1
|
Smith SS. The bisulfite reaction with cytosine and genomic DNA structure. Anal Biochem 2024; 691:115532. [PMID: 38609028 DOI: 10.1016/j.ab.2024.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The bisulfite reaction with native DNA has been extensively employed in the detection of non-B DNA structures that can form spontaneously in DNA. These sequences are dynamic in that they can adopt both normal Watson-Crick paired B-DNA or unusual structures like the Triplex, G-Quadruplex, i-motif and Cruciform or Hairpin. Considerable evidence now suggests that these dynamic sequences play roles in both epigenetics and mutagenesis. The bisulfite reaction with native DNA offers a key approach to their detection. In this application whole cells, isolated nuclei or isolated DNA are treated with bisulfite under non-denaturing conditions in order to detect bisulfite accessible regions DNA that are associated with these structures. Here I review the stereochemistry of the bisulfite reaction, the electronic structure of its DNA cytosine substrates and its application in the detection of unusual structures in native DNA.
Collapse
Affiliation(s)
- Steven S Smith
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Li H, Liu H, Zhu D, Dou C, Gang B, Zhang M, Wan Z. Biological function molecular pathways and druggability of DNMT2/TRDMT1. Pharmacol Res 2024; 205:107222. [PMID: 38782147 DOI: 10.1016/j.phrs.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.
Collapse
Affiliation(s)
- Huari Li
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China; College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China.
| | - Huiru Liu
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chengli Dou
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| |
Collapse
|
3
|
Lewinska A, Adamczyk-Grochala J, Wnuk M. TRDMT1-mediated RNA C-5 methylation as a novel target in anticancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188964. [PMID: 37625528 DOI: 10.1016/j.bbcan.2023.188964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Affected landscape of RNA modifications is frequently observed in different cancer cells that can be associated with the development of cancer cell phenotypic traits such as sustained proliferation, migration and invasion, apoptosis resistance and metabolic reprograming. DNMT2/TRDMT1 5-methylcytosine methyltransferase, initially classified as DNA methyltransferase, can methylate both tRNA and mRNA promoting tRNA stability and proper protein synthesis, and orchestrating DNA damage response (DDR) and DNA stability, respectively. TRDMT1 is associated with cancer progression as its levels can be elevated and its mutations can be observed in a number of cancer types. TRDMT1 gene knockout (KO) can sensitize cancer cells of different origin to radiotherapy and chemotherapy. In the present review paper, based on literature data, the physiological and pathophysiological roles of TRDMT1 in different biological systems are described with the emphasis on human normal and cancer cells. Potential TRDMT1 substrates, inhibitors and regulatory mechanisms of catalytic activity and cellular localization are also presented and evaluated. TRDMT1 as a novel promising target in anticancer therapy is proposed and discussed.
Collapse
Affiliation(s)
- Anna Lewinska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Jagoda Adamczyk-Grochala
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| |
Collapse
|
4
|
Drewell RA, Cormier TC, Steenwyk JL, Denis JS, Tabima J, Dresch J, Larochelle D. The Dictyostelium discoideum genome lacks significant DNA methylation and uncovers palindromic sequences as a source of false positives in bisulfite sequencing. NAR Genom Bioinform 2023; 5:lqad035. [PMID: 37081864 PMCID: PMC10111430 DOI: 10.1093/nargab/lqad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
DNA methylation, the addition of a methyl (CH3) group to a cytosine residue, is an evolutionarily conserved epigenetic mark involved in a number of different biological functions in eukaryotes, including transcriptional regulation, chromatin structural organization, cellular differentiation and development. In the social amoeba Dictyostelium, previous studies have shown the existence of a DNA methyltransferase (DNMA) belonging to the DNMT2 family, but the extent and function of 5-methylcytosine in the genome are unclear. Here, we present the whole genome DNA methylation profile of Dictyostelium discoideum using deep coverage replicate sequencing of bisulfite-converted gDNA extracted from post-starvation cells. We find an overall very low number of sites with any detectable level of DNA methylation, occurring at significant levels in only 303-3432 cytosines out of the ∼7.5 million total cytosines in the genome depending on the replicate. Furthermore, a knockout of the DNMA enzyme leads to no overall decrease in DNA methylation. Of the identified sites, significant methylation is only detected at 11 sites in all four of the methylomes analyzed. Targeted bisulfite PCR sequencing and computational analysis demonstrate that the methylation profile does not change during development and that these 11 cytosines are most likely false positives generated by protection from bisulfite conversion due to their location in hairpin-forming palindromic DNA sequences. Our data therefore provide evidence that there is no significant DNA methylation in Dictyostelium before fruiting body formation and identify a reproducible experimental artifact from bisulfite sequencing.
Collapse
Affiliation(s)
- Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Tayla C Cormier
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Jacob L Steenwyk
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James St Denis
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Javier F Tabima
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Denis A Larochelle
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| |
Collapse
|
5
|
Kausar S, Liu R, Gul I, Abbas MN, Cui H. Transcriptome Sequencing Highlights the Regulatory Role of DNA Methylation in Immune-Related Genes' Expression of Chinese Oak Silkworm, Antheraea pernyi. INSECTS 2022; 13:296. [PMID: 35323594 PMCID: PMC8951095 DOI: 10.3390/insects13030296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Antheraea pernyi is an important lepidopteran used as a model insect species to investigate immune responses, development, and metabolism modulation. DNA methylation has recently been found to control various physiological processes throughout the life of animals; however, DNA methylation and its effect on the physiology of insects have been poorly investigated so far. In the present study, to better understand DNA methylation and its biological role in the immune system, we analyzed transcriptome profiles of A. pernyi pupae following DNA methylation inhibitor injection and Gram-positive bacteria stimulation. We then compared the profiles with a control group. We identified a total of 55,131 unigenes from the RNA sequence data. A comparison of unigene expression profiles showed that a total of 680 were up-regulated and 631 unigenes were down-regulated in the DNA-methylation-inhibition-bacteria-infected group compared to the control group (only bacteria-injected pupae), respectively. Here, we focused on the immune-related differentially expressed genes (DEGs) and screened 10 genes that contribute to immune responses with an up-regulation trend, suggesting that microbial pathogens evade host immunity by increasing DNA methylation of the host genome. Furthermore, several other unigenes related to other pathways were also changed, as shown in the KEGG analysis. Taken together, our data revealed that DNA methylation seems to play a crucial biological role in the regulation of gene expression in insects, and that infection may enhance the host genome DNA methylation by a yet-unknown mechanism.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
6
|
DNA Methylation Changes Induced by Cold in Psychrophilic and Psychrotolerant Naganishia Yeast Species. Microorganisms 2020; 8:microorganisms8020296. [PMID: 32093408 PMCID: PMC7074839 DOI: 10.3390/microorganisms8020296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
The involvement of DNA methylation in the response to cold stress of two different yeast species (Naganishia antarctica, psychrophilic, and Naganishia albida, psychrotolerant), exhibiting different temperature aptitudes, has been studied. Consecutive incubations at respective optimum temperatures, at 4 °C (cold stress) and at optimum temperatures again, were performed. After Methylation Sensitive Amplified Polymorphism (MSAP) fingerprints a total of 550 and 423 clear and reproducible fragments were amplified from N. antarctica and N. albida strains, respectively. The two Naganishia strains showed a different response in terms of level of DNA methylation during cold stress and recovery from cold stress. The percentage of total methylated fragments in psychrophilic N. antarctica did not show any significant change. On the contrary, the methylation of psychrotolerant N. albida exhibited a nonsignificant increase during the incubation at 4 °C and continued during the recovery step, showing a significant difference if compared with control condition, resembling an uncontrolled response to cold stress. A total of 12 polymorphic fragments were selected, cloned, and sequenced. Four fragments were associated to genes encoding for elongation factor G and for chitin synthase export chaperon. To the best of our knowledge, this is the first study on DNA methylation in the response to cold stress carried out by comparing a psychrophilic and a psychrotolerant yeast species.
