1
|
Lin WH, Opoc FG, Liao CW, Roy K, Steinmetz L, Leu JY. Histone deacetylase Hos2 regulates protein expression noise by potentially modulating the protein translation machinery. Nucleic Acids Res 2024; 52:7556-7571. [PMID: 38783136 PMCID: PMC11260488 DOI: 10.1093/nar/gkae432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Non-genetic variations derived from expression noise at transcript or protein levels can result in cell-to-cell heterogeneity within an isogenic population. Although cells have developed strategies to reduce noise in some cellular functions, this heterogeneity can also facilitate varying levels of regulation and provide evolutionary benefits in specific environments. Despite several general characteristics of cellular noise having been revealed, the detailed molecular pathways underlying noise regulation remain elusive. Here, we established a dual-fluorescent reporter system in Saccharomyces cerevisiae and performed experimental evolution to search for mutations that increase expression noise. By analyzing evolved cells using bulk segregant analysis coupled with whole-genome sequencing, we identified the histone deacetylase Hos2 as a negative noise regulator. A hos2 mutant down-regulated multiple ribosomal protein genes and exhibited partially compromised protein translation, indicating that Hos2 may regulate protein expression noise by modulating the translation machinery. Treating cells with translation inhibitors or introducing mutations into several Hos2-regulated ribosomal protein genes-RPS9A, RPS28B and RPL42A-enhanced protein expression noise. Our study provides an effective strategy for identifying noise regulators and also sheds light on how cells regulate non-genetic variation through protein translation.
Collapse
Affiliation(s)
- Wei-Han Lin
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Florica J G Opoc
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kevin R Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Jun-Yi Leu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
2
|
Fan C, Yuan J. Reshaping the yeast galactose regulon via GPCR signaling cascade. CELL REPORTS METHODS 2023; 3:100647. [PMID: 37989311 PMCID: PMC10753199 DOI: 10.1016/j.crmeth.2023.100647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/23/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Dynamically regulated systems are preferable to control metabolic pathways for an improved strain performance with better productivity. Here, we harnessed to the G protein-coupled receptor (GPCR) signaling pathway to reshape the yeast galactose regulon. The galactose-regulated (GAL) system was coupled with the GPCR signaling pathway for mating pheromone via a synthetic transcription factor. In this study, we refabricated the dynamic range, sensitivity, and response time of the GAL system to α factor by modulating the key components of the GPCR signaling cascade. A series of engineered yeasts with self-secretion of α factor were constructed to achieve quorum-sensing behaviors. In addition, we also repurposed the GAL system to make it responsive to heat shock. Taken together, our work showcases the great potential of synthetic biology in creating user-defined metabolic controls. We envision that the plasticity of our genetic design would be of significant interest for the future fabrication of novel gene expression systems.
Collapse
Affiliation(s)
- Cong Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China.
| |
Collapse
|
3
|
Tang J, Sui Z, Li R, Xu Y, Xiang L, Fu S, Wei J, Cai X, Wu M, Zhang J, Chen W, Wei Y, Li G, Yang L. The Gβ-like protein Bcgbl1 regulates development and pathogenicity of the gray mold Botrytis cinerea via modulating two MAP kinase signaling pathways. PLoS Pathog 2023; 19:e1011839. [PMID: 38048363 PMCID: PMC10721196 DOI: 10.1371/journal.ppat.1011839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/14/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The fungal Gβ-like protein has been reported to be involved in a variety of biological processes, such as mycelial growth, differentiation, conidiation, stress responses and infection. However, molecular mechanisms of the Gβ-like protein in regulating fungal development and pathogenicity are largely unknown. Here, we show that the Gβ-like protein gene Bcgbl1 in the gray mold fungus Botrytis cinerea plays a pivotal role in development and pathogenicity by regulating the mitogen-activated protein (MAP) kinases signaling pathways. The Bcgbl1 deletion mutants were defective in mycelial growth, sclerotial formation, conidiation, macroconidial morphogenesis, plant adhesion, and formation of infection cushions and appressorium-like structures, resulting in a complete loss of pathogenicity. Bcgbl1 interacted with BcSte50, the adapter protein of the cascade of MAP kinase (MAPK). Bcgbl1 mutants had reduced phosphorylation levels of two MAPKs, namely Bmp1 and Bmp3, thereby reducing infection. However, deletion of Bcgbl1 did not affect the intracellular cAMP level, and exogenous cAMP could not restore the defects. Moreover, Bcgbl1 mutants exhibited defects in cell wall integrity and oxidative stress tolerance. Transcriptional profiling revealed that Bcgbl1 plays a global role in regulation of gene expression upon hydrophobic surface induction. We further uncovered that three target genes encoding the hydrophobic surface binding proteins (HsbAs) contributed to the adhesion and virulence of B. cinerea. Overall, these findings suggest that Bcgbl1 had multiple functions and provided new insights for deciphering the Bcgbl1-mediated network for regulating development and pathogenicity of B. cinerea.
Collapse
Affiliation(s)
- Jiejing Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhe Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ronghui Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuping Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lixuan Xiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiying Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- U.S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington, United States of America
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Simke WC, Johnson CP, Hart AJ, Mayhue S, Craig PL, Sojka S, Kelley JB. Phosphorylation of RGS regulates MAP kinase localization and promotes completion of cytokinesis. Life Sci Alliance 2022; 5:5/10/e202101245. [PMID: 35985794 PMCID: PMC9394524 DOI: 10.26508/lsa.202101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphorylation of the RGS Sst2 alters its subcellular distribution, MAPK localization, and interaction with Kel1, which promotes coordination of polarized growth with completion of cytokinesis. Yeast use the G-protein–coupled receptor signaling pathway to detect and track the mating pheromone. The G-protein–coupled receptor pathway is inhibited by the regulator of G-protein signaling (RGS) Sst2 which induces Gα GTPase activity and inactivation of downstream signaling. G-protein signaling activates the MAPK Fus3, which phosphorylates the RGS; however, the role of this modification is unknown. We found that pheromone-induced RGS phosphorylation peaks early; the phospho-state of RGS controls its localization and influences MAPK spatial distribution. Surprisingly, phosphorylation of the RGS promotes completion of cytokinesis before pheromone-induced growth. Completion of cytokinesis in the presence of pheromone is promoted by the kelch-repeat protein, Kel1 and antagonized by the formin Bni1. We found that RGS complexes with Kel1 and prefers the unphosphorylatable RGS mutant. We also found overexpression of unphosphorylatable RGS exacerbates cytokinetic defects, whereas they are rescued by overexpression of Kel1. These data lead us to a model where Kel1 promotes completion of cytokinesis before pheromone-induced polarity but is inhibited by unphosphorylated RGS binding.
Collapse
Affiliation(s)
- William C Simke
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Cory P Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Andrew J Hart
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Sari Mayhue
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - P Lucas Craig
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Savannah Sojka
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA .,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
5
|
Gan T, An H, Tang M, Chen H. Phylogeny of Regulators of G-Protein Signaling Genes in Leptographium qinlingensis and Expression Levels of Three RGSs in Response to Different Terpenoids. Microorganisms 2022; 10:microorganisms10091698. [PMID: 36144299 PMCID: PMC9506272 DOI: 10.3390/microorganisms10091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Leptographium qinlingensis is a bark beetle-vectored pine pathogen in the Chinese white pine beetle (Dendroctonus armandi) epidemic in Northwest China. L. qinlingensis colonizes pines despite the trees’ massive oleoresin terpenoid defenses. Regulators of G-protein signaling (RGS) proteins modulate heterotrimeric G-protein signaling negatively and play multiple roles in the growth, asexual development, and pathogenicity of fungi. In this study, we have identified three L. qinlingensis RGS genes, and the phylogenetic analysis shows the highest homology with the regulators of G-protein signaling proteins sequence from Ophiostoma piceae and Grosmannia clavigera. The expression profiles of three RGSs in the mycelium of L. qinlingensis treated with six different terpenoids were detected, as well as their growth rates. Under six terpenoid treatments, the growth and reproduction in L. qinlingensis were significantly inhibited, and the growth inflection day was delayed from 8 days to 12–13 days. By analyzing the expression level of three RGS genes of L. qinlingensis with different treatments, results indicate that LqFlbA plays a crucial role in controlling fungal growth, and both LqRax1 and LqRgsA are involved in overcoming the host chemical resistances and successful colonization.
