1
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
2
|
Lozano-Mendoza J, Ramírez-Montiel F, Rangel-Serrano Á, Páramo-Pérez I, Mendoza-Macías CL, Saavedra-Salazar F, Franco B, Vargas-Maya N, Jeelani G, Saito-Nakano Y, Anaya-Velázquez F, Nozaki T, Padilla-Vaca F. Attenuation of In Vitro and In Vivo Virulence Is Associated with Repression of Gene Expression of AIG1 Gene in Entamoeba histolytica. Pathogens 2023; 12:pathogens12030489. [PMID: 36986411 PMCID: PMC10051847 DOI: 10.3390/pathogens12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Entamoeba histolytica virulence results from complex host-parasite interactions implicating multiple amoebic components (e.g., Gal/GalNAc lectin, cysteine proteinases, and amoebapores) and host factors (microbiota and immune response). UG10 is a strain derived from E. histolytica virulent HM-1:IMSS strain that has lost its virulence in vitro and in vivo as determined by a decrease of hemolytic, cytopathic, and cytotoxic activities, increased susceptibility to human complement, and its inability to form liver abscesses in hamsters. We compared the transcriptome of nonvirulent UG10 and its parental HM-1:IMSS strain. No differences in gene expression of the classical virulence factors were observed. Genes downregulated in the UG10 trophozoites encode for proteins that belong to small GTPases, such as Rab and AIG1. Several protein-coding genes, including iron-sulfur flavoproteins and heat shock protein 70, were also upregulated in UG10. Overexpression of the EhAIG1 gene (EHI_180390) in nonvirulent UG10 trophozoites resulted in augmented virulence in vitro and in vivo. Cocultivation of HM-1:IMSS with E. coli O55 bacteria cells reduced virulence in vitro, and the EhAIG1 gene expression was downregulated. In contrast, virulence was increased in the monoxenic strain UG10, and the EhAIG1 gene expression was upregulated. Therefore, the EhAIG1 gene (EHI_180390) represents a novel virulence determinant in E. histolytica.
Collapse
Affiliation(s)
- Janeth Lozano-Mendoza
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Fátima Ramírez-Montiel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Itzel Páramo-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | | | - Faridi Saavedra-Salazar
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Naurú Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Ghulam Jeelani
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-0052, Japan
| | - Fernando Anaya-Velázquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-0052, Japan
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
3
|
Sarid L, Ankri S. Are Metabolites From the Gut Microbiota Capable of Regulating Epigenetic Mechanisms in the Human Parasite Entamoeba histolytica? Front Cell Dev Biol 2022; 10:841586. [PMID: 35300430 PMCID: PMC8921869 DOI: 10.3389/fcell.2022.841586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica inhabits the human gut. It has to adapt to a complex environment that consists of the host microbiota, nutritional stress, oxidative stress, and nitrosative stress. Adaptation to this complex environment is vital for the survival of this parasite. Studies have shown that the host microbiota shapes virulence and stress adaptation in E. histolytica. Increasing evidence suggests that metabolites from the microbiota mediate communication between the parasite and microbiota. In this review, we discuss the bacterial metabolites that regulate epigenetic processes in E. histolytica and the implications that this knowledge may have for the development of new anti-amebic strategies.
Collapse
Affiliation(s)
- Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
4
|
Abstract
Entamoeba histolytica is a parasitic protozoan and the causative agent of amoebiasis in humans. Amoebiasis has a high incidence of disease, resulting in ∼67,900 deaths per year, and it poses a tremendous burden of morbidity and mortality in children. Despite its importance, E. histolytica is an understudied parasite. These protocols describe the in vitro growth, maintenance, cryopreservation, genetic manipulation, and cloning of axenic E. histolytica trophozoites. There has been significant progress in genetic manipulation of this organism over the past decade, and these protocols outline the ways in which these advances can be implemented. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Culturing E. histolytica trophozoites Support Protocol 1: Preparation of TYI-S-33 medium Support Protocol 2: Lot testing of Biosate peptone and adult bovine serum for TYI-S-33 medium Basic Protocol 2: Cryopreservation of E. histolytica trophozoites Support Protocol 3: Preparation of cryoprotectant solutions Basic Protocol 3: Transfection of E. histolytica trophozoites with Attractene reagent Basic Protocol 4: Creating clonal lines using limiting dilution Basic Protocol 5: Knockdown of one to two genes with trigger-induced RNA interference Support Protocol 4: Evaluation of RNA interference knockdown with reverse transcriptase PCR Basic Protocol 6: E. histolytica growth curves.
Collapse
Affiliation(s)
- Rene L. Suleiman
- Department of Microbiology and Molecular Genetics, University of California, Davis, USA
| | - Katherine S. Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, USA
| |
Collapse
|
5
|
Possible role played by the SINE2 element in gene regulation, as demonstrated by differential processing and polyadenylation in avirulent strains of E. histolytica. Antonie van Leeuwenhoek 2021; 114:209-221. [PMID: 33394209 DOI: 10.1007/s10482-020-01504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Entamoeba histolytica represents a useful model in parasitic organisms due to its complex genomic organization and survival mechanisms. To counteract pathogenic organisms, it is necessary to characterize their molecular biology to design new strategies to combat them. In this report, we investigated a less-known genetic element, short interspersed nuclear element 2 (SINE2), that is present in this ameba and is highly transcribed and polyadenylated. In this study, we show that in two different nonvirulent strains of E. histolytica, SINE2 is differentially processed into two transcript fragments, that is, a full-length 560-nt fragment and a shorter 393-nt fragment bearing an approximately 18-nt polyadenylation tail. Sequence analysis of the SINE2 transcript showed that a Musashi-like protein may bind to it. Also, two putative Musashi-like sequences were identified on the transcript. Semiquantitative expression analysis of the two Musashi-like proteins identified in the E. histolytica genome (XP_648918 and XP_649094) showed that XP_64094 is overexpressed in the nonvirulent strains tested. The information available in the literature and the results presented in this report indicate that SINE2 may affect other genes, as observed with the epigenetic silencing of the G3 strain, by an antisense mechanism or via RNA-protein interactions that may ultimately be involved in the phenotype of nonvirulent strains of E. histolytica.