Collapse
|
7
|
Singh D, Yadav R, Kaushik S, Wadhwa N, Kapoor S, Kapoor M. Transcriptome Analysis of ppdnmt2 and Identification of Superoxide Dismutase as a Novel Interactor of DNMT2 in the Moss Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2020; 11:1185. [PMID: 32849734 PMCID: PMC7419982 DOI: 10.3389/fpls.2020.01185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 05/07/2023]
Abstract
DNMT2 is a DNA/tRNA cytosine methyltransferase that is highly conserved in structure and function in eukaryotes. In plants however, limited information is available on the function of this methyltransferase. We have previously reported that in the moss Physcomitrella patens, DNMT2 plays a crucial role in stress recovery and tRNAAsp transcription/stability under salt stress. To further investigate the role of PpDNMT2 at genome level, in this study we have performed RNA sequencing of ppdnmt2. Transcriptome analysis reveals a number of genes and pathways to function differentially and suggests a close link between PpDNMT2 function and osmotic and ionic stress tolerance. We propose PpDNMT2 to play a pivotal role in regulating salt tolerance by affecting molecular networks involved in stress perception and signal transduction that underlie maintenance of ion homeostasis in cells. We also examined interactome of PpDNMT2 using affinity purification (AP) coupled to mass spectrometry (AP-MS). Quantitative proteomic analysis reveals several chloroplast proteins involved in light reactions and carbon assimilation and proteins involved in stress response and some not implicated in stress to co-immunoprecipitate with PpDNMT2. Comparison between transcriptome and interactome datasets has revealed novel association between PpDNMT2 activity and the antioxidant enzyme Superoxide dismutase (SOD), protein turnover mediated by the Ubiquitin-proteasome system and epigenetic gene regulation. PpDNMT2 possibly exists in complex with CuZn-SODs in vivo and the two proteins also directly interact in the yeast nucleus as observed by yeast two-hybrid assay. Taken together, the work presented in this study sheds light on diverse roles of PpDNMT2 in maintaining molecular and physiological homeostasis in P. patens. This is a first report describing transcriptome and interactome of DNMT2 in any land plant.
Collapse
Affiliation(s)
- Darshika Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Radha Yadav
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shubham Kaushik
- Vproteomics, Valerian Chem Private Limited Green Park Mains, New Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
- *Correspondence: Meenu Kapoor,
| |
Collapse
|
8
|
Grognet P, Timpano H, Carlier F, Aït-Benkhali J, Berteaux-Lecellier V, Debuchy R, Bidard F, Malagnac F. A RID-like putative cytosine methyltransferase homologue controls sexual development in the fungus Podospora anserina. PLoS Genet 2019; 15:e1008086. [PMID: 31412020 PMCID: PMC6709928 DOI: 10.1371/journal.pgen.1008086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/26/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
DNA methyltransferases are ubiquitous enzymes conserved in bacteria, plants and opisthokonta. These enzymes, which methylate cytosines, are involved in numerous biological processes, notably development. In mammals and higher plants, methylation patterns established and maintained by the cytosine DNA methyltransferases (DMTs) are essential to zygotic development. In fungi, some members of an extensively conserved fungal-specific DNA methyltransferase class are both mediators of the Repeat Induced Point mutation (RIP) genome defense system and key players of sexual reproduction. Yet, no DNA methyltransferase activity of these purified RID (RIP deficient) proteins could be detected in vitro. These observations led us to explore how RID-like DNA methyltransferase encoding genes would play a role during sexual development of fungi showing very little genomic DNA methylation, if any. To do so, we used the model ascomycete fungus Podospora anserina. We identified the PaRid gene, encoding a RID-like DNA methyltransferase and constructed knocked-out ΔPaRid defective mutants. Crosses involving P. anserina ΔPaRid mutants are sterile. Our results show that, although gametes are readily formed and fertilization occurs in a ΔPaRid background, sexual development is blocked just before the individualization of the dikaryotic cells leading to meiocytes. Complementation of ΔPaRid mutants with ectopic alleles of PaRid, including GFP-tagged, point-mutated and chimeric alleles, demonstrated that the catalytic motif of the putative PaRid methyltransferase is essential to ensure proper sexual development and that the expression of PaRid is spatially and temporally restricted. A transcriptomic analysis performed on mutant crosses revealed an overlap of the PaRid-controlled genetic network with the well-known mating-types gene developmental pathway common to an important group of fungi, the Pezizomycotina.
Collapse
Affiliation(s)
- Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris‐Saclay, France
| | - Hélène Timpano
- Université Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France, CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Florian Carlier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris‐Saclay, France
| | - Jinane Aït-Benkhali
- Université Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France, CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | | | - Robert Debuchy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris‐Saclay, France
| | - Frédérique Bidard
- Université Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France, CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris‐Saclay, France
| |
Collapse
|
9
|
Vieira GC, D'Ávila MF, Zanini R, Deprá M, da Silva Valente VL. Evolution of DNMT2 in drosophilids: Evidence for positive and purifying selection and insights into new protein (pathways) interactions. Genet Mol Biol 2018; 41:215-234. [PMID: 29668012 PMCID: PMC5913717 DOI: 10.1590/1678-4685-gmb-2017-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/18/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA methyltransferase 2 (DNMT2) protein is the most conserved member of the
DNA methyltransferase family. Nevertheless, its substrate specificity is still
controversial and elusive. The genomic role and determinants of DNA methylation
are poorly understood in invertebrates, and several mechanisms and associations
are suggested. In Drosophila, the only known DNMT gene is
Dnmt2. Here we present our findings from a wide search for
Dnmt2 homologs in 68 species of Drosophilidae. We
investigated its molecular evolution, and in our phylogenetic analyses the main
clades of Drosophilidae species were recovered. We tested whether the
Dnmt2 has evolved neutrally or under positive selection
along the subgenera Drosophila and Sophophora
and investigated positive selection in relation to several physicochemical
properties. Despite of a major selective constraint on Dnmt2,
we detected six sites under positive selection. Regarding the DNMT2 protein, 12
sites under positive-destabilizing selection were found, which suggests a
selection that favors structural and functional shifts in the protein. The
search for new potential protein partners with DNMT2 revealed 15 proteins with
high evolutionary rate covariation (ERC), indicating a plurality of DNMT2
functions in different pathways. These events might represent signs of molecular
adaptation, with molecular peculiarities arising from the diversity of
evolutionary histories experienced by drosophilids.
Collapse
Affiliation(s)
- Gilberto Cavalheiro Vieira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marícia Fantinel D'Ávila
- Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil
| | - Rebeca Zanini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Wnuk M. Downregulation of methyltransferase Dnmt2 results in condition-dependent telomere shortening and senescence or apoptosis in mouse fibroblasts. J Cell Physiol 2017; 232:3714-3726. [PMID: 28177119 DOI: 10.1002/jcp.25848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Dnmt2 is a highly conserved methyltransferase of uncertain biological function(s). As Dnmt2 was considered as a driver of fruit fly longevity and a modulator of stress response, we decided to evaluate the role of Dnmt2 during stress-induced premature senescence in NIH3T3 mouse fibroblasts. Stable knockdown of Dnmt2 resulted in hydrogen peroxide-mediated sensitivity and apoptosis, whereas in the control conditions, senescence was induced. Cellular senescence was accompanied by elevated levels of p53 and p21, decreased telomere length and telomerase activity, increased production of reactive oxygen species and protein carbonylation, and DNA damage. Dnmt2 silencing also promoted global DNA and RNA hypermethylation, and upregulation of methyltransferases, namely Dnmt1, Dnmt3a, and Dnmt3b. Taken together, we show for the first time that Dnmt2 may promote lifespan in the control conditions and survival during stress conditions in mouse fibroblasts.