Collapse
Affiliation(s)
| | | | | | - Hui Chen
- Correspondence: ; Tel.: +86-135-1911-6730
| |
Collapse
|
6
|
Regulator of G Protein Signaling Contributes to the Development and Aflatoxin Biosynthesis in Aspergillus flavus through the Regulation of Gα Activity. Appl Environ Microbiol 2022; 88:e0024422. [PMID: 35638847 PMCID: PMC9238415 DOI: 10.1128/aem.00244-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterotrimeric G-proteins play crucial roles in growth, asexual development, and pathogenicity of fungi. The regulator of G-protein signaling (RGS) proteins function as negative regulators of the G proteins to control the activities of GTPase in Gα subunits. In this study, we functionally characterized the six RGS proteins (i.e., RgsA, RgsB, RgsC, RgsD, RgsE, and FlbA) in the pathogenic fungus Aspergillus flavus. All the aforementioned RGS proteins were also found to be functionally different in conidiation, aflatoxin (AF) biosynthesis, and pathogenicity in A. flavus. Apart from FlbA, all other RGS proteins play a negative role in regulating both the synthesis of cyclic AMP (cAMP) and the activation of protein kinase A (PKA). Additionally, we also found that although RgsA and RgsE play a negative role in regulating the FadA-cAMP/PKA pathway, they function distinctly in aflatoxin biosynthesis. Similarly, RgsC is important for aflatoxin biosynthesis by negatively regulating the GanA-cAMP/PKA pathway. PkaA, which is the cAMP-dependent protein kinase catalytic subunit, also showed crucial influences on A. flavus phenotypes. Overall, our results demonstrated that RGS proteins play multiple roles in the development, pathogenicity, and AF biosynthesis in A. flavus through the regulation of Gα subunits and cAMP-PKA signals. IMPORTANCE RGS proteins, as crucial regulators of the G protein signaling pathway, are widely distributed in fungi, while little is known about their roles in Aspergillus flavus development and aflatoxin. In this study, we identified six RGS proteins in A. flavus and revealed that these proteins have important functions in the regulation of conidia, sclerotia, and aflatoxin formation. Our findings provide evidence that the RGS proteins function upstream of cAMP-PKA signaling by interacting with the Gα subunits (GanA and FadA). This study provides valuable information for controlling the contamination of A. flavus and mycotoxins produced by this fungus in pre- and postharvest of agricultural crops.
Collapse
|
7
|
Affiliation(s)
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Department of Biology, Institute for Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | |
Collapse
|
8
|
Investigation of Mating Pheromone-Pheromone Receptor Specificity in Lentinula edodes. Genes (Basel) 2020; 11:genes11050506. [PMID: 32375416 PMCID: PMC7288658 DOI: 10.3390/genes11050506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022] Open
Abstract
The B mating-type locus of Lentinula edodes, a representative edible mushroom, is highly complex because of allelic variations in the mating pheromone receptors (RCBs) and the mating pheromones (PHBs) in both the Bα and Bβ subloci. The complexity of the B mating-type locus, five Bα subloci with five alleles of RCB1 and nine PHBs and three Bβ subloci with 3 alleles of RCB2 and five PHBs, has led us to investigate the specificity of the PHB-RCB interaction because the interaction plays a key role in non-self-recognition. In this study, the specificities of PHBs to RCB1-2 and RCB1-4 from the Bα sublocus and RCB2-1 from the Bb sublocus were investigated using recombinant yeast strains generated by replacing STE2, an endogenous yeast mating pheromone receptor, with the L. edodes RCBs. Fourteen synthetic PHBs with C-terminal carboxymethylation but without farnesylation were added to the recombinant yeast cells and the PHB-RCB interaction was monitored by the expression of the FUS1 gene-a downstream gene of the yeast mating signal pathway. RCB1-2 (Bα2) was activated by PHB1 (4.3-fold) and PHB2 (2.1-fold) from the Bα1 sublocus and RCB1-4 (Bα4) was activated by PHB5 (3.0-fold) and PHB6 (2.7-fold) from the Bα2 sublocus and PHB13 (3.0-fold) from the Bα5 sublocus. In particular, PHB3 from Bβ2 and PHB9 from Bβ3 showed strong activation of RCB2-1 of the Bβ1 sublocus by 59-fold. The RCB-PHB interactions were confirmed in the monokaryotic S1-10 strain of L. edodes by showing increased expression of clp1, a downstream gene of the mating signal pathway and the occurrence of clamp connections after the treatment of PHBs. These results indicate that a single PHB can interact with a non-self RCB in a sublocus-specific manner for the activation of the mating pheromone signal pathways in L. edodes.
Collapse
|
9
|
Mitotic and pheromone-specific intrinsic polarization cues interfere with gradient sensing in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2020; 117:6580-6589. [PMID: 32152126 DOI: 10.1073/pnas.1912505117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polarity decisions are central to many processes, including mitosis and chemotropism. In Saccharomyces cerevisiae, budding and mating projection (MP) formation use an overlapping system of cortical landmarks that converges on the small G protein Cdc42. However, pheromone-gradient sensing must override the Rsr1-dependent internal polarity cues used for budding. Using this model system, we asked what happens when intrinsic and extrinsic spatial cues are not aligned. Is there competition, or collaboration? By live-cell microscopy and microfluidics techniques, we uncovered three previously overlooked features of this signaling system. First, the cytokinesis-associated polarization patch serves as a polarity landmark independently of all known cues. Second, the Rax1-Rax2 complex functions as a pheromone-promoted polarity cue in the distal pole of the cells. Third, internal cues remain active during pheromone-gradient tracking and can interfere with this process, biasing the location of MPs. Yeast defective in internal-cue utilization align significantly better than wild type with artificially generated pheromone gradients.
Collapse
|
10
|
Yan H, Shim WB. Characterization of non-canonical G beta-like protein FvGbb2 and its relationship with heterotrimeric G proteins in Fusarium verticillioides. Environ Microbiol 2019; 22:615-628. [PMID: 31760684 DOI: 10.1111/1462-2920.14875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/29/2022]
Abstract
Fusarium verticillioides is a fungal pathogen that is responsible for maize ear rot and stalk rot diseases worldwide. The fungus also produces carcinogenic mycotoxins, fumonisins on infested maize. Unfortunately, we still lack clear understanding of how the pathogen responds to host and environmental stimuli to trigger fumonisin biosynthesis. The heterotrimeric G protein complex, consisting of canonical Gα, Gβ and Gγ subunits, is involved in transducing signals from external stimuli to regulate downstream signal transduction pathways. Previously, we demonstrated that Gβ protein FvGbb1 directly impacts fumonisin regulation but not other physiological aspects in F. verticillioides. In this study, we identified and characterized a RACK1 (Receptor for Activated C Kinase 1) homolog FvGbb2 as a putative Gβ-like protein in F. verticillioides. The mutant exhibited severe defects not only in fumonisin biosynthesis but also vegetative growth and conidiation. FvGbb2 was positively associated with carbon source utilization and stress agents but negatively regulated general amino acid control. While FvGbb2 does not interact with canonical G protein subunits, it may associate with diverse proteins in the cytoplasm to regulate vegetative growth, virulence, fumonisin biosynthesis and stress response in F. verticillioides.
Collapse
Affiliation(s)
- Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
11
|
Acton E, Lee AHY, Zhao PJ, Flibotte S, Neira M, Sinha S, Chiang J, Flaherty P, Nislow C, Giaever G. Comparative functional genomic screens of three yeast deletion collections reveal unexpected effects of genotype in response to diverse stress. Open Biol 2018; 7:rsob.160330. [PMID: 28592509 PMCID: PMC5493772 DOI: 10.1098/rsob.160330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 12/25/2022] Open
Abstract
The Yeast Knockout (YKO) collection has provided a wealth of functional annotations from genome-wide screens. An unintended consequence is that 76% of gene annotations derive from one genotype. The nutritional auxotrophies in the YKO, in particular, have phenotypic consequences. To address this issue, ‘prototrophic’ versions of the YKO collection have been constructed, either by introducing a plasmid carrying wild-type copies of the auxotrophic markers (Plasmid-Borne, PBprot) or by backcrossing (Backcrossed, BCprot) to a wild-type strain. To systematically assess the impact of the auxotrophies, genome-wide fitness profiles of prototrophic and auxotrophic collections were compared across diverse drug and environmental conditions in 250 experiments. Our quantitative profiles uncovered broad impacts of genotype on phenotype for three deletion collections, and revealed genotypic and strain-construction-specific phenotypes. The PBprot collection exhibited fitness defects associated with plasmid maintenance, while BCprot fitness profiles were compromised due to strain loss from nutrient selection steps during strain construction. The repaired prototrophic versions of the YKO collection did not restore wild-type behaviour nor did they clarify gaps in gene annotation resulting from the auxotrophic background. To remove marker bias and expand the experimental scope of deletion libraries, construction of a bona fide prototrophic collection from a wild-type strain will be required.