Collapse
|
6
|
Wilson IW, Weedall GD, Lorenzi H, Howcroft T, Hon CC, Deloger M, Guillén N, Paterson S, Clark CG, Hall N. Genetic Diversity and Gene Family Expansions in Members of the Genus Entamoeba. Genome Biol Evol 2019; 11:688-705. [PMID: 30668670 PMCID: PMC6414313 DOI: 10.1093/gbe/evz009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Amoebiasis is the third-most common cause of mortality worldwide from a parasitic disease. Although the primary etiological agent of amoebiasis is the obligate human parasite Entamoeba histolytica, other members of the genus Entamoeba can infect humans and may be pathogenic. Here, we present the first annotated reference genome for Entamoeba moshkovskii, a species that has been associated with human infections, and compare the genomes of E. moshkovskii, E. histolytica, the human commensal Entamoeba dispar, and the nonhuman pathogen Entamoeba invadens. Gene clustering and phylogenetic analyses show differences in expansion and contraction of families of proteins associated with host or bacterial interactions. They intimate the importance to parasitic Entamoeba species of surface-bound proteins involved in adhesion to extracellular membranes, such as the Gal/GalNAc lectin and members of the BspA and Ariel1 families. Furthermore, E. dispar is the only one of the four species to lack a functional copy of the key virulence factor cysteine protease CP-A5, whereas the gene's presence in E. moshkovskii is consistent with the species' potentially pathogenic nature. Entamoeba moshkovskii was found to be more diverse than E. histolytica across all sequence classes. The former is ∼200 times more diverse than latter, with the four E. moshkovskii strains tested having a most recent common ancestor nearly 500 times more ancient than the tested E. histolytica strains. A four-haplotype test indicates that these E. moshkovskii strains are not the same species and should be regarded as a species complex.
Collapse
Affiliation(s)
- Ian W Wilson
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Gareth D Weedall
- Institute of Integrative Biology, University of Liverpool, United Kingdom.,School of Natural Sciences and Psychology, Liverpool John Moores University, United Kingdom
| | | | - Timothy Howcroft
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Chung-Chau Hon
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France
| | - Marc Deloger
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France
| | - Nancy Guillén
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - C Graham Clark
- London School of Hygiene & Tropical Medicine, Faculty of Infectious and Tropical Diseases, London, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ United Kingdom
| |
Collapse
|
7
|
Borbolla-Vázquez J, Orozco E, Medina-Gómez C, Martínez-Higuera A, Javier-Reyna R, Chávez B, Betanzos A, Rodríguez MA. Identification and functional characterization of lysine methyltransferases of Entamoeba histolytica. Mol Microbiol 2016; 101:351-65. [PMID: 27062489 DOI: 10.1111/mmi.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Lysine methylation of histones, a posttranslational modification catalyzed by lysine methyltransferases (HKMTs), plays an important role in the epigenetic regulation of transcription. Lysine methylation of non-histone proteins also impacts the biological function of proteins. Previously it has been shown that lysine methylation of histones of Entamoeba histolytica, the protozoan parasite that infects 50 million people worldwide each year and causing up to 100,000 deaths annually, is implicated in the epigenetic machinery of this microorganism. However, the identification and characterization of HKMTs in this parasite had not yet been determined. In this work we identified four HKMTs in E. histolytica (EhHKMT1 to EhHKMT4) that are expressed by trophozoites. Enzymatic assays indicated that all of them are able to transfer methyl groups to commercial histones. EhHKMT1, EhHKMT2 and EhHKMT4 were detected in nucleus and cytoplasm of trophozoites. In addition EhHKMT2 and EhHKMT4 were located in vesicles containing ingested cells during phagocytosis, and they co-immunoprecipitated with EhADH, a protein involved in the phagocytosis of this parasite. Results suggest that E. histolytica uses its HKMTs to regulate transcription by epigenetic mechanisms, and at least two of them could also be implicated in methylation of proteins that participate in phagocytosis.
Collapse
Affiliation(s)
- Jessica Borbolla-Vázquez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Aarón Martínez-Higuera
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Bibiana Chávez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| |
Collapse
|
8
|
Development of RNA Interference Trigger-Mediated Gene Silencing in Entamoeba invadens. Infect Immun 2016; 84:964-975. [PMID: 26787723 DOI: 10.1128/iai.01161-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/14/2016] [Indexed: 01/08/2023] Open
Abstract
Entamoeba histolytica, a protozoan parasite, is an important human pathogen and a leading parasitic cause of death. The organism has two life cycle stages, trophozoites, which are responsible for tissue invasion, and cysts, which are involved in pathogen transmission. Entamoeba invadens is the model system to study Entamoeba developmental biology, as high-grade regulated encystation and excystation are readily achievable. However, the lack of gene-silencing tools in E. invadens has limited the molecular studies that can be performed. Using the endogenous RNA interference (RNAi) pathway in Entamoeba, we developed an RNAi-based trigger gene-silencing approach inE. invadens We demonstrate that a gene's coding region that has abundant antisense small RNAs (sRNAs) can trigger silencing of a gene that is fused to it. The trigger fusion leads to the generation of abundant antisense sRNAs that map to the target gene, with silencing occurring independently of trigger location at the 5' or 3' end of a gene. Gene silencing is stably maintained during development, including encystation and excystation. We have used this approach to successfully silence two E. invadens genes: a putative rhomboid protease gene and a SHAQKY family Myb gene. The Myb gene is upregulated during oxidative stress and development, and its downregulation led, as predicted, to decreased viability under oxidative stress and decreased cyst formation. Thus, the RNAi trigger silencing method can be used to successfully investigate the molecular functions of genes inE. invadens Dissection of the molecular basis of Entamoeba stage conversion is now possible, representing an important technical advance for the system.
Collapse
|
9
|
Cruz OHDL, Marchat LA, Guillén N, Weber C, Rosas IL, Díaz-Chávez J, Herrera L, Rojo-Domínguez A, Orozco E, López-Camarillo C. Multinucleation and Polykaryon Formation is Promoted by the EhPC4 Transcription Factor in Entamoeba histolytica. Sci Rep 2016; 6:19611. [PMID: 26792358 PMCID: PMC4726151 DOI: 10.1038/srep19611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/14/2015] [Indexed: 02/01/2023] Open
Abstract
Entamoeba histolytica is the intestinal parasite responsible for human amoebiasis that is a leading cause of death in developing countries. In this protozoan, heterogeneity in DNA content, polyploidy and genome plasticity have been associated to alterations in mechanisms controlling DNA replication and cell division. Studying the function of the transcription factor EhPC4, we unexpectedly found that it is functionally related to DNA replication, and multinucleation. Site-directed mutagenesis on the FRFPKG motif revealed that the K127 residue is required for efficient EhPC4 DNA-binding activity. Remarkably, overexpression of EhPC4 significantly increased cell proliferation, DNA replication and DNA content of trophozoites. A dramatically increase in cell size resulting in the formation of giant multinucleated trophozoites (polykaryon) was also found. Multinucleation event was associated to cytokinesis failure leading to abortion of ongoing cell division. Consistently, genome-wide profiling of EhPC4 overexpressing trophozoites revealed the up-regulation of genes involved in carbohydrates and nucleic acids metabolism, chromosome segregation and cytokinesis. Forced overexpression of one of these genes, EhNUDC (nuclear movement protein), led to alterations in cytokinesis and partially recapitulated the multinucleation phenotype. These data indicate for the first time that EhPC4 is associated with events related to polyploidy and genome stability in E. histolytica.