Collapse
Affiliation(s)
- Anna Lewinska
- Laboratory of Cell Biology, University of Rzeszow, Kolbuszowa, Poland
| | | | - Ewa Kwasniewicz
- Laboratory of Cell Biology, University of Rzeszow, Kolbuszowa, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Kolbuszowa, Poland
| |
Collapse
|
11
|
Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Deregowska A, Semik E, Zabek T, Wnuk M. Reduced levels of methyltransferase DNMT2 sensitize human fibroblasts to oxidative stress and DNA damage that is accompanied by changes in proliferation-related miRNA expression. Redox Biol 2017; 14:20-34. [PMID: 28843151 PMCID: PMC5568885 DOI: 10.1016/j.redox.2017.08.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
Methyltransferase DNMT2 is suggested to be involved in the regulation of numerous processes, however its biological significance and underlying molecular mechanisms remain elusive. In the present study, we have used WI-38 and BJ human fibroblasts as an in vitro model system to investigate the effects of siRNA-based DNMT2 silencing. DNMT2-depleted cells were found to be sensitive to oxidative stress conditions as judged by increased production of reactive oxygen species and susceptible to DNA damage that resulted in the inhibition of cell proliferation. DNMT2 silencing promoted upregulation of proliferation-related and tumor suppressor miRNAs, namely miR-28-3p, miR-34a-3p, miR-30b-5p, miR-29b-3p, miR-200c-3p, miR-28-5p, miR-379-5p, miR-382-5p, miR-194-5p, miR-193b-3p and miR-409-3p. Moreover, DNMT2 silencing induced cellular senescence and DNMT2 levels were elevated in replicatively senescent cells. Taken together, we found that DNMT2 may take part in the regulation of cell proliferation and longevity in human fibroblasts and speculate that the manipulation of DNMT2 levels that limits cell proliferation may be potentially useful anticancer strategy. DNMT2 silencing promotes oxidative stress and DNA damage in human fibroblasts. DNMT2 silencing results in upregulation of proliferation-related miRNAs. DNMT2 silencing inhibits cell proliferation and induces cellular senescence. DNMT2 levels are elevated during replicative senescence. DNMT2 is a novel regulator of cell proliferation and longevity in human fibroblasts.
Collapse
Affiliation(s)
- Anna Lewinska
- Laboratory of Cell Biology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | | | - Ewa Kwasniewicz
- Laboratory of Cell Biology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Anna Deregowska
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | - Ewelina Semik
- Laboratory of Genomics, National Research Institute of Animal Production, Balice n. Cracow, Poland
| | - Tomasz Zabek
- Laboratory of Genomics, National Research Institute of Animal Production, Balice n. Cracow, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
12
|
Vieira GC, Vieira GF, Sinigaglia M, da Silva Valente VL. Linking epigenetic function to electrostatics: The DNMT2 structural model example. PLoS One 2017; 12:e0178643. [PMID: 28575027 PMCID: PMC5456315 DOI: 10.1371/journal.pone.0178643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/16/2017] [Indexed: 11/25/2022] Open
Abstract
The amino acid sequence of DNMT2 is very similar to the catalytic domains of bacterial and eukaryotic proteins. However, there is great variability in the region of recognition of the target sequence. While bacterial DNMT2 acts as a DNA methyltransferase, previous studies have indicated low DNA methylation activity in eukaryotic DNMT2, with preference by tRNA methylation. Drosophilids are known as DNMT2-only species and the DNA methylation phenomenon is a not elucidated case yet, as well as the ontogenetic and physiologic importance of DNMT2 for this species group. In addition, more recently study showed that methylation in the genome in Drosophila melanogaster is independent in relation to DNMT2. Despite these findings, Drosophilidae family has more than 4,200 species with great ecological diversity and historical evolution, thus we, therefore, aimed to examine the drosophilids DNMT2 in order to verify its conservation at the physicochemical and structural levels in a functional context. We examined the twenty-six DNMT2 models generated by molecular modelling and five crystallographic structures deposited in the Protein Data Bank (PDB) using different approaches. Our results showed that despite sequence and structural similarity between species close related, we found outstanding differences when they are analyzed in the context of surface distribution of electrostatic properties. The differences found in the electrostatic potentials may be linked with different affinities and processivity of DNMT2 for its different substrates (DNA, RNA or tRNA) and even for interactions with other proteins involved in the epigenetic mechanisms.
Collapse
Affiliation(s)
- Gilberto Cavalheiro Vieira
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| | - Gustavo Fioravanti Vieira
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Núcleo de Bioinformática do Laboratório de Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marialva Sinigaglia
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Instituto do Câncer Infantil, Porto Alegre, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, Ankri S, Nellen W, Schaefer M, Helm M. Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biol 2016; 14:1108-1123. [PMID: 27232191 PMCID: PMC5699548 DOI: 10.1080/15476286.2016.1191737] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyl-methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its diverse facets including molecular evolution, structural biology, biochemistry, chemical biology, cell biology and epigenetics.
Collapse
Affiliation(s)
- Albert Jeltsch
- a Institute of Biochemistry , Stuttgart University , Stuttgart , Germany
| | | | - Tomasz P Jurkowski
- a Institute of Biochemistry , Stuttgart University , Stuttgart , Germany
| | - Frank Lyko
- c Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center , Heidelberg , Germany
| | - Gunter Reuter
- d Institute of Biology, Developmental Genetics, Martin Luther University Halle , Halle , Germany
| | - Serge Ankri
- e Department of Molecular Microbiology , The Bruce Rappaport Faculty of Medicine , Technion , Haifa , Israel
| | - Wolfgang Nellen
- f Abteilung für Genetik, Universität Kassel , Kassel , Germany
| | - Matthias Schaefer
- g Medical University of Vienna, Center for Anatomy & Cell Biology , Vienna , Austria
| | - Mark Helm
- h Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz , Mainz , Germany
| |
Collapse
|
14
|
Ashapkin VV, Kutueva LI, Vanyushin BF. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416030029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Epigenetic mechanisms of dietary restriction induced aging in Drosophila. Exp Gerontol 2015; 72:38-44. [DOI: 10.1016/j.exger.2015.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/04/2015] [Accepted: 08/25/2015] [Indexed: 01/07/2023]
|
16
|
Wang Y, Shaulsky G. TgrC1 Has Distinct Functions in Dictyostelium Development and Allorecognition. PLoS One 2015; 10:e0124270. [PMID: 25894230 PMCID: PMC4404348 DOI: 10.1371/journal.pone.0124270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/11/2015] [Indexed: 11/24/2022] Open
Abstract
The cell adhesion glycoproteins, TgrB1 and TgrC1, are essential for Dictyostelium development and allorecognition, but it has been impossible to determine whether their pleiotropic roles are due to one common function or to distinct functions in separate pathways. Mutations in the respective genes, tgrB1 and tgrC1, abrogate both development and allorecognition and the defects cannot be suppressed by activation of the cyclic AMP dependent protein kinase PKA, a central regulator of Dictyostelium development. Here we report that mutations in genes outside the known PKA pathway partially suppress the tgrC1-null developmental defect. We separated the pleiotropic roles of tgrC1 by testing the effects of a suppression mutation, stcinsA under different conditions. stcAins modified only the developmental defect of tgrC1– but not the allorecognition defect, suggesting that the two functions are separable. The suppressor mutant phenotype also revealed that tgrC1 regulates stalk differentiation in a cell-autonomous manner and spore differentiation in a non-cell-autonomous manner. Moreover, stcAins did not modify the developmental defect of tgrB1–, but the less robust phenotype of tgrB1– obscures the possible role of stcA relative to tgrB1.
Collapse
Affiliation(s)
- Yue Wang
- Graduate Program in Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030, United States of America
| | - Gad Shaulsky
- Graduate Program in Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston Texas, 77030, United States of America
- * E-mail:
| |
Collapse
|
17
|
Capuano F, Mülleder M, Kok R, Blom HJ, Ralser M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem 2014; 86:3697-702. [PMID: 24640988 PMCID: PMC4006885 DOI: 10.1021/ac500447w] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The methylation of cytosine to 5-methylcytosine
(5-meC) is an important
epigenetic DNA modification in many bacteria, plants, and mammals,
but its relevance for important model organisms, including Caenorhabditis elegans and Drosophila
melanogaster, is still equivocal. By reporting the
presence of 5-meC in a broad variety of wild, laboratory, and industrial
yeasts, a recent study also challenged the dogma about the absence
of DNA methylation in yeast species. We would like to bring to attention
that the protocol used for gas chromatography/mass spectrometry involved
hydrolysis of the DNA preparations. As this process separates cytosine
and 5-meC from the sugar phosphate backbone, this method is unable
to distinguish DNA- from RNA-derived 5-meC. We employed an alternative
LC–MS/MS protocol where by targeting 5-methyldeoxycytidine
moieties after enzymatic digestion, only 5-meC specifically derived
from DNA is quantified. This technique unambiguously identified cytosine
DNA methylation in Arabidopsis thaliana (14.0% of cytosines methylated), Mus musculus (7.6%), and Escherichia coli (2.3%).