Collapse
Affiliation(s)
- Erica Acton
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Genome Science and Technology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Huei-Yi Lee
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pei Jun Zhao
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephane Flibotte
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mauricio Neira
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Chiang
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Harrigan P, Madhani HD, El-Samad H. Real-Time Genetic Compensation Defines the Dynamic Demands of Feedback Control. Cell 2018; 175:877-886.e10. [PMID: 30340045 PMCID: PMC6258208 DOI: 10.1016/j.cell.2018.09.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/11/2018] [Accepted: 09/19/2018] [Indexed: 01/14/2023]
Abstract
Biological signaling networks use feedback control to dynamically adjust their operation in real time. Traditional static genetic methods such as gene knockouts or rescue experiments can often identify the existence of feedback interactions but are unable to determine what feedback dynamics are required. Here, we implement a new strategy, closed-loop optogenetic compensation (CLOC), to address this problem. Using a custom-built hardware and software infrastructure, CLOC monitors, in real time, the output of a pathway deleted for a feedback regulator. A minimal model uses these measurements to calculate and deliver-on the fly-an optogenetically enabled transcriptional input designed to compensate for the effects of the feedback deletion. Application of CLOC to the yeast pheromone response pathway revealed surprisingly distinct dynamic requirements for three well-studied feedback regulators. CLOC, a marriage of control theory and traditional genetics, presents a broadly applicable methodology for defining the dynamic function of biological feedback regulators.
Collapse
Affiliation(s)
- Patrick Harrigan
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Rogers DW, McConnell E, Miller EL, Greig D. Diminishing Returns on Intragenic Repeat Number Expansion in the Production of Signaling Peptides. Mol Biol Evol 2017; 34:3176-3185. [PMID: 28961820 PMCID: PMC5850478 DOI: 10.1093/molbev/msx243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signaling peptides enable communication between cells, both within and between individuals, and are therefore key to the control of complex physiological and behavioral responses. Since their small sizes prevent direct transmission to secretory pathways, these peptides are often produced as part of a larger polyprotein comprising precursors for multiple related or identical peptides; the physiological and behavioral consequences of this unusual gene structure are not understood. Here, we show that the number of mature-pheromone-encoding repeats in the yeast α-mating-factor gene MFα1 varies considerably between closely related isolates of both Saccharomyces cerevisiae and its sister species Saccharomyces paradoxus. Variation in repeat number has important phenotypic consequences: Increasing repeat number caused higher pheromone production and greater competitive mating success. However, the magnitude of the improvement decreased with increasing repeat number such that repeat amplification beyond that observed in natural isolates failed to generate more pheromone, and could actually reduce sexual fitness. We investigate multiple explanations for this pattern of diminishing returns and find that our results are most consistent with a translational trade-off: Increasing the number of encoded repeats results in more mature pheromone per translation event, but also generates longer transcripts thereby reducing the rate of translation—a phenomenon known as length-dependent translation. Length-dependent translation may be a powerful constraint on the evolution of genes encoding repetitive or modular proteins, with important physiological and behavioral consequences across eukaryotes.
Collapse
Affiliation(s)
- David W Rogers
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ellen McConnell
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eric L Miller
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, United Kingdom
| | - Duncan Greig
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
14
|
Moretti M, Wang L, Grognet P, Lanver D, Link H, Kahmann R. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungusUstilago maydis. Mol Microbiol 2017; 105:901-921. [DOI: 10.1111/mmi.13745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Marino Moretti
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Lei Wang
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Pierre Grognet
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Daniel Lanver
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Hannes Link
- Dynamic Control of Metabolic Networks; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 16, Marburg D-35043 Germany
| | - Regine Kahmann
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| |
Collapse
|
15
|
Asc1p/RACK1 Connects Ribosomes to Eukaryotic Phosphosignaling. Mol Cell Biol 2017; 37:MCB.00279-16. [PMID: 27821475 DOI: 10.1128/mcb.00279-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
WD40 repeat proteins fold into characteristic β-propeller structures and control signaling circuits during cellular adaptation processes within eukaryotes. The RACK1 protein of Saccharomyces cerevisiae, Asc1p, consists exclusively of a single seven-bladed β-propeller that operates from the ribosomal base at the head region of the 40S subunit. Here we show that the R38D K40E ribosomal binding-compromised variant (Asc1DEp) is severely destabilized through mutation of phosphosite T143 to a dephosphorylation-mimicking alanine, probably through proteasomal degradation, leading to asc1- phenotypes. Phosphosite Y250 contributes to resistance to translational inhibitors but does not influence Asc1DEp stability. Beyond its own phosphorylation at T143, Y250, and other sites, Asc1p heavily influences the phosphorylation of as many as 90 proteins at 120 sites. Many of these proteins are regulators of fundamental processes ranging from mRNA translation to protein transport and turnover, cytoskeleton organization, and cellular signaling. Our data expose Asc1p/RACK1 as a key factor in phosphosignaling and manifest it as a control point at the head of the ribosomal 40S subunit itself regulated through posttranslational modification.
Collapse
|
16
|
Bush A, Vasen G, Constantinou A, Dunayevich P, Patop IL, Blaustein M, Colman-Lerner A. Yeast GPCR signaling reflects the fraction of occupied receptors, not the number. Mol Syst Biol 2016; 12:898. [PMID: 28034910 PMCID: PMC5199120 DOI: 10.15252/msb.20166910] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
According to receptor theory, the effect of a ligand depends on the amount of agonist-receptor complex. Therefore, changes in receptor abundance should have quantitative effects. However, the response to pheromone in Saccharomyces cerevisiae is robust (unaltered) to increases or reductions in the abundance of the G-protein-coupled receptor (GPCR), Ste2, responding instead to the fraction of occupied receptor. We found experimentally that this robustness originates during G-protein activation. We developed a complete mathematical model of this step, which suggested the ability to compute fractional occupancy depends on the physical interaction between the inhibitory regulator of G-protein signaling (RGS), Sst2, and the receptor. Accordingly, replacing Sst2 by the heterologous hsRGS4, incapable of interacting with the receptor, abolished robustness. Conversely, forcing hsRGS4:Ste2 interaction restored robustness. Taken together with other results of our work, we conclude that this GPCR pathway computes fractional occupancy because ligand-bound GPCR-RGS complexes stimulate signaling while unoccupied complexes actively inhibit it. In eukaryotes, many RGSs bind to specific GPCRs, suggesting these complexes with opposing activities also detect fraction occupancy by a ratiometric measurement. Such complexes operate as push-pull devices, which we have recently described.
Collapse
Affiliation(s)
- Alan Bush
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Gustavo Vasen
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Andreas Constantinou
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Paula Dunayevich
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Inés Lucía Patop
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Matías Blaustein
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina .,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Sridharan R, Connelly SM, Naider F, Dumont ME. Variable Dependence of Signaling Output on Agonist Occupancy of Ste2p, a G Protein-coupled Receptor in Yeast. J Biol Chem 2016; 291:24261-24279. [PMID: 27646004 DOI: 10.1074/jbc.m116.733006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/04/2016] [Indexed: 12/22/2022] Open
Abstract
We report here on the relationship between ligand binding and signaling responses in the yeast pheromone response pathway, a well characterized G protein-coupled receptor system. Responses to agonist (α-factor) by cells expressing widely varying numbers of receptors depend primarily on fractional occupancy, not the absolute number of agonist-bound receptors. Furthermore, the concentration of competitive antagonist required to inhibit α-factor-dependent signaling is more than 10-fold higher than predicted based on the known ligand affinities. Thus, responses to a particular number of agonist-bound receptors can vary greatly, depending on whether there are unoccupied or antagonist-bound receptors present on the same cell surface. This behavior does not appear to be due to pre-coupling of receptors to G protein or to the Sst2p regulator of G protein signaling. The results are consistent with a signaling response that is determined by the integration of positive signals from agonist-occupied receptors and inhibitory signals from unoccupied receptors, where the inhibitory signals can be diminished by antagonist binding.
Collapse
Affiliation(s)
- Rajashri Sridharan
- From the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - Sara M Connelly
- From the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - Fred Naider
- the Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, New York 10314, and.,the Ph.D. Programs in Biochemistry and Chemistry, Graduate Center of the City University of New York, New York, New York 10016
| | - Mark E Dumont
- From the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642,
| |
Collapse
|
18
|
Roles of Rack1 Proteins in Fungal Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4130376. [PMID: 27656651 PMCID: PMC5021465 DOI: 10.1155/2016/4130376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023]
Abstract
Pathogenic fungi cause diseases on various organisms. Despite their differences in life cycles, fungal pathogens use well-conserved proteins and pathways to regulate developmental and infection processes. In this review, we focus on Rack1, a multifaceted scaffolding protein involved in various biological processes. Rack1 is well conserved in eukaryotes and plays important roles in fungi, though limited studies have been conducted. To accelerate the study of Rack1 proteins in fungi, we review the functions of Rack1 proteins in model and pathogenic fungi and summarize recent progress on how Rack1 proteins are involved in fungal pathogenesis.