Collapse
Affiliation(s)
| | - Laurence A. Marchat
- National Polytechnic Institute, National School of Medicine and Homeopathy, Institutional Program of Molecular Biomedicine, Biotechnology Program, Mexico City, Mexico
| | - Nancy Guillén
- Institut Pasteur, Cellular Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Christian Weber
- Institut Pasteur, Cellular Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Itzel López Rosas
- Universidad Autonoma de la Ciudad de Mexico, Genomics Sciences Program, Mexico City, Mexico
| | - José Díaz-Chávez
- National Institute of Cancerology, Carcinogenesis Laboratory, Mexico City, Mexico
| | - Luis Herrera
- National Institute of Cancerology, Carcinogenesis Laboratory, Mexico City, Mexico
| | - Arturo Rojo-Domínguez
- Metropolitan Autonomous University, Natural Sciences Department, Mexico City, Mexico
| | - Esther Orozco
- Center for Research and Advanced Studies of the National Polytechnic Institute, Department of Infectomics and Molecular Pathogenesis, Mexico City, Mexico
| | - César López-Camarillo
- Universidad Autonoma de la Ciudad de Mexico, Genomics Sciences Program, Mexico City, Mexico
| |
Collapse
|
10
|
Borbolla-Vázquez J, Orozco E, Betanzos A, Rodríguez MA. Entamoeba histolytica: protein arginine transferase 1a methylates arginine residues and potentially modify the H4 histone. Parasit Vectors 2015; 8:219. [PMID: 25889855 PMCID: PMC4393863 DOI: 10.1186/s13071-015-0820-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In eukaryotes, histone arginine methylation associates with both active and repressed chromatin states depending on the residues involved and the status of methylation. Even when the amino-terminus of Entamoeba histolytica histones diverge from metazoan sequences, these regions contain arginine residues that are potential targets for methylation. However, histone arginine methylation as well as the activity of arginine methyltransferases (PRMTs) has not been studied in this parasite. The aim of this work was to examine the dimethylation of arginine 3 of H4 histone (H4R3me2) and to identify the parasite PRMT that could be responsible for this modification (EhPRMT1). METHODS To examine the presence of H4R3me2 in E histolytica, we performed Western blot and immunofluorescence assays on trophozoites using an antibody against this epigenetic mark. To recognize the PRMT1 enzyme of this parasite that possibly perform that modification, we first performed a phylogenetic analysis of E. histolytica and human PRMTs. RT-PCR assays were carried out to analyze the expression of the putative PRMT1 genes. One of these genes was cloned and expressed in Escherichia coli. The recombinant protein was tested by its recognition by an antibody against human PRMT1 and in its ability to form homodimers and to methylate commercial histones. RESULTS The arginine 3 of human H4, which is subjected to post translational methylation, was aligned with the arginine 8 of E. histolytica H4, suggesting that this residue could be methylated. The recognition of an 18 kDa nuclear protein of E. histolytica by an antibody against H4R3me2 confirmed this assumption. We found that this parasite expresses three phylogenetic and structural proteins related to PRMT1. Antibodies against the human PRMT1 detected E. histolytica proteins in cytoplasm and nuclei and recognized a recombinant PRMT1 of this parasite. The recombinant protein was able to form homodimers and homotetramers and displayed methyltransferase activity on arginine 3 of chicken H4. CONCLUSION All these results suggest that E. histolytica contains as a minimum one structural and functional protein ortholog to PRMT1, enzyme that potentially dimethylates H4R8. This modification may play an important role in the gene expression regulation of this microorganism.
Collapse
Affiliation(s)
- Jessica Borbolla-Vázquez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, México, D.F., 07000, Mexico.
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, México, D.F., 07000, Mexico.
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, México, D.F., 07000, Mexico.
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, México, D.F., 07000, Mexico.
| |
Collapse
|
11
|
Whisson S, Vetukuri R, Avrova A, Dixelius C. Can silencing of transposons contribute to variation in effector gene expression in Phytophthora infestans? Mob Genet Elements 2014; 2:110-114. [PMID: 22934246 PMCID: PMC3429519 DOI: 10.4161/mge.20265] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements are ubiquitous residents in eukaryotic genomes. Often considered to be genomic parasites, they can lead to dramatic changes in genome organization, gene expression, and gene evolution. The oomycete plant pathogen Phytophthora infestans has evolved a genome organization where core biology genes are predominantly located in genome regions that have relatively few resident transposons. In contrast, disease effector-encoding genes are most frequently located in rapidly evolving genomic regions that are rich in transposons. P. infestans, as a eukaryote, likely uses RNA silencing to minimize the activity of transposons. We have shown that fusion of a short interspersed element (SINE) to an effector gene in P. infestans leads to the silencing of both the introduced fusion and endogenous homologous sequences. This is also likely to occur naturally in the genome of P. infestans, as transcriptional inactivation of effectors is known to occur, and over half of the translocated "RXLR class" of effectors are located within 2 kb of transposon sequences in the P. infestans genome. In this commentary, we review the diverse transposon inventory of P. infestans, its control by RNA silencing, and consequences for expression modulation of nearby effector genes in this economically important plant pathogen.
Collapse
|
12
|
Silencing of Entamoeba histolytica glucosamine 6-phosphate isomerase by RNA interference inhibits the formation of cyst-like structures. BIOMED RESEARCH INTERNATIONAL 2013; 2013:758341. [PMID: 23484154 PMCID: PMC3581238 DOI: 10.1155/2013/758341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/11/2012] [Accepted: 11/20/2012] [Indexed: 11/24/2022]
Abstract
Encystment is an essential process in the biological cycle of the human parasite Entamoeba histolytica. In the present study, we evaluated the participation of E. histolytica Gln6Pi in the formation of amoeba cyst-like structures by RNA interference assay. Amoeba trophozoites transfected with two Gln6Pi siRNAs reduced the expression of the enzyme in 85%, which was confirmed by western blot using an anti-Gln6Pi antibody. The E. histolytica Gln6Pi knockdown with the mix of both siRNAs resulted in the loss of its capacity to form cyst-like structures (CLSs) and develop a chitin wall under hydrogen peroxide treatment, as evidenced by absence of both resistance to detergent treatment and calcofluor staining. Thus, only 5% of treated trophozoites were converted to CLS, from which only 15% were calcofluor stained. These results represent an advance in the understanding of chitin biosynthesis in E. histolytica and provide insight into the encystment process in this parasite, which could allow for the developing of new control strategies for this parasite.
Collapse
|
13
|
Faust DM, Guillen N. Virulence and virulence factors in Entamoeba histolytica, the agent of human amoebiasis. Microbes Infect 2012; 14:1428-41. [DOI: 10.1016/j.micinf.2012.05.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/09/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
|
14
|
Wilson IW, Weedall GD, Hall N. Host-Parasite interactions in Entamoeba histolytica and Entamoeba dispar: what have we learned from their genomes? Parasite Immunol 2012; 34:90-9. [PMID: 21810102 PMCID: PMC3378717 DOI: 10.1111/j.1365-3024.2011.01325.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Invasive amoebiasis caused by Entamoeba histolytica is a major global health problem. Virulence is a rare outcome of infection, occurring in fewer than 1 in 10 infections. Not all strains of the parasite are equally virulent, and understanding the mechanisms and causes of virulence is an important goal of Entamoeba research. The sequencing of the genome of E. histolytica and the related avirulent species Entamoeba dispar has allowed whole-genome-scale analyses of genetic divergence and differential gene expression to be undertaken. These studies have helped elucidate mechanisms of virulence and identified genes differentially expressed in virulent and avirulent parasites. Here, we review the current status of the E. histolytica and E. dispar genomes and the findings of a number of genome-scale studies comparing parasites of different virulence.