Despite achieving a detection limit at 250 attomoles (corresponding
to <0.00002 methylated cytosines per nonmethylated cytosine), we
could not confirm any cytosine DNA methylation in laboratory and industrial
strains of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Saccharomyces boulardii, Saccharomyces
paradoxus, or Pichia pastoris. The protocol however unequivocally confirmed DNA methylation in
adult Drosophila melanogaster at a
value (0.034%) that is up to 2 orders of magnitude below the detection
limit of bisulphite sequencing. Thus, 5-meC is a rare DNA modification
in drosophila but absent in yeast.
Collapse
Affiliation(s)
- Floriana Capuano
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge , 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | | | | | | | | |
Collapse
|
18
|
Müller S, Windhof IM, Maximov V, Jurkowski T, Jeltsch A, Förstner KU, Sharma CM, Gräf R, Nellen W. Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA). Nucleic Acids Res 2013; 41:8615-27. [PMID: 23877245 PMCID: PMC3794594 DOI: 10.1093/nar/gkt634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in tRNAAsp(GUC)in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified tRNAGlu(CUC/UUC) and tRNAGly(GCC) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.
Collapse
Affiliation(s)
- Sara Müller
- Department of Genetics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany, Institute of Biochemistry, University Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/Bau D15, 97080 Würzburg and Universität Potsdam, Institut für Biochemie und Biologie, Abt. Zellbiologie, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam - Golm
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Becker M, Müller S, Nellen W, Jurkowski TP, Jeltsch A, Ehrenhofer-Murray AE. Pmt1, a Dnmt2 homolog in Schizosaccharomyces pombe, mediates tRNA methylation in response to nutrient signaling. Nucleic Acids Res 2012; 40:11648-58. [PMID: 23074192 PMCID: PMC3526270 DOI: 10.1093/nar/gks956] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe carries a cytosine 5-methyltransferase homolog of the Dnmt2 family (termed pombe methyltransferase 1, Pmt1), but contains no detectable DNA methylation. Here, we found that Pmt1, like other Dnmt2 homologs, has in vitro methylation activity on cytosine 38 of tRNAAsp and, to a lesser extent, of tRNAGlu, despite the fact that it contains a non-consensus residue in catalytic motif IV as compared with its homologs. In vivo tRNA methylation also required Pmt1. Unexpectedly, however, its in vivo activity showed a strong dependence on the nutritional status of the cell because Pmt1-dependent tRNA methylation was induced in cells grown in the presence of peptone or with glutamate as a nitrogen source. Furthermore, this induction required the serine/threonine kinase Sck2, but not the kinases Sck1, Pka1 or Tor1 and was independent of glucose signaling. Taken together, this work reveals a novel connection between nutrient signaling and tRNA methylation that thus may link tRNA methylation to processes downstream of nutrient signaling like ribosome biogenesis and translation initiation.
Collapse
Affiliation(s)
- Maria Becker
- Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, 45117 Essen, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Hsu DW, Chubb JR, Muramoto T, Pears CJ, Mahadevan LC. Dynamic acetylation of lysine-4-trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote. Nucleic Acids Res 2012; 40:7247-56. [PMID: 22600736 PMCID: PMC3424546 DOI: 10.1093/nar/gks367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dynamic acetylation of all lysine-4-trimethylated histone H3 is a complex phenomenon involved in Immediate-early gene induction in metazoan eukaryotes. Higher eukaryotes express repeated copies of three closely related H3 variants, inaccessible to genetic analysis. We demonstrate conservation of these phenomena in Dictyostelium which has three single-copy H3 variant genes. Although dynamic acetylation is targeted to two H3 variants which are K4-trimethylated, K9-acetylation is preferentially targeted to one. In cells lacking Set1 methyltransferase and any detectable K4-trimethylation, dynamic acetylation is lost demonstrating a direct link between the two. Gene replacement to express mutated H3 variants reveals a novel interaction between K4-trimethylation on different variants. Cells expressing only one variant show defects in growth, and in induction of a UV-inducible gene, demonstrating the functional importance of variant expression. These studies confirm that dynamic acetylation targeted to H3K4me3 arose early in evolution and reveal a very high level of specificity of histone variant utilization in a simple multicellular eukaryote.
Collapse
Affiliation(s)
- Duen-Wei Hsu
- Nuclear Signalling Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
21
|
Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni. Nat Commun 2011; 2:424. [PMID: 21829186 PMCID: PMC3265374 DOI: 10.1038/ncomms1433] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 07/13/2011] [Indexed: 12/31/2022] Open
Abstract
Similar to other metazoan pathogens, Schistosoma mansoni undergoes transcriptional and developmental regulation during its complex lifecycle and host interactions. DNA methylation as a mechanism to control these processes has, to date, been discounted in this parasite. Here we show the first evidence for cytosine methylation in the S. mansoni genome. Transcriptional coregulation of novel DNA methyltransferase (SmDnmt2) and methyl-CpG-binding domain proteins mirrors the detection of cytosine methylation abundance and implicates the presence of a functional DNA methylation machinery. Genome losses in cytosine methylation upon SmDnmt2 silencing and the identification of a hypermethylated, repetitive intron within a predicted forkhead gene confirm this assertion. Importantly, disruption of egg production and egg maturation by 5-azacytidine establishes an essential role for 5-methylcytosine in this parasite. These findings provide the first functional confirmation for this epigenetic modification in any worm species and link the cytosine methylation machinery to platyhelminth oviposition processes. The chronic disease schistosomiasis is caused by the blood fluke Schistosoma mansoni. By studying DNA modifications throughout the lifecycle of the pathogen, the authors identify DNA methylation as a factor in egg development and suggest that the epigenetic machinery responsible may be a therapeutic target.
Collapse
|
22
|
Abstract
The Dictyostelium model has a set of features uniquely well-suited to developing our understanding of transcriptional control. The complete Dictyostelium discoideum genome sequence has revealed that many of the molecular components regulating transcription in larger eukaryotes are conserved in Dictyostelium, from transcription factors and chromatin components to the enzymes and signals that regulate them. In addition, the system permits visualization of single gene firing events in living cells, which provides a more detailed view of transcription and its relationships to cell and developmental processes. This review will bring together the available knowledge of the structure and dynamics of the Dictyostelium nucleus and discuss recent transcription imaging studies and their implications for stability and accuracy of cell decisions.
Collapse
Affiliation(s)
- Michelle Stevense
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
23
|
Krauss V, Reuter G. DNA methylation in Drosophila--a critical evaluation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:177-91. [PMID: 21507351 DOI: 10.1016/b978-0-12-387685-0.00003-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drosophila belongs to the so-called "Dnmt2 only" organisms, and does not contain any of the canonical DNA methyltransferases (Dnmt1 and Dnmt3). Furthermore, no functional homologs of known 5-methylcytosine reader proteins are found. Nevertheless, there is strong evidence for DNA methylation in this organism. It has been suggested that DNA methylation in Drosophila is simply a byproduct of Dnmt2, which is a DNA methyltransferase (Dnmt) according to structure and type of catalysis but functions in vivo as a tRNA methyltransferase. However, concerning the very specific timing of cytosine methylation in Drosophila, their suggested functions in control of retrotransposon silencing and genome stability, and the obvious DNA methylation activity of Dnmt2 enzymes in the protozoans Dictyostelium discoideum and Entamoeba histolytica, we tend to disagree with this notation. Dnmt2 probably serves, and not only in Drosophila, as a methyltransferase of both specific DNA and tRNA targets.