Collapse
|
19
|
Sliva A, Kuang Z, Meluh PB, Boeke JD. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes. G3 (BETHESDA, MD.) 2016; 6:881-92. [PMID: 26837954 PMCID: PMC4825658 DOI: 10.1534/g3.115.026757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/27/2016] [Indexed: 11/18/2022]
Abstract
The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating.
Collapse
Affiliation(s)
- Anna Sliva
- Institute for Systems Genetics, New York University Langone School of Medicine, New York 10016 Human Genetics Program, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zheng Kuang
- Institute for Systems Genetics, New York University Langone School of Medicine, New York 10016
| | - Pamela B Meluh
- Calico Life Sciences, Google Inc., San Francisco, California 94080
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone School of Medicine, New York 10016
| |
Collapse
|
20
|
Benzina S, Pitaval A, Lemercier C, Lustremant C, Frouin V, Wu N, Papine A, Soussaline F, Romeo PH, Gidrol X. A kinome-targeted RNAi-based screen links FGF signaling to H2AX phosphorylation in response to radiation. Cell Mol Life Sci 2015; 72:3559-73. [PMID: 25894690 PMCID: PMC4548013 DOI: 10.1007/s00018-015-1901-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/21/2015] [Accepted: 04/02/2015] [Indexed: 01/08/2023]
Abstract
A general radioprotective effect by fibroblast growth
factor (FGF) has been extensively described since the early 1990s; however, the molecular mechanisms involved remain largely unknown. Radiation-induced DNA double-strand breaks (DSBs) lead to a complex set of responses in eukaryotic cells. One of the earliest consequences is phosphorylation of histone H2AX to form nuclear foci of the phosphorylated form of H2AX (γH2AX) in the chromatin adjacent to sites of DSBs and to initiate the recruitment of DNA-repair molecules. Upon a DSB event, a rapid signaling network is activated to coordinate DNA repair with the induction of cell-cycle checkpoints. To date, three kinases (ATM, ATR, and DNA-PK) have been shown to phosphorylate histone H2AX in response to irradiation. Here, we report a kinome-targeted small interfering RNA (siRNA) screen to characterize human kinases involved in H2AX phosphorylation. By analyzing γH2AX foci at a single-nucleus level, we identified 46 kinases involved either directly or indirectly in H2AX phosphorylation in response to irradiation in human keratinocytes. Furthermore, we demonstrate that in response to irradiation, the FGFR4 signaling cascade promotes JNK1 activation and direct H2AX phosphorylation leading, in turn, to more efficient DNA repair. This can explain, at least partially, the radioprotective effect of FGF.
Collapse
Affiliation(s)
- Sami Benzina
- CEA, IRTSV, Biologie à Grande Echelle, 17 rue des Martyrs, 38054, Grenoble Cedex, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang H, Ma H, Xie X, Ji J, Dong Y, Du Y, Tang W, Zheng X, Wang P, Zhang Z. Comparative proteomic analyses reveal that the regulators of G-protein signaling proteins regulate amino acid metabolism of the rice blast fungus Magnaporthe oryzae. Proteomics 2014; 14:2508-22. [DOI: 10.1002/pmic.201400173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Nanjing P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests; Ministry of Education; Nanjing P. R. China
| | - Hongyu Ma
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Nanjing P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests; Ministry of Education; Nanjing P. R. China
| | - Xin Xie
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Nanjing P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests; Ministry of Education; Nanjing P. R. China
| | - Jun Ji
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Nanjing P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests; Ministry of Education; Nanjing P. R. China
| | - Yanhan Dong
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Nanjing P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests; Ministry of Education; Nanjing P. R. China
| | - Yan Du
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Nanjing P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests; Ministry of Education; Nanjing P. R. China
| | - Wei Tang
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Nanjing P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests; Ministry of Education; Nanjing P. R. China
| | - Xiaobo Zheng
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Nanjing P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests; Ministry of Education; Nanjing P. R. China
| | - Ping Wang
- Department of Pediatrics; Louisiana State University Health Sciences Center; New Orleans LA USA
| | - Zhengguang Zhang
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Nanjing P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests; Ministry of Education; Nanjing P. R. China
| |
Collapse
|
22
|
Sequential logic of polarity determination during the haploid-to-diploid transition in Saccharomyces cerevisiae. EUKARYOTIC CELL 2014; 13:1393-402. [PMID: 25172767 DOI: 10.1128/ec.00161-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In many organisms, the geometry of encounter of haploid germ cells is arbitrary. In Saccharomyces cerevisiae, the resulting zygotes have been seen to bud asymmetrically in several directions as they produce diploid progeny. What mechanisms account for the choice of direction, and do the mechanisms directing polarity change over time? Distinct subgroups of cortical "landmark" proteins guide budding by haploid versus diploid cells, both of which require the Bud1/Rsr1 GTPase to link landmarks to actin. We observed that as mating pairs of haploid cells form zygotes, bud site specification progresses through three phases. The first phase follows disassembly and limited scattering of proteins that concentrated at the zone of cell contact, followed by their reassembly to produce a large medial bud. Bud1 is not required for medial placement of the initial bud. The second phase produces a contiguous bud(s) and depends on axial landmarks. As the titer of the Axl1 landmark diminishes, the third phase ultimately redirects budding toward terminal sites and is promoted by bipolar landmarks. Thus, following the initial random encounter that specifies medial budding, sequential spatial choices are orchestrated by the titer of a single cortical determinant that determines whether successive buds will be contiguous to their predecessors.
Collapse
|
23
|
Dixit G, Kelley JB, Houser JR, Elston TC, Dohlman HG. Cellular noise suppression by the regulator of G protein signaling Sst2. Mol Cell 2014; 55:85-96. [PMID: 24954905 DOI: 10.1016/j.molcel.2014.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/01/2014] [Accepted: 04/30/2014] [Indexed: 11/28/2022]
Abstract
G proteins and their associated receptors process information from a variety of environmental stimuli to induce appropriate cellular responses. Generally speaking, each cell in a population responds within defined limits, despite large variation in the expression of protein signaling components. Therefore, we postulated that noise suppression is encoded within the signaling system. Using the yeast mating pathway as a model, we evaluated the ability of a regulator of G protein signaling (RGS) protein to suppress noise. We found that the RGS protein Sst2 limits variability in transcription and morphogenesis in response to pheromone stimulation. While signal suppression is a result of both the GAP (GTPase accelerating) and receptor binding functions of Sst2, noise suppression requires only the GAP activity. Taken together, our findings reveal a hitherto overlooked role of RGS proteins as noise suppressors and demonstrate an ability to uncouple signal and noise in a prototypical stimulus-response pathway.
Collapse
Affiliation(s)
- Gauri Dixit
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Kelley
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John R Houser
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G Dohlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Styles E, Youn JY, Mattiazzi Usaj M, Andrews B. Functional genomics in the study of yeast cell polarity: moving in the right direction. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130118. [PMID: 24062589 PMCID: PMC3785969 DOI: 10.1098/rstb.2013.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.
Collapse
Affiliation(s)
- Erin Styles
- The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
- Department of Molecular Genetics, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
| | - Ji-Young Youn
- The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
| | - Mojca Mattiazzi Usaj
- The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
| | - Brenda Andrews
- The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
- Department of Molecular Genetics, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
| |
Collapse
|
25
|
Wang Y, Geng Z, Jiang D, Long F, Zhao Y, Su H, Zhang KQ, Yang J. Characterizations and functions of regulator of G protein signaling (RGS) in fungi. Appl Microbiol Biotechnol 2013; 97:7977-87. [DOI: 10.1007/s00253-013-5133-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/20/2022]
|
26
|
Bradford W, Buckholz A, Morton J, Price C, Jones AM, Urano D. Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation. Sci Signal 2013; 6:ra37. [PMID: 23695163 DOI: 10.1126/scisignal.2003768] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although bioinformatic analysis of the increasing numbers of diverse genome sequences and amount of functional data has provided insight into the evolution of signaling networks, bioinformatics approaches have limited application for understanding the evolution of highly divergent protein families. We used biochemical analyses to determine the in vitro properties of selected divergent components of the heterotrimeric guanine nucleotide-binding protein (G protein) signaling network to investigate signaling network evolution. In animals, G proteins are activated by cell-surface seven-transmembrane (7TM) receptors, which are named G protein-coupled receptors (GPCRs) and function as guanine nucleotide exchange factors (GEFs). In contrast, the plant G protein is intrinsically active, and a 7TM protein terminates G protein activity by functioning as a guanosine triphosphatase-activating protein (GAP). We showed that ancient regulation of the G protein active state is GPCR-independent and "self-activating," a property that is maintained in Bikonts, one of the two fundamental evolutionary clades containing eukaryotes, whereas G proteins of the other clade, the Unikonts, evolved from being GEF-independent to being GEF-dependent. Self-activating G proteins near the base of the Eukaryota are controlled by 7TM-GAPs, suggesting that the ancestral regulator of G protein activation was a GAP-functioning receptor, not a GEF-functioning GPCR. Our findings indicate that the GPCR paradigm describes a recently evolved network architecture found in a relatively small group of Eukaryota and suggest that the evolution of signaling network architecture is constrained by the availability of molecules that control the activation state of nexus proteins.