Collapse
Affiliation(s)
- I W Wilson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
15
|
Morf L, Singh U. Entamoeba histolytica: a snapshot of current research and methods for genetic analysis. Curr Opin Microbiol 2012; 15:469-75. [PMID: 22664276 DOI: 10.1016/j.mib.2012.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
Entamoeba histolytica represents one of the leading causes of parasitic death worldwide. Although identified as the causative agent of amebiasis since 1875, the molecular mechanisms by which the parasite causes disease are still not fully understood. Studying Entamoeba reveals insights into a eukaryotic cell that differs in many ways from better-studied model organisms. Thus, much can be learned from this protozoan parasite on evolution, cell biology, and RNA biology. In this review we discuss selected research highlights in Entamoeba research and focus on the development of molecular biological techniques to study this pathogen. We end by highlighting some of the many questions that remain to be answered in order to fully understand this important human pathogen.
Collapse
Affiliation(s)
- Laura Morf
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | |
Collapse
|
16
|
Zhang H, Alramini H, Tran V, Singh U. Nucleus-localized antisense small RNAs with 5'-polyphosphate termini regulate long term transcriptional gene silencing in Entamoeba histolytica G3 strain. J Biol Chem 2011; 286:44467-79. [PMID: 22049083 PMCID: PMC3247957 DOI: 10.1074/jbc.m111.278184] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/01/2011] [Indexed: 11/06/2022] Open
Abstract
In the deep-branching eukaryotic parasite Entamoeba histolytica, transcriptional gene silencing (TGS) of the Amoebapore A gene (ap-a) in the G3 strain has been reported with subsequent development of this parasite strain for gene silencing. However, the mechanisms underlying this gene silencing approach are poorly understood. Here we report that antisense small RNAs (sRNAs) specific to the silenced ap-a gene can be identified in G3 parasites. Furthermore, when additional genes are silenced in the G3 strain, antisense sRNAs to the newly silenced genes can also be detected. Characterization of these sRNAs demonstrates that they are ~27 nucleotides in size, have 5'-polyphosphate termini, and persist even after removal of the silencing plasmid. Immunofluorescence analysis (IFA) and fluorescence in situ hybridization (FISH) show that both the Argonaute protein EhAGO2-2 and antisense sRNAs to the silenced genes are localized to the parasite nucleus. Furthermore, α-EhAGO2-2 immunoprecipitation confirmed the direct association of the antisense sRNAs with EhAGO2-2. Finally, chromatin immunoprecipitation (ChIP) assays demonstrate that the loci of the silenced genes are enriched for histone H3 and EhAGO2-2, indicating that both chromatin modification and the RNA-induced transcriptional silencing complex are involved in permanent gene silencing in G3 parasites. In conclusion, our data demonstrate that G3-based gene silencing in E. histolytica is mediated by an siRNA pathway, which utilizes antisense 5'-polyphosphate sRNAs. To our knowledge, this is the first study to show that 5'- polyphosphate antisense sRNAs can mediate TGS, and it is the first example of RNAi-mediated TGS in protozoan parasites.
Collapse
Affiliation(s)
- Hanbang Zhang
- From the Division of Infectious Diseases, Department of Internal Medicine, and
| | - Hussein Alramini
- From the Division of Infectious Diseases, Department of Internal Medicine, and
| | - Vy Tran
- From the Division of Infectious Diseases, Department of Internal Medicine, and
| | - Upinder Singh
- From the Division of Infectious Diseases, Department of Internal Medicine, and
- the Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5107
| |
Collapse
|
17
|
Vetukuri RR, Tian Z, Avrova AO, Savenkov EI, Dixelius C, Whisson SC. Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biol 2011; 115:1225-33. [DOI: 10.1016/j.funbio.2011.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/31/2011] [Indexed: 11/25/2022]
|
18
|
Katz S, Kushnir O, Tovy A, Siman Tov R, Ankri S. The Entamoeba histolytica methylated LINE-binding protein EhMLBP provides protection against heat shock. Cell Microbiol 2011; 14:58-70. [DOI: 10.1111/j.1462-5822.2011.01697.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Mi-ichi F, Makiuchi T, Furukawa A, Sato D, Nozaki T. Sulfate activation in mitosomes plays an important role in the proliferation of Entamoeba histolytica. PLoS Negl Trop Dis 2011; 5:e1263. [PMID: 21829746 PMCID: PMC3149026 DOI: 10.1371/journal.pntd.0001263] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/18/2011] [Indexed: 12/02/2022] Open
Abstract
Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not “rudimentary” or “residual” mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica. The mitochondrion and its related organelles are ubiquitous in all extant eukaryotic cells. The mitochondria are believed to have originated from the endosymbiosis of α-proteobacteria in an ancestral eukaryote, and show diverse structures, contents, and functions. Evolution and diversification of mitochondrion-related organelles remains one of the central themes in biology. Entamoeba histolytica, which causes intestinal and extraintestinal amebiasis in humans, possesses a highly divergent form of mitochondrion-related organelles, named “mitosomes.” Previously, we demonstrated that sulfate activation is the major function of mitosomes in E. histolytica. As the sulfate activation pathway was discovered only in the cytoplasm and plastids in other eukaryotic organisms, its compartmentalization to mitosomes is unprecedented. In this study, we showed that this pathway is important for sulfolipid synthesis and cell proliferation in E. histolytica. Together, we infer that E. histolytica mitosomes are not just rudimentary or residual mitochondria, but important for proliferation of E. histolytica. Thus, E. histolytica represents a useful model to understand evolutionary constraints of mitochondrion-related organelles in eukaryotes.
Collapse
Affiliation(s)
- Fumika Mi-ichi
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takashi Makiuchi
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Atsushi Furukawa
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Dan Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
20
|
Abstract
Protozoa constitute the earliest branch of the eukaryotic lineage, and several groups of protozoans are serious parasites of humans and other animals. Better understanding of biochemical pathways that are either in common with or divergent from those of higher eukaryotes is integral in the defense against these parasites. In yeast and humans, the posttranslational methylation of arginine residues in proteins affects myriad cellular processes, including transcription, RNA processing, DNA replication and repair, and signal transduction. The protein arginine methyltransferases (PRMTs) that catalyze these reactions, which are unique to the eukaryotic kingdom of organisms, first become evident in protozoa. In this review, we focus on the current understanding of arginine methylation in multiple species of parasitic protozoa, including Trichomonas, Entamoeba, Toxoplasma, Plasmodium, and Trypanosoma spp., and discuss how arginine methylation may play important and unique roles in each type of parasite. We mine available genomic and transcriptomic data to inventory the families of PRMTs in different parasites and the changes in their abundance during the life cycle. We further review the limited functional studies on the roles of arginine methylation in parasites, including epigenetic regulation in Apicomplexa and RNA processing in trypanosomes. Interestingly, each of the parasites considered herein has significantly differing sets of PRMTs, and we speculate on the importance of this diversity in aspects of parasite biology, such as differentiation and antigenic variation.