Collapse
Affiliation(s)
- Veiko Krauss
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg, Halle/S, Germany
| | | |
Collapse
|
24
|
Tovy A, Hofmann B, Helm M, Ankri S. In vitro tRNA methylation assay with the Entamoeba histolytica DNA and tRNA methyltransferase Dnmt2 (Ehmeth) enzyme. J Vis Exp 2010:2390. [PMID: 21048666 DOI: 10.3791/2390] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Protozoan parasites are among the most devastating infectious agents of humans responsible for a variety of diseases including amebiasis, which is one of the three most common causes of death from parasitic disease. The agent of amebiasis is the amoeba parasite Entamoeba histolytica that exists under two stages: the infective cyst found in food or water and the invasive trophozoite living in the intestine. The clinical manifestations of amebiasis range from being asymptomatic to colitis, dysentery or liver abscesses. E. histolytica is one of the rare unicellular parasite with 5-methylcytosine (5mC) in its genome. It contains a single DNA methyltransferase, Ehmeth, that belongs to the Dnmt2 family. A role for Dnmt2 in the control of repetitive elements has been established in E. histolytica, Dictyostelium discoideum and Drosophila. Our recent work has shown that Ehmeth methylates tRNA(Asp), and this finding indicates that this enzyme has a dual DNA/tRNA(Asp) methyltransferase activity. This observation is in agreement with the dual activity that has been reported for D. discoideum and D. melanogaster. The functional significance of the DNA/tRNA specificity of Dnmt2 enzymes is still unknown. To address this question, a method to determine the tRNA methyltransferase activity of Dnmt2 proteins was established. In this video, we describe a straightforward approach to prepare an adequate tRNA substrate for Dnmt2 and a method to measure its tRNA methyltransferase activity.
Collapse
Affiliation(s)
- Ayala Tovy
- Faculty of Medicine, Rappaport Institute, Technion - Israel Institute of Technology
| | | | | | | |
Collapse
|
25
|
Song Y, Wu K, Dhaubhadel S, An L, Tian L. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity. Biochem Biophys Res Commun 2010; 396:187-92. [PMID: 20331964 DOI: 10.1016/j.bbrc.2010.03.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 11/18/2022]
Abstract
DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.
Collapse
Affiliation(s)
- Yuan Song
- Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | |
Collapse
|
26
|
Schaefer M, Lyko F. Solving the Dnmt2 enigma. Chromosoma 2010; 119:35-40. [PMID: 19730874 DOI: 10.1007/s00412-009-0240-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 12/23/2022]
Abstract
Dnmt2 is a member of the animal DNA methyltransferase family of enzymes. While the role of other Dnmt proteins has been extensively characterized, comparably little is known about Dnmt2. This is surprising because Dnmt2 is the most widely conserved Dnmt protein, with homologues in protists, plants, fungi, and animals. In this review, we discuss the evidence supporting the seemingly contradictory roles of Dnmt2 in both DNA and RNA methylation. New studies are uncovering the enzymatic mechanisms that mediate these activities and also provide first insights into the biological functions of Dnmt2. Lastly, we also discuss observations that suggest a possible role for Dnmt2 in human health and disease, which further emphasizes the importance of defining Dnmt2-modulated cellular pathways in future studies.
Collapse
Affiliation(s)
- Matthias Schaefer
- Division of Epigenetics, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
27
|
Muramoto T, Müller I, Thomas G, Melvin A, Chubb JR. Methylation of H3K4 Is required for inheritance of active transcriptional states. Curr Biol 2010; 20:397-406. [PMID: 20188556 DOI: 10.1016/j.cub.2010.01.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/12/2009] [Accepted: 01/05/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Maintenance of differentiation programs requires stability, when appropriate, of transcriptional states. However, the extent to which inheritance of active transcriptional states occurs from mother to daughter cells has not been directly addressed in unperturbed cell populations. RESULTS By live imaging of single-gene transcriptional events in individual cells, we have directly recorded the potential for mitotic inheritance of transcriptional states down cell lineages. Our data showed strong similarity in frequency of transcriptional firing between mother and daughter cells. This memory persisted for complete cell cycles. Both transcriptional pulse length and pulsing rate contributed to overall inheritance, and memory was determined by lineage, not cell environment. Analysis of transcription in chromatin mutants demonstrated that the histone H3K4 methylase Set1 and Ash2, a component of the methylase complex, are required for memory. The effects of Set1 methylation may be mediated directly by chromatin, because loss of memory also occurred when endogenous H3K4 was replaced by alanine. Although methylated H3K4 is usually associated with active transcriptional units, the modification was not required for gene activity but stabilized transcriptional frequency between generations. CONCLUSIONS Our data indicate that methylated H3K4 can act as a chromatin mark reflecting the original meaning of "epigenetic."
Collapse
Affiliation(s)
- Tetsuya Muramoto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | |
Collapse
|
28
|
Khare A, Shaulsky G. Cheating by exploitation of developmental prestalk patterning in Dictyostelium discoideum. PLoS Genet 2010; 6:e1000854. [PMID: 20195510 PMCID: PMC2829058 DOI: 10.1371/journal.pgen.1000854] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/23/2010] [Indexed: 11/25/2022] Open
Abstract
The cooperative developmental system of the social amoeba Dictyostelium discoideum is susceptible to exploitation by cheaters—strains that make more than their fair share of spores in chimerae. Laboratory screens in Dictyostelium have shown that the genetic potential for facultative cheating is high, and field surveys have shown that cheaters are abundant in nature, but the cheating mechanisms are largely unknown. Here we describe cheater C (chtC), a strong facultative cheater mutant that cheats by affecting prestalk differentiation. The chtC gene is developmentally regulated and its mRNA becomes stalk-enriched at the end of development. chtC mutants are defective in maintaining the prestalk cell fate as some of their prestalk cells transdifferentiate into prespore cells, but that defect does not affect gross developmental morphology or sporulation efficiency. In chimerae between wild-type and chtC mutant cells, the wild-type cells preferentially give rise to prestalk cells, and the chtC mutants increase their representation in the spore mass. Mixing chtC mutants with other cell-type proportioning mutants revealed that the cheating is directly related to the prestalk-differentiation propensity of the victim. These findings illustrate that a cheater can victimize cooperative strains by exploiting an established developmental pathway. Cooperative systems are susceptible to exploitation by cheaters who enjoy the benefits of cooperation without paying the costs. Such conflict is seen in biological systems at every level from individual genes within a cell to individuals within societies. The social amoebae Dictyostelium discoideum have a unique cooperative system in which large numbers of individual cells aggregate to form fruiting bodies with reproductive spores, and dead stalk cells that may help the survival and dispersal of the spores. Fruiting bodies can contain several genotypes, and hence can be exploited by cheater cells that preferentially form spores without contributing fairly to the stalk. We have studied a mutant, cheater C (chtC), which is defective in forming certain stalk cells, but is still able to form fruiting bodies on its own. However, when wild-type cells are mixed with chtC cells, the wild-type cells compensate for the stalk-forming defect of chtC and form more of the stalk cells. In that way, chtC cells cheat by taking advantage of developmental processes that normally regulate cell-type proportions. This study shows that existing mechanisms of developmental regulation can be exploited by cheater mutants, and the social amoebae offer a good system to study such mechanisms.