Collapse
Affiliation(s)
- William Bradford
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
27
|
Williams TC, Nielsen LK, Vickers CE. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae. ACS Synth Biol 2013; 2:136-49. [PMID: 23656437 DOI: 10.1021/sb300110b] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Population-density-dependent control of gene expression, or quorum sensing, is widespread in nature and is used to coordinate complex population-wide phenotypes through space and time. We have engineered quorum sensing in S. cerevisiae by rewiring the native pheromone communication system that is normally used by haploid cells to detect potential mating partners. In our system, populations consisting of only mating type "a" cells produce and respond to extracellular α-type pheromone by arresting growth and expressing GFP in a population-density-dependent manner. Positive feedback quorum sensing dynamics were tuned by varying α-pheromone production levels using different versions of the pheromone-responsive FUS1 promoter as well as different versions of pheromone genes (mfα1 or mfα2). In a second system, pheromone communication was rendered conditional upon the presence of aromatic amino acids in the growth medium by controlling α-pheromone expression with the aromatic amino acid responsive ARO9 promoter. In these circuits, pheromone communication and response could be fine-tuned according to aromatic amino acid type and concentration. The genetic control programs developed here are responsive to dynamic spatiotemporal and chemical cellular environments, resulting in up-regulation of gene expression. These programs could be used to control biochemical pathways for the production of fuels and chemicals that are toxic or place a heavy metabolic burden on cell growth.
Collapse
Affiliation(s)
- Thomas C. Williams
- Australian Institute for
Bioengineering and Nanotechnology
(AIBN), The University of Queensland, St.
Lucia, QLD 4072, Australia
| | - Lars K. Nielsen
- Australian Institute for
Bioengineering and Nanotechnology
(AIBN), The University of Queensland, St.
Lucia, QLD 4072, Australia
| | - Claudia E. Vickers
- Australian Institute for
Bioengineering and Nanotechnology
(AIBN), The University of Queensland, St.
Lucia, QLD 4072, Australia
| |
Collapse
|
28
|
Rachfall N, Schmitt K, Bandau S, Smolinski N, Ehrenreich A, Valerius O, Braus GH. RACK1/Asc1p, a ribosomal node in cellular signaling. Mol Cell Proteomics 2012; 12:87-105. [PMID: 23071099 DOI: 10.1074/mcp.m112.017277] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RACK1/Asc1p and its essential orthologues in higher eukaryotes, such as RACK1 in metazoa, are involved in several distinct cellular signaling processes. The implications of a total deletion have never been assessed in a comprehensive manner. This study reveals the major cellular processes affected in a Saccharomyces cerevisiae Δasc1 deletion background via de novo proteome and transcriptome analysis, as well as subsequent phenotypical characterizations. The deletion of ASC1 reduces iron uptake and causes nitrosative stress, both known indicators for hypoxia, which manifests in a shift of energy metabolism from respiration to fermentation in the Δasc1 strain. Asc1p further impacts cellular metabolism through its regulative role in the MAP kinase signal transduction pathways of invasive/filamentous growth and cell wall integrity. In the Δasc1 mutant strain, aberrations from the expected cellular response, mediated by these pathways, can be observed and are linked to changes in protein abundances of pathway-targeted transcription factors. Evidence of the translational regulation of such transcription factors suggests that ribosomal Asc1p is involved in signal transduction pathways and controls the biosynthesis of the respective final transcriptional regulators.
Collapse
Affiliation(s)
- Nicole Rachfall
- Institute of Microbiology and Genetics, Georg-August Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet Biol 2012; 49:511-20. [PMID: 22634273 DOI: 10.1016/j.fgb.2012.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 11/20/2022]
Abstract
Regulators of G protein signaling (RGS) proteins make up a highly diverse and multifunctional protein family that plays a critical role in controlling heterotrimeric G protein signaling. In this study, seven RGS genes (FgFlbA, FgFlbB, FgRgsA, FgRgsB, FgRgsB2, FgRgsC, and FgGprK) were functionally characterized in the plant pathogenic fungus, Gibberella zeae. Mutant phenotypes were observed for deletion mutants of FgRgsA and FgRgsB in vegetative growth, FgFlbB and FgRgsB in conidia morphology, FgFlbA in conidia production, FgFlbA, FgRgsB, and FgRgsC in sexual development, FgFlbA and FgRgsA in spore germination and mycotoxin production, and FgFlbA, FgRgsA, and FgRgsB in virulence. Furthermore, FgFlbA, FgRgsA, and FgRgsB acted pleiotropically, while FgFlbB and FgRgsC deletion mutants exhibited a specific defect in conidia morphology and sexual development, respectively. Amino acid substitutions in Gα subunits and overexpression of the FgFlbA gene revealed that deletion of FgFlbA and dominant active GzGPA2 mutant, gzgpa2(Q207L), had similar phenotypes in cell wall integrity, perithecia formation, mycotoxin production, and virulence, suggesting that FgFlbA may regulate asexual/sexual development, mycotoxin biosynthesis, and virulence through GzGPA2-dependent signaling in G. zeae.
Collapse
|
30
|
Swimming upstream: identifying proteomic signals that drive transcriptional changes using the interactome and multiple "-omics" datasets. Methods Cell Biol 2012; 110:57-80. [PMID: 22482945 PMCID: PMC3870464 DOI: 10.1016/b978-0-12-388403-9.00003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Signaling and transcription are tightly integrated processes that underlie many cellular responses to the environment. A network of signaling events, often mediated by post-translational modification on proteins, can lead to long-term changes in cellular behavior by altering the activity of specific transcriptional regulators and consequently the expression level of their downstream targets. As many high-throughput, "-omics" methods are now available that can simultaneously measure changes in hundreds of proteins and thousands of transcripts, it should be possible to systematically reconstruct cellular responses to perturbations in order to discover previously unrecognized signaling pathways. This chapter describes a computational method for discovering such pathways that aims to compensate for the varying levels of noise present in these diverse data sources. Based on the concept of constraint optimization on networks, the method seeks to achieve two conflicting aims: (1) to link together many of the signaling proteins and differentially expressed transcripts identified in the experiments "constraints" using previously reported protein-protein and protein-DNA interactions, while (2) keeping the resulting network small and ensuring it is composed of the highest confidence interactions "optimization". A further distinctive feature of this approach is the use of transcriptional data as evidence of upstream signaling events that drive changes in gene expression, rather than as proxies for downstream changes in the levels of the encoded proteins. We recently demonstrated that by applying this method to phosphoproteomic and transcriptional data from the pheromone response in yeast, we were able to recover functionally coherent pathways and to reveal many components of the cellular response that are not readily apparent in the original data. Here, we provide a more detailed description of the method, explore the robustness of the solution to the noise level of input data and discuss the effect of parameter values.