Collapse
|
21
|
Zhang H, Pompey JM, Singh U. RNA interference in Entamoeba histolytica: implications for parasite biology and gene silencing. Future Microbiol 2011; 6:103-17. [PMID: 21162639 DOI: 10.2217/fmb.10.154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Entamoeba histolytica is a major health threat to people in developing countries, where it causes invasive diarrhea and liver abscesses. The study of this important human pathogen has been hindered by a lack of tools for genetic manipulation. Recently, a number of genetic approaches based on variations of the RNAi method have been successfully developed and cloning of endogenous small-interfering RNAs from E. histolytica revealed an abundant population of small RNAs with an unusual 5´-polyphosphate structure. However, little is known about the implications of these findings to amebic biology or the mechanisms of gene silencing in this organism. In this article we review the literature relevant to RNAi in E. histolytica, discuss its implications for advances in gene silencing in this organism and outline potential future directions towards understanding the repertoire of RNAi and its impact on the biology of this deep-branching eukaryotic parasite.
Collapse
Affiliation(s)
- Hanbang Zhang
- Stanford University School of Medicine, S-143 Grant Building, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
22
|
Tovy A, Ankri S. Epigenetics in the unicellular parasite Entamoeba histolytica. Future Microbiol 2011; 5:1875-84. [PMID: 21198420 DOI: 10.2217/fmb.10.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amoebiasis is a serious infectious disease that is caused by the unicellular parasite, Entamoeba histolytica. This parasite is mainly found in developing countries, and are named owing to its ability to destroy tissues. The molecular mechanisms that regulate the virulence of this parasite are not well understood. In recent years, an increasing interest in the epigenetic regulation of the parasite's virulence has emerged. In this article, an overview of our current knowledge about the role of DNA methylation, histone modifications and RNA-associated silencing in the biology of E. histolytica is provided. The relevance of some features of the parasite's unique epigenetic machinery to the development of new antiamoebic therapeutic molecules is discussed.
Collapse
Affiliation(s)
- Ayala Tovy
- Department of Microbiology, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology & the Rappaport Institute, Haifa, Israel
| | | |
Collapse
|
23
|
Huntley DM, Pandis I, Butcher SA, Ackers JP. Bioinformatic analysis of Entamoeba histolytica SINE1 elements. BMC Genomics 2010; 11:321. [PMID: 20497534 PMCID: PMC2996970 DOI: 10.1186/1471-2164-11-321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasive amoebiasis, caused by infection with the human parasite Entamoeba histolytica remains a major cause of morbidity and mortality in some less-developed countries. Genetically E. histolytica exhibits a number of unusual features including having approximately 20% of its genome comprised of repetitive elements. These include a number of families of SINEs - non-autonomous elements which can, however, move with the help of partner LINEs. In many eukaryotes SINE mobility has had a profound effect on gene expression; in this study we concentrated on one such element - EhSINE1, looking in particular for evidence of recent transposition. RESULTS EhSINE1s were detected in the newly reassembled E. histolytica genome by searching with a Hidden Markov Model developed to encapsulate the key features of this element; 393 were detected. Examination of their sequences revealed that some had an internal structure showing one to four 26-27 nt repeats. Members of the different classes differ in a number of ways and in particular those with two internal repeats show the properties expected of fairly recently transposed SINEs - they are the most homogeneous in length and sequence, they have the longest (i.e. the least decayed) target site duplications and are the most likely to show evidence (in a cDNA library) of active transcription. Furthermore we were able to identify 15 EhSINE1s (6 pairs and one triplet) which appeared to be identical or very nearly so but inserted into different sites in the genome; these provide good evidence that if mobility has now ceased it has only done so very recently. CONCLUSIONS Of the many families of repetitive elements present in the genome of E. histolytica we have examined in detail just one - EhSINE1. We have shown that there is evidence for waves of transposition at different points in the past and no evidence that mobility has entirely ceased. There are many aspects of the biology of this parasite which are not understood, in particular why it is pathogenic while the closely related species E. dispar is not, the great genetic diversity found amongst patient isolates and the fact, which may be related, that only a small proportion of those infected develop clinical invasive amoebiasis. Mobile genetic elements, with their ability to alter gene expression may well be important in unravelling these puzzles.
Collapse
Affiliation(s)
- Derek M Huntley
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | |
Collapse
|
24
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
25
|
tRNA gene sequences are required for transcriptional silencing in Entamoeba histolytica. EUKARYOTIC CELL 2009; 9:306-14. [PMID: 20023072 DOI: 10.1128/ec.00248-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional silencing by trans inactivation can contribute to the regulation of gene expression in eukaryotic cells. In the human intestinal protozoan parasite Entamoeba histolytica, trans inactivation of the amoebapore-A gene (AP-A) was recently achieved by episomal transfection of E. histolytica trophozoites with the plasmid psAP1. The mechanism of AP-A trans inactivation is largely unknown, though it was suggested that a partial short interspersed transposable element (SINE) is required. By systematic assessment of various E. histolytica isolates transfected with psAP1 derivates, trans inactivation of AP-A was restricted to the strain HM-1:IMSS (2411) but could not be achieved in other standard laboratory strains. Importantly, sequences of an E. histolytica tRNA array that were located on psAP1 in close proximity to the AP-A upstream region and comprising the glutamic acid (TTC) (E) and tyrosine (GTA) (Y) tRNA genes were indispensable for AP-A silencing. In contrast to the case described in previous reports, SINE was not required for AP-A trans inactivation. AP-A expression could be regained in silenced cells by episomal transfection under the control of a heterologous E. histolytica promoter, opening a way toward future silencing of individual genes of interest in E. histolytica. Our results indicate that tRNA gene-mediated silencing is not restricted to Saccharomyces cerevisiae.
Collapse
|
26
|
Epigenetic transcriptional gene silencing in Entamoeba histolytica: insight into histone and chromatin modifications. Parasitology 2009; 137:619-27. [PMID: 19849886 DOI: 10.1017/s0031182009991363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously discovered a unique mechanism of epigenetic transcriptional gene silencing in the Entamoeba histolytica trophozoites of strain HM-1:IMSS that resulted in the persistent downregulation of the amoebapore A (ap-a) gene, and that could be successfully applied to silence other virulence genes (cpA5, lgl1). In order to understand how the silencing is maintained throughout generations, we analysed whether modifications occurred at the chromatin level. Chromatin immunoprecipitation assays were done with antibodies specific to the methylated lysine 4 of E. histolytica histone H3. When the genes were in a transcriptionally silent state, the methylation levels of H3K4 in their coding region were significantly reduced. In contrast, the levels of core histone H3 were consistently higher in the silenced genes. Controlled chromatin digestion with micrococcal nuclease was used to assess changes in nucleosome compaction. We found a significant resistance to digestion in the promoter region of the silenced ap-a and cpA5 genes as compared to the parental strain that expresses those genes. Our data lend further support to the idea that histone modifications and heterochromatin formations are at the basis of the transcriptional silencing of genes in E. histolytica.