Collapse
Affiliation(s)
- Anupama Khare
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Tovy A, Siman Tov R, Gaentzsch R, Helm M, Ankri S. A new nuclear function of the Entamoeba histolytica glycolytic enzyme enolase: the metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2) activity. PLoS Pathog 2010; 6:e1000775. [PMID: 20174608 PMCID: PMC2824750 DOI: 10.1371/journal.ppat.1000775] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/18/2010] [Indexed: 12/27/2022] Open
Abstract
Cytosine-5 methyltransferases of the Dnmt2 family function as DNA and tRNA methyltransferases. Insight into the role and biological significance of Dnmt2 is greatly hampered by a lack of knowledge about its protein interactions. In this report, we address the subject of protein interaction by identifying enolase through a yeast two-hybrid screen as a Dnmt2-binding protein. Enolase, which is known to catalyze the conversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP), was shown to have both a cytoplasmatic and a nuclear localization in the parasite Entamoeba histolytica. We discovered that enolase acts as a Dnmt2 inhibitor. This unexpected inhibitory activity was antagonized by 2-PG, which suggests that glucose metabolism controls the non-glycolytic function of enolase. Interestingly, glucose starvation drives enolase to accumulate within the nucleus, which in turn leads to the formation of additional enolase-E.histolytica DNMT2 homolog (Ehmeth) complex, and to a significant reduction of the tRNA(Asp) methylation in the parasite. The crucial role of enolase as a Dnmt2 inhibitor was also demonstrated in E.histolytica expressing a nuclear localization signal (NLS)-fused-enolase. These results establish enolase as the first Dnmt2 interacting protein, and highlight an unexpected role of a glycolytic enzyme in the modulation of Dnmt2 activity.
Collapse
Affiliation(s)
- Ayala Tovy
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Rama Siman Tov
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ricarda Gaentzsch
- Department of Chemistry, The Pharmacy and Molecular Biotechnology Institute, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Mark Helm
- Department of Chemistry, The Pharmacy and Molecular Biotechnology Institute, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
- The Pharmacy and Biochemistry Institute, Johannes Gutenberg University, Mainz, Germany
| | - Serge Ankri
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
- * E-mail:
| |
Collapse
|
30
|
Mujumdar N, Inouye K, Nanjundiah V. The trishanku gene and terminal morphogenesis in Dictyostelium discoideum. Evol Dev 2010; 11:697-709. [PMID: 19878291 DOI: 10.1111/j.1525-142x.2009.00377.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicellular development in the social amoeba Dictyostelium discoideum is triggered by starvation. It involves a series of morphogenetic movements, among them being the rising of the spore mass to the tip of the stalk. The process requires precise coordination between two distinct cell types-presumptive (pre-) spore cells and presumptive (pre-) stalk cells. Trishanku (triA) is a gene expressed in prespore cells that is required for normal morphogenesis. The triA(-) mutant shows pleiotropic effects that include an inability of the spore mass to go all the way to the top. We have examined the cellular behavior required for the normal ascent of the spore mass. Grafting and mixing experiments carried out with tissue fragments and cells show that the upper cup, a tissue that derives from prestalk cells and anterior-like cells (ALCs), does not develop properly in a triA(-) background. A mutant upper cup is unable to lift the spore mass to the top of the fruiting body, likely due to defective intercellular adhesion. If wild-type upper cup function is provided by prestalk and ALCs, trishanku spores ascend all the way. Conversely, Ax2 spores fail to do so in chimeras in which the upper cup is largely made up of mutant cells. Besides proving that under these conditions the wild-type phenotype of the upper cup is necessary and sufficient for terminal morphogenesis in D. discoideum, this study provides novel insights into developmental and evolutionary aspects of morphogenesis in general. Genes that are active exclusively in one cell type can elicit behavior in a second cell type that enhances the reproductive fitness of the first cell type, thereby showing that morphogenesis is a cooperative process.
Collapse
Affiliation(s)
- Nameeta Mujumdar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
31
|
Mazin AL. Suicidal function of DNA methylation in age-related genome disintegration. Ageing Res Rev 2009; 8:314-27. [PMID: 19464391 DOI: 10.1016/j.arr.2009.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
This article is dedicated to the 60th anniversary of 5-methylcytosine discovery in DNA. Cytosine methylation can affect genetic and epigenetic processes, works as a part of the genome-defense system and has mutagenic activity; however, the biological functions of this enzymatic modification are not well understood. This review will put forward the hypothesis that the host-defense role of DNA methylation in silencing and mutational destroying of retroviruses and other intragenomic parasites was extended during evolution to most host genes that have to be inactivated in differentiated somatic cells, where it acquired a new function in age-related self-destruction of the genome. The proposed model considers DNA methylation as the generator of 5mC>T transitions that induce 40-70% of all spontaneous somatic mutations of the multiple classes at CpG and CpNpG sites and flanking nucleotides in the p53, FIX, hprt, gpt human genes and some transgenes. The accumulation of 5mC-dependent mutations explains: global changes in the structure of the vertebrate genome throughout evolution; the loss of most 5mC from the DNA of various species over their lifespan and the Hayflick limit of normal cells; the polymorphism of methylation sites, including asymmetric mCpNpN sites; cyclical changes of methylation and demethylation in genes. The suicidal function of methylation may be a special genetic mechanism for increasing DNA damage and the programmed genome disintegration responsible for cell apoptosis and organism aging and death.
Collapse
|
32
|
Khare A, Santorelli LA, Strassmann JE, Queller DC, Kuspa A, Shaulsky G. Cheater-resistance is not futile. Nature 2009; 461:980-2. [PMID: 19794414 DOI: 10.1038/nature08472] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/03/2009] [Indexed: 11/09/2022]
|
33
|
Lavi T, Siman-Tov R, Ankri S. Insights into the mechanism of DNA recognition by the methylated LINE binding protein EhMLBP of Entamoeba histolytica. Mol Biochem Parasitol 2009; 166:117-25. [DOI: 10.1016/j.molbiopara.2009.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/28/2022]
|
34
|
Braunschweig MH. Quantification of global DNA methylation with infrared fluorescence in liver and muscle tissues of differentially fed boars. LUMINESCENCE 2009; 24:213-6. [DOI: 10.1002/bio.1098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Abstract
How apicomplexan parasites regulate their gene expression is poorly understood. The complex life cycle of these parasites implies tight control of gene expression to orchestrate the appropriate expression pattern at the right moment. Recently, several studies have demonstrated the role of epigenetic mechanisms for control of coordinated expression of genes. In this review, we discuss the contribution of epigenomics to the understanding of gene regulation in Toxoplasma gondii. Studying the distribution of modified histones on the genome links chromatin modifications to gene expression or gene repression. In particular, coincident trimethylated lysine 4 on histone H3 (H3K4me3), acetylated lysine 9 on histone H3 (H3K9ac), and acetylated histone H4 (H4ac) mark promoters of actively transcribed genes. However, the presence of these modified histones at some non-expressed genes and other histone modifications at only a subset of active promoters implies the presence of other layers of regulation of chromatin structure in T. gondii. Epigenomics analysis provides a powerful tool to characterize the activation state of genomic loci of T. gondii and possibly of other Apicomplexa including Plasmodium or Cryptosporidium. Further, integration of epigenetic data with expression data and other genome-wide datasets facilitates refinement of genome annotation based upon experimental data.
Collapse
Affiliation(s)
- Mathieu Gissot
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
36
|
Abstract
It is currently unclear if there are modified DNA bases in Trypanosoma brucei other than J-base. We identify herein a cytosine-5 DNA methyltransferase gene and report the presence and location of 5-methylcytosine in genomic DNA. Our data demonstrate that African trypanosomes contain a functional cytosine DNA methylation pathway.
Collapse
|
37
|
Shao WJ, Tao LY, Gao C, Xie JY, Zhao RQ. Alterations in methylation and expression levels of imprinted genes H19 and Igf2 in the fetuses of diabetic mice. Comp Med 2008; 58:341-346. [PMID: 18724775 PMCID: PMC2706039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/07/2007] [Accepted: 01/09/2008] [Indexed: 05/26/2023]
Abstract
The study aimed to reveal alterations in expression and methylation levels of the growth-related imprinted genes H19 and Igf2 in fetuses of diabetic mice. Diabetes was induced in female mice by intraperitoneal injection of streptozotocin. DNA and total RNA were extracted from fetuses obtained from diabetic and control dams on embryonic day (E) 14. Real-time RT-PCR analysis revealed that the mRNA expression of Igf2 in fetuses from diabetic mice was 0.65-fold of the control counterparts. Bisulfite genomic sequencing demonstrated that the methylation level of the H19-Igf2 imprint control region was 19.1% higher in diabetic fetuses than in those of control dams. In addition, the body weight of pups born to diabetic dams was 26.5% lower than that of the control group. The results indicate that maternal diabetes can affect fetal development by means of altered expression of imprinted genes. The modified genomic DNA methylation status of imprinting genes may account for the change in gene expression.