Collapse
|
31
|
Zhang H, Tang W, Liu K, Huang Q, Zhang X, Yan X, Chen Y, Wang J, Qi Z, Wang Z, Zheng X, Wang P, Zhang Z. Eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaporthe oryzae. PLoS Pathog 2011; 7:e1002450. [PMID: 22241981 PMCID: PMC3248559 DOI: 10.1371/journal.ppat.1002450] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/05/2011] [Indexed: 11/18/2022] Open
Abstract
A previous study identified MoRgs1 as an RGS protein that negative regulates G-protein signaling to control developmental processes such as conidiation and appressorium formation in Magnaporthe oryzae. Here, we characterized additional seven RGS and RGS-like proteins (MoRgs2 through MoRgs8). We found that MoRgs1 and MoRgs4 positively regulate surface hydrophobicity, conidiation, and mating. Indifference to MoRgs1, MoRgs4 has a role in regulating laccase and peroxidase activities. MoRgs1, MoRgs2, MoRgs3, MoRgs4, MoRgs6, and MoRgs7 are important for germ tube growth and appressorium formation. Interestingly, MoRgs7 and MoRgs8 exhibit a unique domain structure in which the RGS domain is linked to a seven-transmembrane motif, a hallmark of G-protein coupled receptors (GPCRs). We have also shown that MoRgs1 regulates mating through negative regulation of Gα MoMagB and is involved in the maintenance of cell wall integrity. While all proteins appear to be involved in the control of intracellular cAMP levels, only MoRgs1, MoRgs3, MoRgs4, and MoRgs7 are required for full virulence. Taking together, in addition to MoRgs1 functions as a prominent RGS protein in M. oryzae, MoRgs4 and other RGS and RGS-like proteins are also involved in a complex process governing asexual/sexual development, appressorium formation, and pathogenicity.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Wei Tang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Kaiyue Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Qian Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xin Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xia Yan
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Huajiachi Campus, Hangzhou, China
| | - Yue Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jiansheng Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Huajiachi Campus, Hangzhou, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ping Wang
- Department of Pediatrics and the Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
32
|
Global analysis of serine-threonine protein kinase genes in Neurospora crassa. EUKARYOTIC CELL 2011; 10:1553-64. [PMID: 21965514 DOI: 10.1128/ec.05140-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Serine/threonine (S/T) protein kinases are crucial components of diverse signaling pathways in eukaryotes, including the model filamentous fungus Neurospora crassa. In order to assess the importance of S/T kinases to Neurospora biology, we embarked on a global analysis of 86 S/T kinase genes in Neurospora. We were able to isolate viable mutants for 77 of the 86 kinase genes. Of these, 57% exhibited at least one growth or developmental phenotype, with a relatively large fraction (40%) possessing a defect in more than one trait. S/T kinase knockouts were subjected to chemical screening using a panel of eight chemical treatments, with 25 mutants exhibiting sensitivity or resistance to at least one chemical. This brought the total percentage of S/T mutants with phenotypes in our study to 71%. Mutants lacking apg-1, an S/T kinase required for autophagy in other organisms, possessed the greatest number of phenotypes, with defects in asexual and sexual growth and development and in altered sensitivity to five chemical treatments. We showed that NCU02245/stk-19 is required for chemotropic interactions between female and male cells during mating. Finally, we demonstrated allelism between the S/T kinase gene NCU00406 and velvet (vel), encoding a p21-activated protein kinase (PAK) gene important for asexual and sexual growth and development in Neurospora.
Collapse
|
33
|
Whittington A, Wang P. The RGS protein Crg2 is required for establishment and progression of murine pulmonary cryptococcosis. Med Mycol 2010; 49:263-75. [PMID: 20818923 DOI: 10.3109/13693786.2010.512618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryptococcal regulators of G protein signaling (CRG) are important for growth, differentiation, and virulence of Cryptococcus neoformans. Disruption of CRG2 resulted in dysregulated cAMP signaling and attenuated virulence, whereas disruption of CRG1 increased pheromone responses and enhanced virulence in the archetypal H99 strain. In tests with newly constructed near congenic mutants, a distinction between crg2Δ and crg1Δ gene expression was not apparent during macrophage interaction. Intranasal inoculation indicated that crg2Δ, crg1Δ, and wild-type strains reached the lungs within 0.5 hours of infection. However, CFUs were significantly decreased for crg2Δ at 2, 7, and 14 days post-infection. In contrast, crg1Δ proliferated to the same extent as the wild type (WT). Lung edema was not apparent in mice infected with crg2Δ 0.5 hours post-infection, which showed little cellular infiltrate in comparison to WT. Alveolar septal thickening was most evident in mice infected with crg1Δ, while mice infected with WT exhibited decreased septal thickening at later time points. Consistent with these observations, crg2Δ was less efficient in the elicitation of Th2 immune responses in a multiplex cytokine assay. Our results suggest that Crg2 is critical for establishment of early pulmonary infection and for persistence of infection, Crg1 regulates virulence in a strain-specific manner, and crg2Δ, crg1Δ and WT can all be distinguished on the basis of host tissue responses.
Collapse
Affiliation(s)
- Amy Whittington
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
34
|
Melamed D, Bar-Ziv L, Truzman Y, Arava Y. Asc1 supports cell-wall integrity near bud sites by a Pkc1 independent mechanism. PLoS One 2010; 5:e11389. [PMID: 20613984 PMCID: PMC2894943 DOI: 10.1371/journal.pone.0011389] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 06/09/2010] [Indexed: 11/18/2022] Open
Abstract
Background The yeast ribosomal protein Asc1 is a WD-protein family member. Its mammalian ortholog, RACK1 was initially discovered as a receptor for activated protein C kinase (PKC) that functions to maintain the active conformation of PKC and to support its movement to target sites. In the budding yeast though, a connection between Asc1p and the PKC signaling pathway has never been reported. Methodology/Principal Findings In the present study we found that asc1-deletion mutant (asc1Δ) presents some of the hallmarks of PKC signaling mutants. These include an increased sensitivity to staurosporine, a specific Pkc1p inhibitor, and susceptibility to cell-wall perturbing treatments such as hypotonic- and heat shock conditions and zymolase treatment. Microscopic analysis of asc1Δ cells revealed cell-wall invaginations near bud sites after exposure to hypotonic conditions, and the dynamic of cells' survival after this stress further supports the involvement of Asc1p in maintaining the cell-wall integrity during the mid-to late stages of bud formation. Genetic interactions between asc1 and pkc1 reveal synergistic sensitivities of a double-knock out mutant (asc1Δ/pkc1Δ) to cell-wall stress conditions, and high basal level of PKC signaling in asc1Δ. Furthermore, Asc1p has no effect on the cellular distribution or redistribution of Pkc1p at optimal or at cell-wall stress conditions. Conclusions/Significance Taken together, our data support the idea that unlike its mammalian orthologs, Asc1p acts remotely from Pkc1p, to regulate the integrity of the cell-wall. We speculate that its role is exerted through translation regulation of bud-site related mRNAs during cells' growth.
Collapse
Affiliation(s)
- Daniel Melamed
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Lavi Bar-Ziv
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yossi Truzman
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yoav Arava
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
35
|
Ren X, Zhou X, Wu LY, Zhang XS. An information-flow-based model with dissipation, saturation and direction for active pathway inference. BMC SYSTEMS BIOLOGY 2010; 4:72. [PMID: 20504374 PMCID: PMC2890502 DOI: 10.1186/1752-0509-4-72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 05/27/2010] [Indexed: 11/25/2022]
Abstract
Background Biological systems process the genetic information and environmental signals through pathways. How to map the pathways systematically and efficiently from high-throughput genomic and proteomic data is a challenging open problem. Previous methods design different heuristics but do not describe explicitly the behaviours of the information flow. Results In this study, we propose new concepts of dissipation, saturation and direction to decipher the information flow behaviours in the pathways and thereby infer the biological pathways from a given source to its target. This model takes into account explicitly the common features of the information transmission and provides a general framework to model the biological pathways. It can incorporate different types of bio-molecular interactions to infer the signal transduction pathways and interpret the expression quantitative trait loci (eQTL) associations. The model is formulated as a linear programming problem and thus is solved efficiently. Experiments on the real data of yeast indicate that the reproduced pathways are highly consistent with the current knowledge. Conclusions Our model explicitly treats the biological pathways as information flows with dissipation, saturation and direction. The effective applications suggest that the three new concepts may be valid to describe the organization rules of biological pathways. The deduced linear programming should be a promising tool to infer the various biological pathways from the high-throughput data.
Collapse
Affiliation(s)
- Xianwen Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
| | | | | | | |
Collapse
|
36
|
Lambert NA, Johnston CA, Cappell SD, Kuravi S, Kimple AJ, Willard FS, Siderovski DP. Regulators of G-protein signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proc Natl Acad Sci U S A 2010; 107:7066-71. [PMID: 20351284 PMCID: PMC2872438 DOI: 10.1073/pnas.0912934107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
G-protein heterotrimers, composed of a guanine nucleotide-binding G alpha subunit and an obligate G betagamma dimer, regulate signal transduction pathways by cycling between GDP- and GTP-bound states. Signal deactivation is achieved by G alpha-mediated GTP hydrolysis (GTPase activity) which is enhanced by the GTPase-accelerating protein (GAP) activity of "regulator of G-protein signaling" (RGS) proteins. In a cellular context, RGS proteins have also been shown to speed up the onset of signaling, and to accelerate deactivation without changing amplitude or sensitivity of the signal. This latter paradoxical activity has been variably attributed to GAP/enzymatic or non-GAP/scaffolding functions of these proteins. Here, we validated and exploited a G alpha switch-region point mutation, known to engender increased GTPase activity, to mimic in cis the GAP function of RGS proteins. While the transition-state, GDP x AlF(4)(-)-bound conformation of the G202A mutant was found to be nearly identical to wild-type, G alpha(i1)(G202A) x GDP assumed a divergent conformation more closely resembling the GDP x AlF(4)(-)-bound state. When placed within Saccharomyces cerevisiae G alpha subunit Gpa1, the fast-hydrolysis mutation restored appropriate dose-response behaviors to pheromone signaling in the absence of RGS-mediated GAP activity. A bioluminescence resonance energy transfer (BRET) readout of heterotrimer activation with high temporal resolution revealed that fast intrinsic GTPase activity could recapitulate in cis the kinetic sharpening (increased onset and deactivation rates) and blunting of sensitivity also engendered by RGS protein action in trans. Thus G alpha-directed GAP activity, the first biochemical function ascribed to RGS proteins, is sufficient to explain the activation kinetics and agonist sensitivity observed from G-protein-coupled receptor (GPCR) signaling in a cellular context.
