence.
Collapse
Affiliation(s)
- Matthew E Mead
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
41
|
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015; 78:16-48. [PMID: 25721988 DOI: 10.1016/j.fgb.2015.02.009] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
Abstract
Phylogenetic analysis of 11 genetic loci and results from many genotyping studies revealed significant genetic diversity with the pathogenic Cryptococcus gattii/Cryptococcus neoformans species complex. Genealogical concordance, coalescence-based, and species tree approaches supported the presence of distinct and concordant lineages within the complex. Consequently, we propose to recognize the current C. neoformans var. grubii and C. neoformans var. neoformans as separate species, and five species within C. gattii. The type strain of C. neoformans CBS132 represents a serotype AD hybrid and is replaced. The newly delimited species differ in aspects of pathogenicity, prevalence for patient groups, as well as biochemical and physiological aspects, such as susceptibility to antifungals. MALDI-TOF mass spectrometry readily distinguishes the newly recognized species.
Collapse
Affiliation(s)
- Ferry Hagen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Kantarawee Khayhan
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Bart Theelen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Anna Kolecka
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Edward Sionov
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Sittiporn Parnmen
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
42
|
Abstract
Sexual reproduction is ubiquitous throughout the eukaryotic kingdom, but the capacity of pathogenic fungi to undergo sexual reproduction has been a matter of intense debate. Pathogenic fungi maintained a complement of conserved meiotic genes but the populations appeared to be clonally derived. This debate was resolved first with the discovery of an extant sexual cycle and then unisexual reproduction. Unisexual reproduction is a distinct form of homothallism that dispenses with the requirement for an opposite mating type. Pathogenic and nonpathogenic fungi previously thought to be asexual are able to undergo robust unisexual reproduction. We review here recent advances in our understanding of the genetic and molecular basis of unisexual reproduction throughout fungi and the impact of unisex on the ecology and genomic evolution of fungal species.
Collapse
Affiliation(s)
- Kevin C Roach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Marianna Feretzaki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
43
|
Abstract
Owing to their small size and paucity of phenotypic characters, progress in the evolutionary biology of microbes in general, and human pathogenic fungi in particular, has been linked to a series of advances in DNA sequencing over the past quarter century. Phylogenetics was the first area to benefit, with the achievement of a basic understanding of fungal phylogeny. Population genetics was the next advance, finding cryptic species everywhere, and recombination in species previously thought to be asexual. Comparative genomics saw the next advance, in which variation in gene content and changes in gene family size were found to be important sources of variation. Fungal population genomics is showing that gene flow among closely related populations and species provides yet another source of adaptive, genetic variation. Now, two means to associate genetic variation with phenotypic variation, "reverse ecology" for adaptive phenotypes, and genome-wide association of any phenotype, are letting evolutionary biology make a profound contribution to molecular developmental biology of pathogenic fungi.
Collapse
Affiliation(s)
- John W Taylor
- University of California, Berkeley, California 94720-3102
| |
Collapse
|
44
|
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous fungus that engages in outcrossing, inbreeding, and selfing forms of unisexual reproduction as well as canonical sexual reproduction between opposite mating types. Long thought to be clonal, >99% of sampled environmental and clinical isolates of C. neoformans are MATα, limiting the frequency of opposite mating-type sexual reproduction. Sexual reproduction allows eukaryotic organisms to exchange genetic information and shuffle their genomes to avoid the irreversible accumulation of deleterious changes that occur in asexual populations, known as Muller's ratchet. We tested whether unisexual reproduction, which dispenses with the requirement for an opposite mating-type partner, is able to purge the genome of deleterious mutations. We report that the unisexual cycle can restore mutant strains of C. neoformans to wild-type genotype and phenotype, including prototrophy and growth rate. Furthermore, the unisexual cycle allows attenuated strains to purge deleterious mutations and produce progeny that are returned to wild-type virulence. Our results show that unisexual populations of C. neoformans are able to avoid Muller's ratchet and loss of fitness through a unisexual reproduction cycle involving α-α cell fusion, nuclear fusion, and meiosis. Similar types of unisexual reproduction may operate in other pathogenic and saprobic eukaryotic taxa.