Collapse
Affiliation(s)
- Wei-Juan Shao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | - Ling-Yun Tao
- Shanghai Laboratory Animal Research Center, Shanghai, PR China
| | - Cheng Gao
- Shanghai Laboratory Animal Research Center, Shanghai, PR China
| | - Jian-Yun Xie
- Shanghai Laboratory Animal Research Center, Shanghai, PR China
| | - Ru-Qian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
38
|
Harony H, Ankri S. What do unicellular organisms teach us about DNA methylation? Trends Parasitol 2008; 24:205-9. [PMID: 18403268 DOI: 10.1016/j.pt.2008.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 02/01/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
DNA methylation is an epigenetic hallmark that has been studied intensively in mammals and plants. However, knowledge of this phenomenon in unicellular organisms is scanty. Examining epigenetic regulation, and more specifically DNA methylation, in these organisms represents a unique opportunity to better understand their biology. The determination of their methylation status is often complicated by the presence of several differentiation stages in their life cycle. This article focuses on some recent advances that have revealed the unexpected nature of the epigenetic determinants present in protozoa. The role of the enigmatic DNA methyltransferase Dnmt2 in unicellular organisms is discussed.
Collapse
Affiliation(s)
- Hala Harony
- Department of Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, the Rappaport Institute, 31096 Haifa, Israel
| | | |
Collapse
|
39
|
MacKay AB, Mhanni AA, McGowan RA, Krone PH. Immunological detection of changes in genomic DNA methylation during early zebrafish development. Genome 2008; 50:778-85. [PMID: 17893737 DOI: 10.1139/g07-055] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA methylation reprogramming, the erasure of DNA methylation patterns shortly after fertilization and their reestablishment during subsequent early development, is essential for proper mammalian embryogenesis. In contrast, the importance of this process in the development of non-mammalian vertebrates such as fish is less clear. Indeed, whether or not any widespread changes in DNA methylation occur at all during cleavage and blastula stages of fish in a fashion similar to that shown in mammals has remained controversial. Here we have addressed this issue by applying the techniques of Southwestern immunoblotting and immunohistochemistry with an anti-5-methylcytosine antibody to the examination of DNA methylation in early zebrafish embryos. These techniques have recently been utilized to demonstrate that development-specific changes in genomic DNA methylation also occur in Drosophila melanogaster and Dictyostelium discoideum, both organisms for which DNA methylation was previously not thought to occur. Our data demonstrate that genome-wide changes in DNA methylation occur during early zebrafish development. Although zebrafish sperm DNA is strongly methylated, the zebrafish genome is not detectably methylated through cleavage and early blastula stages but is heavily remethylated in blastula and early gastrula stages.
Collapse
Affiliation(s)
- Amy B MacKay
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
40
|
Toxoplasma gondii and Cryptosporidium parvum lack detectable DNA cytosine methylation. EUKARYOTIC CELL 2008; 7:537-40. [PMID: 18178772 DOI: 10.1128/ec.00448-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epigenetic factors play a role in the expression of virulence traits in Apicomplexa. Apicomplexan genomes encode putative DNA cytosine methylation enzymes. To assess the presence of cytosine methylation of Toxoplasma gondii and Cryptosporidium parvum DNA, we used mass spectrometry analysis and confirmed that these organisms lack detectable methylcytosine in their DNA.
Collapse
|
41
|
Feng CZ, Ding X, Li Y, Chen S, Yang F, Yang WJ. The DNA Methyltransferase-2 Gene in the Prawn Macrobrachium rosenbergii: Characteristics and Expression Patterns During Ovarian and Embryonic Development. Zoolog Sci 2007; 24:1059-65. [DOI: 10.2108/zsj.24.1059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Accepted: 06/19/2007] [Indexed: 11/17/2022]
|
42
|
Díaz-Castillo C, Golic KG. Evolution of gene sequence in response to chromosomal location. Genetics 2007; 177:359-74. [PMID: 17890366 PMCID: PMC2013720 DOI: 10.1534/genetics.107.077081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/06/2007] [Indexed: 12/26/2022] Open
Abstract
Evolutionary forces acting on the repetitive DNA of heterochromatin are not constrained by the same considerations that apply to protein-coding genes. Consequently, such sequences are subject to rapid evolutionary change. By examining the Troponin C gene family of Drosophila melanogaster, which has euchromatic and heterochromatic members, we find that protein-coding genes also evolve in response to their chromosomal location. The heterochromatic members of the family show a reduced CG content and increased variation in DNA sequence. We show that the CG reduction applies broadly to the protein-coding sequences of genes located at the heterochromatin:euchromatin interface, with a very strong correlation between CG content and the distance from centric heterochromatin. We also observe a similar trend in the transition from telomeric heterochromatin to euchromatin. We propose that the methylation of DNA is one of the forces driving this sequence evolution.
Collapse
|
43
|
Hinas A, Söderbom F. Treasure hunt in an amoeba: non-coding RNAs in Dictyostelium discoideum. Curr Genet 2007; 51:141-59. [PMID: 17171561 DOI: 10.1007/s00294-006-0112-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 11/22/2006] [Accepted: 11/23/2006] [Indexed: 12/20/2022]
Abstract
The traditional view of RNA being merely an intermediate in the transfer of genetic information, as mRNA, spliceosomal RNA, tRNA, and rRNA, has become outdated. The recent discovery of numerous regulatory RNAs with a plethora of functions in biological processes has truly revolutionized our understanding of gene regulation. Tiny RNAs such as microRNAs and small interfering RNAs play vital roles at different levels of gene control. Small nucleolar RNAs are much more abundant than previously recognized, and new functions beyond processing and modification of rRNA have recently emerged. Longer non-coding RNAs (ncRNAs) can also have important regulatory roles in the cell, e.g., antisense RNAs that control their target mRNAs. The majority of these important findings arose from analyses in various model organisms. In this review, we focus on ncRNAs in the social amoeba Dictyostelium discoideum. This important genetically tractable model organism has recently received renewed attention in terms of discovery, regulation and functional studies of ncRNAs. Old and recent findings are discussed and put in context of what we today know about ncRNAs in other organisms.
Collapse
Affiliation(s)
- Andrea Hinas
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Box 590, 75124 Uppsala, Sweden
| | | |
Collapse
|
44
|
Feng CZ, Zhu XJ, Dai ZM, Liu FQ, Xiang JH, Yang WJ. Identification of a novel DNA methyltransferase 2 from the brine shrimp, Artemia franciscana. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:191-8. [PMID: 17400496 DOI: 10.1016/j.cbpb.2007.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 01/07/2007] [Accepted: 01/11/2007] [Indexed: 01/16/2023]
Abstract
DNA methyltransferase 2 (Dnmt2) is a dual-specificity DNA methyltransferase, which contains a weak DNA methyltransferase and novel tRNA methyltransferase activity. However, its biological function is still enigmatic. To elucidate the expression profiles of Dnmt2 in Artemia franciscana, we isolated the gene encoding a Dnmt2 from A. franciscana and named it as AfDnmt2. The cDNA of AfDnmt2 contained a 1140-bp open reading frame that encoded a putative Dnmt2 protein of 379 amino acids exhibiting 32% approximately 39% identities with other known Dnmt2 homologs. This is the first report of a DNA methyltransferase gene in Crustacean. By using semi-quantitative RT-PCR, AfDnmt2 was found to be expressed through all developmental stages and its expression increased during resumption of diapause cysts development. Southern blot analysis indicated the presence of multiple copies of AfDnmt2 genes in A. franciscana.