Collapse
Affiliation(s)
- Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912; and
| | - Christopher A. Johnston
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| | - Steven D. Cappell
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| | - Sudhakiranmayi Kuravi
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912; and
| | - Adam J. Kimple
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| | - Francis S. Willard
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| | - David P. Siderovski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
37
|
Xiong M, Wang J. Afr1p mediates activation of the Slt2p MAP kinase induced by pheromone, heat shock and hypo-osmotic shock in Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:150-7. [PMID: 20059551 DOI: 10.1111/j.1567-1364.2009.00597.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, we reinvestigated the role of Afr1p in the regulation of pheromone signaling and demonstrated that pheromone signaling was not regulated by Afr1p because neither deletion nor overexpression of AFR1 affected alpha-factor-induced transcription induction of the FUS1 gene. The enhanced alpha-factor resistance resulting from overexpression of AFR1 was dependent on the Slt2p mitogen-activated protein kinase. We also found that alpha-factor-induced activation of Slt2p required Afr1p. In the absence of Afr1p, activation of Slt2p was significantly reduced and, in a strain overexpressing Afr1p, the level of Slt2p activation was enhanced, indicating that Afr1p may function to mediate cross-talks between the mating pathway and the cell integrity pathway. Further, Afr1p was also required for adequate activation of Slt2p in cells exposed to heat shock and hypo-osmotic shock. These results indicated that, in addition to its role in establishing pheromone-induced morphogenesis, Afr1p may act as a 'sensor' to transduce cell wall stress resulting from different stimuli to the cell integrity pathway, leading to Slt2p activation.
Collapse
Affiliation(s)
- Mingyong Xiong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | | |
Collapse
|
38
|
Lin M, Grillitsch K, Daum G, Just U, Höfken T. Modulation of sterol homeostasis by the Cdc42p effectors Cla4p and Ste20p in the yeast Saccharomyces cerevisiae. FEBS J 2010; 276:7253-64. [PMID: 20050180 DOI: 10.1111/j.1742-4658.2009.07433.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conserved Rho-type GTPase Cdc42p is a key regulator of signal transduction and polarity in eukaryotic cells. In the yeast Saccharomyces cerevisiae, Cdc42p promotes polarized growth through the p21-activated kinases Ste20p and Cla4p. Previously, we demonstrated that Ste20p forms a complex with Erg4p, Cbr1p and Ncp1p, which all catalyze important steps in sterol biosynthesis. CLA4 interacts genetically with ERG4 and NCP1. Furthermore, Erg4p, Ncp1p and Cbr1p play important roles in cell polarization during vegetative growth, mating and filamentation. As Ste20p and Cla4p are involved in these processes it seems likely that sterol biosynthetic enzymes and p21-activated kinases act in related pathways. Here, we demonstrate that the deletion of either STE20 or CLA4 results in increased levels of sterols. In addition, higher concentrations of steryl esters, the storage form of sterols, were observed in cla4Delta cells. CLA4 expression from a multicopy plasmid reduces enzyme activity of Are2p, the major steryl ester synthase, under aerobic conditions. Altogether, our data suggest that Ste20p and Cla4p may function as negative modulators of sterol biosynthesis. Moreover, Cla4p has a negative effect on steryl ester formation. As sterol homeostasis is crucial for cell polarization, Ste20p and Cla4p may regulate cell polarity in part through the modulation of sterol homeostasis.
Collapse
Affiliation(s)
- Meng Lin
- Institute of Biochemistry, Christian Albrecht University, Kiel, Germany
| | | | | | | | | |
Collapse
|
39
|
Huang SSC, Fraenkel E. Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci Signal 2009; 2:ra40. [PMID: 19638617 PMCID: PMC2889494 DOI: 10.1126/scisignal.2000350] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cellular signaling and regulatory networks underlie fundamental biological processes such as growth, differentiation, and response to the environment. Although there are now various high-throughput methods for studying these processes, knowledge of them remains fragmentary. Typically, the majority of hits identified by transcriptional, proteomic, and genetic assays lie outside of the expected pathways. These unexpected components of the cellular response are often the most interesting, because they can provide new insights into biological processes and potentially reveal new therapeutic approaches. However, they are also the most difficult to interpret. We present a technique, based on the Steiner tree problem, that uses previously reported protein-protein and protein-DNA interactions to determine how these hits are organized into functionally coherent pathways, revealing many components of the cellular response that are not readily apparent in the original data. Applied simultaneously to phosphoproteomic and transcriptional data for the yeast pheromone response, it identifies changes in diverse cellular processes that extend far beyond the expected pathways.
Collapse
Affiliation(s)
- Shao-Shan Carol Huang
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
40
|
Heenan EJ, Vanhooke JL, Temple BR, Betts L, Sondek JE, Dohlman HG. Structure and function of Vps15 in the endosomal G protein signaling pathway. Biochemistry 2009; 48:6390-401. [PMID: 19445518 PMCID: PMC2740480 DOI: 10.1021/bi900621w] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein alpha subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein beta subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical Gbeta subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential Ggamma protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 Gbeta-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.
Collapse
Affiliation(s)
| | | | | | | | | | - Henrik G. Dohlman
- Address correspondance to: Henrik G. Dohlman, PhD Department of Biochemistry and Biophysics University of North Carolina 120 Mason Farm Road, CB 7260 Genetic Medicine, Suite 3010 Chapel Hill, NC 27599-7260 Tel.: (919) 843-6894, Fax: (919) 966-2852, E-mail:
| |
Collapse
|
41
|
Xue C, Hsueh YP, Heitman J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 2008; 32:1010-32. [PMID: 18811658 PMCID: PMC2998294 DOI: 10.1111/j.1574-6976.2008.00131.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are responsible for transducing extracellular signals into intracellular responses that involve complex intracellular-signaling networks. This review highlights recent research advances in fungal GPCRs, including classification, extracellular sensing, and G protein-signaling regulation. The involvement of GPCRs in pheromone and nutrient sensing has been studied extensively over the past decade. Following recent advances in fungal genome sequencing projects, a panoply of GPCR candidates has been revealed and some have been documented to play key roles sensing diverse extracellular signals, such as pheromones, sugars, amino acids, nitrogen sources, and even photons. Identification and deorphanization of additional putative GPCRs may require the development of new research tools. Here, we compare research on GPCRs in fungi with information derived from mammalian systems to provide a useful road map on how to better understand ligand-GPCR-G protein interactions in general. We also emphasize the utility of yeast as a discovery tool for systemic studies of GPCRs from other organisms.
Collapse
Affiliation(s)
- Chaoyang Xue
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Yen-Ping Hsueh
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
42
|
Xue C, Hsueh YP, Chen L, Heitman J. The RGS protein Crg2 regulates both pheromone and cAMP signalling in Cryptococcus neoformans. Mol Microbiol 2008; 70:379-95. [PMID: 18761692 PMCID: PMC3736591 DOI: 10.1111/j.1365-2958.2008.06417.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G proteins orchestrate critical cellular functions by transducing extracellular signals into internal signals and controlling cellular responses to environmental cues. G proteins typically function as switches that are activated by G protein-coupled receptors (GPCRs) and negatively controlled by regulator of G protein signalling (RGS) proteins. In the human fungal pathogen Cryptococcus neoformans, three G protein alpha subunits (Gpa1, Gpa2 and Gpa3) have been identified. In a previous study, we identified the RGS protein Crg2 involved in regulating the pheromone response pathway through Gpa2 and Gpa3. In this study, a role for Crg2 was established in the Gpa1-cAMP signalling pathway that governs mating and virulence. We show that Crg2 physically interacts with Gpa1 and crg2 mutations increase cAMP production. crg2 mutations also enhance mating filament hyphae production, but reduce cell-cell fusion and sporulation efficiency during mating. Although crg2 mutations and the Gpa1 dominant active allele GPA1(Q284L) enhanced melanin production under normally repressive conditions, virulence was attenuated in a murine model. We conclude that Crg2 participates in controlling both Gpa1-cAMP-virulence and pheromone-mating signalling cascades and hypothesize it may serve as a molecular interface between these two central signalling conduits.