Collapse
|
45
|
Heitman J, Carter DA, Dyer PS, Soll DR. Sexual reproduction of human fungal pathogens. Cold Spring Harb Perspect Med 2014; 4:4/8/a019281. [PMID: 25085958 DOI: 10.1101/cshperspect.a019281] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dee A Carter
- School of Molecular Bioscience, University of Sydney, Sydney NSW 2006, Australia
| | - Paul S Dyer
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - David R Soll
- Department of Biology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
46
|
Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, Bahn YS. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 2014; 4:a019760. [PMID: 24985132 PMCID: PMC4066639 DOI: 10.1101/cshperspect.a019760] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the two etiologic agents of cryptococcosis. They belong to the phylum Basidiomycota and can be readily distinguished from other pathogenic yeasts such as Candida by the presence of a polysaccharide capsule, formation of melanin, and urease activity, which all function as virulence determinants. Infection proceeds via inhalation and subsequent dissemination to the central nervous system to cause meningoencephalitis. The most common risk for cryptococcosis caused by C. neoformans is AIDS, whereas infections caused by C. gattii are more often reported in immunocompetent patients with undefined risk than in the immunocompromised. There have been many chapters, reviews, and books written on C. neoformans. The topics we focus on in this article include species description, pathogenesis, life cycle, capsule, and stress response, which serve to highlight the specializations in virulence that have occurred in this unique encapsulated melanin-forming yeast that causes global deaths estimated at more than 600,000 annually.
Collapse
Affiliation(s)
- Kyung J Kwon-Chung
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhou Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Guilhem Janbon
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, 75015 Paris, France
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
47
|
Abstract
Sexual reproduction is a pervasive attribute of eukaryotic species and is now recognized to occur in many clinically important human fungal pathogens. These fungi use sexual or parasexual strategies for various purposes that can have an impact on pathogenesis, such as the formation of drug-resistant isolates, the generation of strains with increased virulence or the modulation of interactions with host cells. In this Review, we examine the mechanisms regulating fungal sex and the consequences of these programmes for human disease.
Collapse
|
48
|
Multilocus sequence typing of serially collected isolates of Cryptococcus from HIV-infected patients in South Africa. J Clin Microbiol 2014; 52:1921-31. [PMID: 24648562 DOI: 10.1128/jcm.03177-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patients with cryptococcal meningitis in sub-Saharan Africa frequently relapse following treatment. The natural history and etiology of these recurrent episodes warrant investigation. Here, we used multilocus sequence typing (MLST) to compare the molecular genotypes of strains of Cryptococcus neoformans and Cryptococcus gattii isolated from serial episodes of cryptococcal meningitis that were separated by at least 110 days. The most common MLST genotypes among the isolates were the dominant global clinical genotypes (M5 and M4) of molecular type VNI, as well as the VNI genotypes apparently restricted to southern Africa. In addition, there was considerable genetic diversity among these South African isolates, as 15% of the patients had unique genotypes. Eleven percent of the patients were reinfected with a genetically different strain following their initial diagnosis and treatment. However, the majority of serial episodes (89%) were caused by strains with the same genotype as the original strain. These results indicate that serial episodes of cryptococcosis in South Africa are frequently associated with persistence or relapse of the original infection. Using a reference broth microdilution method, we found that the serial isolates of 11% of the patients infected with strains of C. neoformans var. grubii with identical genotypes exhibited ≥4-fold increases in the MICs to fluconazole. Therefore, these recurrent episodes may have been precipitated by inadequate induction or consolidation of antifungal treatment and occasionally may have been due to increased resistance to fluconazole, which may have developed during the chronic infection.