Collapse
Affiliation(s)
- Chen-Zhuo Feng
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang 310058, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Rai K, Chidester S, Zavala CV, Manos EJ, James SR, Karpf AR, Jones DA, Cairns BR. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev 2007; 21:261-6. [PMID: 17289917 PMCID: PMC1785123 DOI: 10.1101/gad.1472907] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 12/22/2006] [Indexed: 11/24/2022]
Abstract
The roles of DNA methyltransferase-2 (DNMT2) enzymes are controversial; whether DNMT2 functions primarily as a nuclear DNA methyltransferase or as a cytoplasmic tRNA methyltransferase, and whether DNMT2 activity impacts development, as dnmt2 mutant mice or Drosophila lack phenotypes. Here we show that morpholino knockdown of Dnmt2 protein in zebrafish embryos confers differentiation defects in particular organs, including the retina, liver, and brain. Importantly, proper organ differentiation required Dnmt2 activity in the cytoplasm, not in the nucleus. Furthermore, zebrafish Dnmt2 methylates an RNA species of approximately 80 bases, consistent with tRNA methylation. Thus, Dnmt2 promotes zebrafish development, likely through cytoplasmic RNA methylation.
Collapse
Affiliation(s)
- Kunal Rai
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Stephanie Chidester
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Chad V. Zavala
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Elizabeth J. Manos
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Smitha R. James
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA
| | - Adam R. Karpf
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA
| | - David A. Jones
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bradley R. Cairns
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
46
|
Growth of the protozoan parasite Entamoeba histolytica in 5-azacytidine has limited effects on parasite gene expression. BMC Genomics 2007; 8:7. [PMID: 17207281 PMCID: PMC1779778 DOI: 10.1186/1471-2164-8-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/05/2007] [Indexed: 12/28/2022] Open
Abstract
Background In higher eukaryotes DNA methylation regulates important biological functions including silencing of gene expression and protection from adverse effects of retrotransposons. In the protozoan parasite Entamoeba histolytica, a DNA methyltransferase has been identified and treatment with 5-azacytidine (5-AzaC), a potent inhibitor of DNA methyltransferase, has been reported to attenuate parasite virulence. However, the overall extent of DNA methylation and its subsequent effects on global gene expression in this parasite are currently unknown. Results In order to identify the genome-wide effects of DNA methylation in E. histolytica, we used a short oligonucleotide microarray representing 9,435 genes (~95% of all annotated amebic genes) and compared the expression profile of E. histolytica HM-1:IMSS parasites with those treated with 23 μM 5-AzaC for up to one week. Overall, 2.1% of genes tested were transcriptionally modulated under these conditions. 68 genes were upregulated and 131 genes down regulated (2-fold change; p-value < 0.05). Sodium-bisulfite treatment and sequencing of genes indicated that there were at least two subsets of genes with genomic DNA methylation in E. histolytica: (i) genes that were endogenously silenced by genomic DNA methylation and for which 5-AzaC treatment induced transcriptional de-repression, and (ii) genes that have genomic DNA methylation, but which were not endogenously silenced by the methylation. We identified among the genes down regulated by 5-AzaC treatment a cysteine proteinase (2.m00545) and lysozyme (52.m00148) both of which have known roles in amebic pathogenesis. Decreased expression of these genes in the 5-AzaC treated E. histolytica may account in part for the parasites reduced cytolytic abilities. Conclusion This work represents the first genome-wide analysis of DNA-methylation in Entamoeba histolytica and indicates that DNA methylation has relatively limited effects on gene expression in this parasite.
Collapse
|
47
|
Lavi T, Isakov E, Harony H, Fisher O, Siman-Tov R, Ankri S. Sensing DNA methylation in the protozoan parasite Entamoeba histolytica. Mol Microbiol 2006; 62:1373-86. [PMID: 17059565 DOI: 10.1111/j.1365-2958.2006.05464.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the protozoan parasite Entamoeba histolytica, 5-methylcytosine (m5C) was found predominantly in repetitive elements. Its formation is catalysed by Ehmeth, a DNA methyltransferase that belongs to the Dnmt2 subfamily. Here we describe a 32 kDa nuclear protein that binds in vitro with higher affinity to the methylated form of a DNA encoding a reverse transcriptase of an autonomous non-long-terminal repeat retrotransposon (RT LINE) compared with the non-methylated RT LINE. This protein, named E. histolytica-methylated LINE binding protein (EhMLBP), was purified from E. histolytica nuclear lysate, identified by mass spectrometry, and its corresponding gene was cloned. EhMLBP corresponds to a gene of unknown function that shares strong homology with putative proteins present in Entamoeba dispar and Entamoeba invadens. In contrast, the homology dropped dramatically when non-Entamoebidae sequences were considered and only a weak sequence identity was found with Trypanosoma and several prokaryotic histone H1. Recombinant EhMLBP showed the same binding preference for methylated RT LINE as the endogenous EhMLBP. Deletion mapping analysis localized the DNA binding region at the C-terminal part of the protein. This region is sufficient to assure the binding to methylated RT LINE with high affinity. Western blot and immunofluorescence microscopy, using an antibody raised against EhMLBP, showed that it has a nuclear localization. Chromatin immunoprecipitation (ChIP) confirmed that EhMLBP interacts with RT LINE in vivo. Finally, we showed that EhMLBP can also bind rDNA episome, a DNA that is methylated in the parasite. This suggests that EhMLBP may serve as a sensor of methylated repetitive DNA. This is the first report of a DNA-methylated binding activity in protozoa.
Collapse
Affiliation(s)
- Tal Lavi
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Israel
| | | | | | | | | | | |
Collapse
|
48
|
Jeltsch A, Nellen W, Lyko F. Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 2006; 31:306-8. [PMID: 16679017 DOI: 10.1016/j.tibs.2006.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/13/2006] [Accepted: 04/24/2006] [Indexed: 12/31/2022]
Abstract
Dnmt2 enzymes have been widely conserved during evolution and contain all of the signature motifs of DNA (cytosine-5)-methyltransferases; however, the DNA methyltransferase activity of these proteins is comparatively weak and their biochemical and functional properties remain enigmatic. Recent evidence now shows that Dnmt2 has a novel tRNA methyltransferase activity, raising the possibility that the biological roles of these proteins might be broader than previously thought. This finding has important implications for understanding the evolutionary relationships among these enzymes.
Collapse
Affiliation(s)
- Albert Jeltsch
- School of Engineering and Science, International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
49
|
Harony H, Bernes S, Siman-Tov R, Ankri S. DNA methylation and targeting of LINE retrotransposons in Entamoeba histolytica and Entamoeba invadens. Mol Biochem Parasitol 2006; 147:55-63. [PMID: 16530279 DOI: 10.1016/j.molbiopara.2006.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 01/25/2006] [Accepted: 02/03/2006] [Indexed: 10/25/2022]
Abstract
In this study, we have isolated by affinity chromatography, using anti-m5C antibody as a ligand, a DNA encoding reverse transcriptase of LINE retrotransposon (RT LINE) in both Entamoeba invadens and Entamoeba histolytica. RT LINE transcripts were detected in E. histolytica but were absent from E. invadens. The methylation status of genomic copies of E. invadens RT LINE was confirmed by bisulfite analysis. In contrast, all the genomic copies of the E. histolytica RT LINE analyzed in this study were not methylated. Many of these genomic copies diverge from the RT LINE isolated by m5C affinity chromatography by a number of mutations that includes conversion of C to T and G to A. These mutations are reminiscent of the conversion of C to T (and G to A on the complementary DNA strand) that occurred during primate evolution in Alu elements following accelerated deamination of methylated cytosines. E. invadens and E. histolytica RT LINEs isolated by affinity chromatography were cloned in a pEhAct Neo vector, amplified in E. coli GM2163 (dam-dcm) and transformed into E. histolytica. Bisulfite analysis of transfected amoeba showed the presence of m5C in E. invadens RT LINE replicated in E. histolytica, but not in E. histolytica RT LINE or in the neomycine phosphotransferase gene, which is also carried by the pEhAct Neo vector. These results suggest the existence of a specific mechanism based on DNA methylation that controls retrotransposons in these parasites.
Collapse
Affiliation(s)
- Hala Harony
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, 31096 Haifa, Israel
| | | | | | | |
Collapse
|