Collapse
|
27
|
Lavi T, Siman-Tov R, Ankri S. Insights into the mechanism of DNA recognition by the methylated LINE binding protein EhMLBP of Entamoeba histolytica. Mol Biochem Parasitol 2009; 166:117-25. [DOI: 10.1016/j.molbiopara.2009.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/28/2022]
|
28
|
Mirelman D, Anbar M, Bracha R. Epigenetic transcriptional gene silencing in Entamoeba histolytica. IUBMB Life 2008; 60:598-604. [PMID: 18493998 DOI: 10.1002/iub.96] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human intestinal pathogen Entamoeba histolytica has a number of virulence factors which can cause damage to the host. Transcriptional silencing of the gene coding for one of its major toxic molecules, the amoebapore (Ehap-a), occurred following the transfection of amoebic trophozoites with a plasmid containing the 5' promoter region of Ehap-a as well as a truncated segment of a neighboring, upstream SINE1 element that is transcribed from the opposite strand. Silencing was dependent on the presence of the truncated SINE1 sequences. Small amounts of short (approximately 140 n), ssRNA molecules with homology to SINE1 were detected in the silenced amoeba but no siRNA. The silenced Ehap-a gene domain had a chromatin modification indicating transcriptional inactivation without any DNA methylation. Removal of the plasmid did not restore transcription of Ehap-a. Transcription analysis by microarrays revealed that a number of additional genes were silenced and some were also up-regulated. Transfections of amoeba which already had a silenced Ehap-a, with a plasmid containing a second gene ligated to the 5' upstream region of Ehap-a, enabled the silencing, in-trans, of other genes of choice. The nonvirulent phenotype of the gene-silenced amoeba was demonstrated in various assays and the results suggest that they may have a potential use for vaccination.
Collapse
Affiliation(s)
- David Mirelman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
29
|
Mendoza-Macías CL, Barrios-Ceballos MP, de la Peña LPC, Rangel-Serrano A, Anaya-Velázquez F, Mirelman D, Padilla-Vaca F. Entamoeba histolytica: effect on virulence, growth and gene expression in response to monoxenic culture with Escherichia coli 055. Exp Parasitol 2008; 121:167-74. [PMID: 19014938 DOI: 10.1016/j.exppara.2008.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Monoxenic cultivation of pathogenic Entamoeba histolytica trophozoites with Escherichia coli serotype 055 which binds strongly to the Gal/GalNAc amoebic lectin, markedly improved the growth of E. histolytica and produced a significant decrease in cysteine proteinase activity and a lower cytopathic activity on monolayer cells after 3 months of monoxenic culture. However, after long term monoxenic culture (12 months) the proteolytic and cytopathic activities were recovered and the amoebic growth reached the maximum yield. Employing the GeneFishing(R) technology and DNA macroarrays we detected differentially gene expression related to the amoebic interaction with bacteria. A number of differentially expressed genes encoding metabolic enzymes, ribosomal proteins, virulence factors and proteins related with cytoskeletal and vesicle trafficking were found. These results suggest that E. coli 055 has a nutritional role that strongly supports the amoebic growth, and is also able to modulate some biological activities related with amoebic virulence.
Collapse
|
30
|
MacFarlane RC, Singh U. Loss of dsRNA-based gene silencing in Entamoeba histolytica: implications for approaches to genetic analysis. Exp Parasitol 2008; 119:296-300. [PMID: 18346737 PMCID: PMC2426738 DOI: 10.1016/j.exppara.2008.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/29/2008] [Accepted: 02/01/2008] [Indexed: 11/29/2022]
Abstract
The ability to regulate gene expression in the protozoan parasite Entamoeba histolytica is critical in determining gene function. We previously published that expression of dsRNA specific to E. histolytica serine threonine isoleucine rich protein (EhSTIRP) resulted in reduction of gene expression [MacFarlane, R.C., Singh, U., 2007. Identification of an Entamoeba histolytica serine, threonine, isoleucine, rich protein with roles in adhesion and cytotoxicity. Eukaryotic Cell 6, 2139-2146]. However, after approximately one year of continuous drug selection, the expression of EhSTIRP reverted to wild-type levels. We confirmed that the parasites (i) contained the appropriate dsRNA plasmid, (ii) were not contaminated with other plasmids, (iii) the drug selectable marker was functional, and (iv) sequenced the dsRNA portion of the construct. This work suggests that in E. histolytica long term cultivation of parasites expressing dsRNA can lead to the loss of dsRNA based silencing through the selection of "RNAi" negative parasites. Thus, users of the dsRNA silencing approach should proceed with caution and regularly confirm gene down regulation. The development and use of constructs for inducible expression of dsRNA may help alleviate this potential problem.
Collapse
Affiliation(s)
- Ryan C. MacFarlane
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124, USA
| | - Upinder Singh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124, USA
- Department of Internal Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305-5124, USA
| |
Collapse
|
31
|
Abed M, Ankri S. Progress and prospects of gene inactivation in Entamoeba histolytica. Exp Parasitol 2008; 118:151-5. [PMID: 17889851 DOI: 10.1016/j.exppara.2007.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/16/2022]
Abstract
Over the last few years, numerous methods have been exploited in the attempt to study Entamoeba histolytica gene functions. Yet several features of E. histolytica, like their variable DNA content and complex ploidity have made it difficult to perform classical genetic studies such as homologous recombination. As a result, the methods currently in use target genes at the protein or RNA level. This review summarizes the experimental approaches that have been used to date and it provides an overview of the limitations and contributions of these methods in our understanding of E. histolytica's gene functions and biology.
Collapse
Affiliation(s)
- Mona Abed
- Department of Molecular Microbiology, Rappaport Faculty of Medicine and Research Institute, Technion--Israel Institute of Technology, 1 Efron Street, Haifa, 31096, Israel
| | | |
Collapse
|
32
|
MacFarlane RC, Singh U. Identification of an Entamoeba histolytica serine-, threonine-, and isoleucine-rich protein with roles in adhesion and cytotoxicity. EUKARYOTIC CELL 2007; 6:2139-46. [PMID: 17827347 PMCID: PMC2168410 DOI: 10.1128/ec.00174-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica is a leading cause of parasitic death globally. However, the molecular framework regulating pathogenesis is poorly understood. We have previously used expression profiling to identify Entamoeba genes whose expressions were strictly associated with virulent strains (R. C. MacFarlane and U. Singh, Infect. Immun. 74:340-351, 2006). One gene, which we have named EhSTIRP (Entamoeba histolytica serine-, threonine-, and isoleucine-rich protein), was exclusively expressed in virulent but not in nonvirulent Entamoeba strains. EhSTIRP is predicted to be a transmembrane protein and is encoded by a multigene family. In order to characterize its function in amebic biology, we used a double-stranded RNA-based approach and were able to selectively down-regulate expression of this gene family. Upon EhSTIRP down-regulation, we were able to ascribe cytotoxic and adhesive properties to the protein family using lactate dehydrogenase release and Chinese hamster ovary cell adhesion assays. EhSTIRP thus likely represents a novel determinant of virulence in Entamoeba histolytica. This work validates the fact that genes expressed exclusively in virulent strains may represent virulence determinants and highlights the need for further functional analyses of other genes with similar expression profiles.