Collapse
Affiliation(s)
- Chaoyang Xue
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Yen-Ping Hsueh
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Lydia Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
43
|
The RGS protein Crg2 regulates pheromone and cyclic AMP signaling in Cryptococcus neoformans. EUKARYOTIC CELL 2008; 7:1540-8. [PMID: 18658258 DOI: 10.1128/ec.00154-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Crg1 and Crg2 are regulators of G-protein signaling homologs found in the human fungal pathogen Cryptococcus neoformans. Crg1 negatively regulates pheromone responses and mating through direct inhibition of Galpha subunits Gpa2 and Gpa3. It has also been proposed that Crg2 has a role in mating, as genetic crosses involving Deltacrg2 mutants resulted in formation of hyperfilaments. We found that mutation of Gpa2 and Gpa3 partially suppressed the hyperfilamentation, mutation of Gpa3 alleviated Deltacrg2-specfic cell swelling, and mutation of the mitogen-activated protein kinase Cpk1 blocked both processes. These findings indicate that Gpa2 and Gpa3 function downstream of Crg2 and that Gpa3 is also epistatic to Crg2 in a Cpk1-dependent morphogenesis process linked to mating. Significantly, we found that Deltacrg2 mutants formed enlarged capsules that mimic cells expressing a constitutively active GPA1(Q284L) allele and that the levels of intracellular cyclic AMP (cAMP) were also elevated, suggesting that Crg2 also negatively regulates the Gpa1-cAMP signaling pathway. We further showed that Crg2 interacted with Gpa3 and Gpa1, but not Gpa2, in a pulldown assay and that Crg2 maintained a higher in vitro GTPase-activating protein activity toward Gpa3 and Gpa1 than to Gpa2. Finally, we found that dysregulation of cAMP due to the Crg2 mutation attenuated virulence in a murine model of cryptococcosis. Taken together, our study reveals Crg2 as an RGS (regulator of G-protein signaling) protein of multiregulatory function, including one that controls mating distinctly from Crg1 and one that serves as a novel inhibitor of Gpa1-cAMP signaling.
Collapse
|
44
|
Valerius O, Kleinschmidt M, Rachfall N, Schulze F, López Marín S, Hoppert M, Streckfuss-Bömeke K, Fischer C, Braus GH. The Saccharomyces Homolog of Mammalian RACK1, Cpc2/Asc1p, Is Required for FLO11-dependent Adhesive Growth and Dimorphism. Mol Cell Proteomics 2007; 6:1968-79. [PMID: 17704055 DOI: 10.1074/mcp.m700184-mcp200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nutrient starvation results in the interaction of Saccharomyces cerevisiae cells with each other and with surfaces. Adhesive growth requires the expression of the FLO11 gene regulated by the Ras/cAMP/cAMP-dependent protein kinase, the Kss1p/MAPK, and the Gcn4p/general amino acid control pathway, respectively. Proteomics two-dimensional DIGE experiments revealed post-transcriptionally regulated proteins in response to amino acid starvation including the ribosomal protein Cpc2p/Asc1p. This putative translational regulator is highly conserved throughout the eukaryotic kingdom and orthologous to mammalian RACK1. Deletion of CPC2/ASC1 abolished amino acid starvation-induced adhesive growth and impaired basal expression of FLO11 and its activation upon starvation in haploid cells. In addition, the diploid Flo11p-dependent pseudohyphal growth during nitrogen limitation was CPC2/ASC1-dependent. A more detailed analysis revealed that a CPC2/ASC1 deletion caused increased sensitivity to cell wall drugs suggesting that the gene is required for general cell wall integrity. Phosphoproteome and Western hybridization data indicate that Cpc2p/Asc1p affected the phosphorylation of the translational initiation factors eIF2 alpha and eIF4A and the ribosome-associated complex RAC. A crucial role of Cpc2p/Asc1p at the ribosomal interface coordinating signal transduction, translation initiation, and transcription factor formation was corroborated.
Collapse
Affiliation(s)
- Oliver Valerius
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1311-40. [PMID: 17604854 PMCID: PMC2031910 DOI: 10.1016/j.bbamcr.2007.05.003] [Citation(s) in RCA: 470] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.
Collapse
Affiliation(s)
- Raymond E Chen
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
46
|
Zeller CE, Parnell SC, Dohlman HG. The RACK1 ortholog Asc1 functions as a G-protein beta subunit coupled to glucose responsiveness in yeast. J Biol Chem 2007; 282:25168-76. [PMID: 17591772 DOI: 10.1074/jbc.m702569200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to the prevailing paradigm, G-proteins are composed of three subunits, an alpha subunit with GTPase activity and a tightly associated betagamma subunit complex. In the yeast Saccharomyces cerevisiae there are two known Galpha proteins (Gpa1 and Gpa2) but only one Gbetagamma, which binds only to Gpa1. Here we show that the yeast ortholog of RACK1 (receptor for activated protein kinase C1) Asc1 functions as the Gbeta for Gpa2. As with other known Gbeta proteins, Asc1 has a 7-WD domain structure, interacts directly with the Galpha in a guanine nucleotide-dependent manner, and inhibits Galpha guanine nucleotide exchange activity. In addition, Asc1 binds to the effector enzyme adenylyl cyclase (Cyr1), and diminishes the production of cAMP in response to glucose stimulation. Thus, whereas Gpa2 promotes glucose signaling through elevated production of cAMP, Asc1 has opposing effects on these same processes. Our findings reveal the existence of an unusual Gbeta subunit, one having multiple functions within the cell in addition to serving as a signal transducer for cell surface receptors and intracellular effectors.
Collapse
Affiliation(s)
- Corinne E Zeller
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
47
|
Hao N, Behar M, Elston TC, Dohlman HG. Systems biology analysis of G protein and MAP kinase signaling in yeast. Oncogene 2007; 26:3254-66. [PMID: 17496920 DOI: 10.1038/sj.onc.1210416] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Approximately a third of all drugs act by binding directly to cell surface receptors coupled to G proteins. Other drugs act indirectly on these same pathways, for example, by inhibiting neurotransmitter reuptake or by blocking the inactivation of intracellular second messengers. These drugs have revolutionized the treatment of human disease. However, the complexity of G protein signaling mechanisms has significantly hampered our ability to identify additional new drug targets. Moreover, today's molecular pharmacologists are accustomed to working on narrowly focused problems centered on a single protein or enzymatic process. Here we describe emerging efforts in yeast aimed at identifying proteins and processes that modulate the function of receptors, G proteins and MAP kinase effectors. The scope of these efforts is far more systematic, comprehensive and quantitative than anything attempted previously, and includes integrated approaches in genetics, proteomics and computational biology.
Collapse
Affiliation(s)
- N Hao
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA
| | | | | | | |
Collapse
|
48
|
Abstract
In contrast to animal-based mutant phenotype assays, recent biochemical and quantitative genetic studies have identified hundreds of potential regulators of known signaling pathways. We discuss the discrepancy between previous models and new data, put forward a different signaling conceptual framework incorporating time-dependent quantitative contributions, and suggest how this new framework can impact our study of human disease.
Collapse
Affiliation(s)
- Adam Friedman
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02175, USA
| | | |
Collapse
|
49
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Slessareva JE, Routt SM, Temple B, Bankaitis VA, Dohlman HG. Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein alpha subunit at the endosome. Cell 2006; 126:191-203. [PMID: 16839886 DOI: 10.1016/j.cell.2006.04.045] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 02/06/2006] [Accepted: 04/28/2006] [Indexed: 01/21/2023]
Abstract
In the yeast Saccharomyces cerevisiae, the G protein beta gamma subunits are essential for pheromone signaling. The Galpha subunit Gpa1 can also promote signaling, but the effectors in this pathway are not well characterized. To identify candidate Gpa1 effectors, we expressed the constitutively active Gpa1(Q323L) mutant in each of nearly 5000 gene-deletion strains and measured mating-specific responses. Our analysis reveals a requirement for both the catalytic (Vps34) and regulatory (Vps15) subunits of the sole phosphatidylinositol 3-kinase in yeast. We demonstrate that Gpa1 is present at endosomes, where it interacts directly with both Vps34 and Vps15 and stimulates increased production of phosphatidylinositol 3-phosphate. Notably, Vps15 binds to GDP-bound Gpa1 and is predicted to have a seven-WD repeat structure similar to that of known G protein beta subunits. These findings reveal two new components of the pheromone signaling pathway. More remarkably, these proteins appear to comprise a preformed effector-G beta subunit assembly and function at the endosome rather than at the plasma membrane.
Collapse
Affiliation(s)
- Janna E Slessareva
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|