Collapse
|
49
|
Stewart JE, Thomas KA, Lawrence CB, Dang H, Pryor BM, Timmer LMP, Peever TL. Signatures of recombination in clonal lineages of the citrus brown spot pathogen, Alternaria alternata sensu lato. PHYTOPATHOLOGY 2013; 103:741-749. [PMID: 23441968 DOI: 10.1094/phyto-08-12-0211-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most Alternaria spp. are considered asexual but recent molecular evolution analyses of Alternaria mating-type genes show that the mating locus is under strong purifying selection, indicating a possible role in sexual reproduction. The objective of this study was to determine the mode of reproduction of an Alternaria alternata sensu lato population causing citrus brown spot in central Florida. Mating type of each isolate was determined, and isolates were sequenced at six putatively unlinked loci. Three genetically distinct subpopulations (SH1, SH4A, and SH4B) were identified using network and Bayesian population structure analyses. Results demonstrate that most subpopulations of A. alternata associated with citrus are clonal but some have the ability to extensively recombine through a cryptic sexual cycle or parasexual cycle. Although isolates were sampled in close physical proximity (≈2,500-m² area), we were able to reject a random mating model using multilocus gametic disequilibrium tests for two subpopulations, SH1 and SH4B, suggesting that these subpopulations were predominantly asexual. However, three recombination events were identified in SH1 and SH4B and localized to individuals of opposite mating type, possibly indicating meiotic recombination. In contrast, in the third subpopulation (SH4A), where only one mating type was present, extensive reticulation was evident in network analyses, and multilocus gametic disequilibrium tests were consistent with recombination. Recombination among isolates of the same mating type suggests that a nonmeiotic mechanism of recombination such as the parasexual cycle may be operating in this subpopulation. The level of gene flow detected among subpopulations does not appear to be sufficient to prevent differentiation, and perhaps future speciation, of these A. alternata subpopulations.
Collapse
Affiliation(s)
- Jane E Stewart
- Department of Plant Pathology, Washington State University, Pullman, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Identification of the mating-type (MAT) locus that controls sexual reproduction of Blastomyces dermatitidis. EUKARYOTIC CELL 2012; 12:109-17. [PMID: 23143684 DOI: 10.1128/ec.00249-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Blastomyces dermatitidis is a dimorphic fungal pathogen that primarily causes blastomycosis in the midwestern and northern United States and Canada. While the genes controlling sexual development have been known for a long time, the genes controlling sexual reproduction of B. dermatitidis (teleomorph, Ajellomyces dermatitidis) are unknown. We identified the mating-type (MAT) locus in the B. dermatitidis genome by comparative genomic approaches. The B. dermatitidis MAT locus resembles those of other dimorphic fungi, containing either an alpha-box (MAT1-1) or an HMG domain (MAT1-2) gene linked to the APN2, SLA2, and COX13 genes. However, in some strains of B. dermatitidis, the MAT locus harbors transposable elements (TEs) that make it unusually large compared to the MAT locus of other dimorphic fungi. Based on the MAT locus sequences of B. dermatitidis, we designed specific primers for PCR determination of the mating type. Two B. dermatitidis isolates of opposite mating types were cocultured on mating medium. Immature sexual structures were observed starting at 3 weeks of coculture, with coiled-hyphae-containing cleistothecia developing over the next 3 to 6 weeks. Genetic recombination was detected in potential progeny by mating-type determination, PCR-restriction fragment length polymorphism (PCR-RFLP), and random amplification of polymorphic DNA (RAPD) analyses, suggesting that a meiotic sexual cycle might have been completed. The F1 progeny were sexually fertile when tested with strains of the opposite mating type. Our studies provide a model for the evolution of the MAT locus in the dimorphic and closely related fungi and open the door to classic genetic analysis and studies on the possible roles of mating and mating type in infection and virulence.
Collapse
|