Collapse
Affiliation(s)
- Ryan C MacFarlane
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124, USA
| | | |
Collapse
|
33
|
Santi-Rocca J, Weber C, Guigon G, Sismeiro O, Coppée JY, Guillén N. The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis. Cell Microbiol 2007; 10:202-17. [PMID: 17711481 DOI: 10.1111/j.1462-5822.2007.01030.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The parasite Entamoeba histolytica colonizes the large bowel where it may persist as an asymptomatic luminal gut infection, which changes to virulence. Parasite invasion of the intestine leads to dysentery and spreads to the liver, where amoebae form abscesses. We took advantage of changes in virulence that occurs after long-term in vitro culture of E. histolytica strains. Using microarrays, we concluded that virulence correlates with upregulation of key genes involved in stress response, including molecular chaperones, ssp1 and peroxiredoxin; as well as the induction of unknown genes encoding lysine-rich proteins. Seven of these were retained with respect to their lysine content higher than 25%. Among them, we found KERP1, formerly identified as associated to parasite surface and involved in the parasite adherence to host cells. Experimentally induced liver abscesses, using molecular beacons and protein analysis, allowed us to draw a parallel between the intricate upregulation of kerp1 gene expression during abscess development and the increased abundance of KERP1 in virulent trophozoites. Following its characterization as a marker for the progression of infection, KERP1 was also seen to be a virulence marker as trophozoites affected in kerp1 expression by an antisense strategy were unable to form liver abscesses.
Collapse
Affiliation(s)
- Julien Santi-Rocca
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, F-75015, France, and INSERM U786, Paris, F-75015, France
| | | | | | | | | | | |
Collapse
|
34
|
Growth of the protozoan parasite Entamoeba histolytica in 5-azacytidine has limited effects on parasite gene expression. BMC Genomics 2007; 8:7. [PMID: 17207281 PMCID: PMC1779778 DOI: 10.1186/1471-2164-8-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/05/2007] [Indexed: 12/28/2022] Open
Abstract
Background In higher eukaryotes DNA methylation regulates important biological functions including silencing of gene expression and protection from adverse effects of retrotransposons. In the protozoan parasite Entamoeba histolytica, a DNA methyltransferase has been identified and treatment with 5-azacytidine (5-AzaC), a potent inhibitor of DNA methyltransferase, has been reported to attenuate parasite virulence. However, the overall extent of DNA methylation and its subsequent effects on global gene expression in this parasite are currently unknown. Results In order to identify the genome-wide effects of DNA methylation in E. histolytica, we used a short oligonucleotide microarray representing 9,435 genes (~95% of all annotated amebic genes) and compared the expression profile of E. histolytica HM-1:IMSS parasites with those treated with 23 μM 5-AzaC for up to one week. Overall, 2.1% of genes tested were transcriptionally modulated under these conditions. 68 genes were upregulated and 131 genes down regulated (2-fold change; p-value < 0.05). Sodium-bisulfite treatment and sequencing of genes indicated that there were at least two subsets of genes with genomic DNA methylation in E. histolytica: (i) genes that were endogenously silenced by genomic DNA methylation and for which 5-AzaC treatment induced transcriptional de-repression, and (ii) genes that have genomic DNA methylation, but which were not endogenously silenced by the methylation. We identified among the genes down regulated by 5-AzaC treatment a cysteine proteinase (2.m00545) and lysozyme (52.m00148) both of which have known roles in amebic pathogenesis. Decreased expression of these genes in the 5-AzaC treated E. histolytica may account in part for the parasites reduced cytolytic abilities. Conclusion This work represents the first genome-wide analysis of DNA-methylation in Entamoeba histolytica and indicates that DNA methylation has relatively limited effects on gene expression in this parasite.
Collapse
|
35
|
Lavi T, Isakov E, Harony H, Fisher O, Siman-Tov R, Ankri S. Sensing DNA methylation in the protozoan parasite Entamoeba histolytica. Mol Microbiol 2006; 62:1373-86. [PMID: 17059565 DOI: 10.1111/j.1365-2958.2006.05464.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the protozoan parasite Entamoeba histolytica, 5-methylcytosine (m5C) was found predominantly in repetitive elements. Its formation is catalysed by Ehmeth, a DNA methyltransferase that belongs to the Dnmt2 subfamily. Here we describe a 32 kDa nuclear protein that binds in vitro with higher affinity to the methylated form of a DNA encoding a reverse transcriptase of an autonomous non-long-terminal repeat retrotransposon (RT LINE) compared with the non-methylated RT LINE. This protein, named E. histolytica-methylated LINE binding protein (EhMLBP), was purified from E. histolytica nuclear lysate, identified by mass spectrometry, and its corresponding gene was cloned. EhMLBP corresponds to a gene of unknown function that shares strong homology with putative proteins present in Entamoeba dispar and Entamoeba invadens. In contrast, the homology dropped dramatically when non-Entamoebidae sequences were considered and only a weak sequence identity was found with Trypanosoma and several prokaryotic histone H1. Recombinant EhMLBP showed the same binding preference for methylated RT LINE as the endogenous EhMLBP. Deletion mapping analysis localized the DNA binding region at the C-terminal part of the protein. This region is sufficient to assure the binding to methylated RT LINE with high affinity. Western blot and immunofluorescence microscopy, using an antibody raised against EhMLBP, showed that it has a nuclear localization. Chromatin immunoprecipitation (ChIP) confirmed that EhMLBP interacts with RT LINE in vivo. Finally, we showed that EhMLBP can also bind rDNA episome, a DNA that is methylated in the parasite. This suggests that EhMLBP may serve as a sensor of methylated repetitive DNA. This is the first report of a DNA-methylated binding activity in protozoa.
Collapse
Affiliation(s)
- Tal Lavi
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Mandal PK, Rawal K, Ramaswamy R, Bhattacharya A, Bhattacharya S. Identification of insertion hot spots for non-LTR retrotransposons: computational and biochemical application to Entamoeba histolytica. Nucleic Acids Res 2006; 34:5752-63. [PMID: 17040894 PMCID: PMC1635306 DOI: 10.1093/nar/gkl710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The genome of the human pathogen Entamoeba histolytica contains non-long terminal repeat (LTR) retrotransposons, the EhLINEs and EhSINEs, which lack targeted insertion. We investigated the importance of local DNA structure, and sequence preference of the element-encoded endonuclease (EN) in selecting target sites for retrotransposon insertion. Pre-insertion loci were tested computationally to detect unique features based on DNA structure, thermodynamic considerations and protein interaction measures. Target sites could readily be distinguished from other genomic sites based on these criteria. The contribution of the EhLINE1-encoded EN in target site selection was investigated biochemically. The sequence-specificity of the EN was tested in vitro with a variety of mutated substrates. It was possible to assign a consensus sequence, 5′-GCATT-3′, which was efficiently nicked between A-T and T-T. The upstream G residue enhanced EN activity, possibly serving to limit retrotransposition in the A+T-rich E.histolytica genome. Mutated substrates with poor EN activity showed structural differences compared with normal substrates. Analysis of retrotransposon insertion sites from a variety of organisms showed that, in general, regions of favorable DNA structure were recognized for retrotransposition. A combination of favorable DNA structure and preferred EN nicking sequence in the vicinity of this structure may determine the genomic hotspots for retrotransposition.
Collapse
Affiliation(s)
- Prabhat K. Mandal
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi 110 067, India
| | - Kamal Rawal
- School of Information Technology, Jawaharlal Nehru UniversityNew Delhi 110 067, India
| | - Ram Ramaswamy
- School of Information Technology, Jawaharlal Nehru UniversityNew Delhi 110 067, India
- School of Physical Sciences, Jawaharlal Nehru UniversityNew Delhi 110 067, India
| | - Alok Bhattacharya
- School of Information Technology, Jawaharlal Nehru UniversityNew Delhi 110 067, India
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi 110 067, India
| | - Sudha Bhattacharya
- To whom correspondence should be addressed. Tel: +91 11 26704308; Fax: +91 11 26172438;
| |
Collapse
|
37
|
Abstract
Protozoan parasites are early branching eukaryotes causing significant morbidity and mortality in humans and livestock. Single-celled parasites have evolved complex life cycles, which may involve multiple host organisms, and strategies to evade host immune responses. Consequently, two key aspects of virulence that underlie pathogenesis are parasite differentiation and antigenic variation, both of which require changes in the expressed genome. Complicating these requisite alterations in the parasite transcriptome is chromatin, which serves as a formidable barrier to DNA processes including transcription, repair, replication and recombination. Considerable progress has been made in the study of chromatin dynamics in other eukaryotes, and there is much to be gained in extending these analyses to protozoan parasites. Much of the work completed to date has focused on histone acetylation and methylation in the apicomplexans and trypanosomatids. As we describe in this review, such studies provide a unique vantage point of the evolutionary picture of eukaryotic cell development, and reveal unique phenomena that could be exploited pharmacologically to treat protozoal diseases.
Collapse
Affiliation(s)
- William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
38
|
Ackers JP, Mirelman D. Progress in research on Entamoeba histolytica pathogenesis. Curr Opin Microbiol 2006; 9:367-73. [PMID: 16824782 DOI: 10.1016/j.mib.2006.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Indexed: 11/30/2022]
Abstract
Entamoeba histolytica is a protozoan parasite of humans that causes 40,000-100,000 deaths annually. Clinical amoebiasis results from the spread of the normally luminal parasite into the colon wall and beyond; the key development in understanding this complex multistage process has been the publication of the E. histolytica genome, from which has come an explosion in the use of microarrays to examine changes in gene expression that result from changes in growth conditions. The genome has also revealed a unique arrangement of tRNA genes and an extraordinary number of genes for putative virulence factors, many unexpressed under the artificial conditions of growth in culture. The ability to induce apoptosis of mammalian cells and a useful, but as yet little-understood, technique for epigenetic irreversible gene silencing are other exciting developments.
Collapse
Affiliation(s)
- John P Ackers
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
39
|
Bracha R, Nuchamowitz Y, Anbar M, Mirelman D. Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica. PLoS Pathog 2006; 2:e48. [PMID: 16733544 PMCID: PMC1464398 DOI: 10.1371/journal.ppat.0020048] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 04/10/2006] [Indexed: 01/19/2023] Open
Abstract
In a previous work we described the transcriptional silencing of the amoebapore A (AP-A) gene (Ehap-a) of Entamoeba histolytica strain HM-1:IMSS. The silencing occurred following transfection with a plasmid containing a 5′ upstream region (473 bp) of Ehap-a that included a truncated segment (140 bp) of a short interspersed nuclear element (SINE1). Silencing remained in effect even after removal of the plasmid (clone G3). Neither short interfering RNA nor methylated DNA were detected, but the chromatin domain of Ehap-a in the gene-silenced trophozoites was modified. Two other similar genes (Ehap-b and one encoding a Saposin-like protein, SAPLIP 1) also became silenced. In the present work we demonstrate the silencing of a second gene of choice, one that encodes the light subunit of the Gal/GalNAc inhibitable lectin (Ehlgl1) and the other, the cysteine proteinase 5 (EhCP-5). This silencing occurred in G3 trophozoites transfected with a plasmid in which the 473 bp 5′ upstream Ehap-a fragment was directly ligated to the second gene. Transcriptional silencing occurred in both the transgene and the chromosomal gene. SINE1 sequences were essential, as was a direct connection between the Ehap-a upstream region and the beginning of the open reading frame of the second gene. Gene silencing did not occur in strain HM-1:IMSS with any of these plasmid constructs. The trophozoites with two silenced genes were virulence-attenuated as were those of clone G3. In addition, trophozoites not expressing Lgl1 and AP-A proteins had a significantly reduced ability to cap the Gal/GalNAc-lectin to the uroid region when incubated with antibodies against the heavy (170 kDa) subunit of the lectin. Lysates of trophozoites lacking cysteine proteinase 5 and AP-A proteins had 30% less cysteine proteinase activity than those of HM-1:IMSS strain or the G3 clone. Silencing of other genes in G3 amoebae could provide a model to study their various functions. In addition, double gene-silenced, virulence-attenuated trophozoites may be an important tool in vaccine development. The human intestinal parasite Entamoeba histolytica has numerous genes that code for virulence. Silencing the expression of individual genes is useful to determine their roles. In previous work the authors demonstrated the silencing of the gene coding for amoebapore, which is responsible for killing of human cells. They transfected amoebic trophozoites with a plasmid that contained DNA sequences homologous to the promoter region of the amoebapore gene, as well as a portion of a repetitive DNA element (called a short interspersed nuclear element). This construct induced a modification of the chromatin and prevented the expression of the gene. Removal of the plasmid resulted in stable, amoebapore-deficient parasites possessing low virulence. In the present work, Bracha and colleagues show silencing of additional genes following transfection of E. histolytica trophozoites already silenced in amoebapore with a plasmid containing the second gene directly ligated to the upstream region of the amoebapore gene. The DNA sequences that are essential for transferring the silencing from the plasmid to the chromosomal gene copy were identified. Additional virulence genes that the authors irreversibly silenced are those encoding a subunit of a surface lectin that mediates the adherence of the parasite to host cells, and a cysteine proteinase that plays a role in inflammation and invasion of the intestine.
Collapse
Affiliation(s)
- Rivka Bracha
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Nuchamowitz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Anbar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - David Mirelman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|