1
|
Royero-Bermeo WY, Sánchez-Jiménez MM, Ospina-Villa JD. Aptamers as innovative tools for malaria diagnosis and treatment: advances and future perspectives. Biol Methods Protoc 2025; 10:bpaf025. [PMID: 40223817 PMCID: PMC11992340 DOI: 10.1093/biomethods/bpaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Malaria, caused by Plasmodium spp. parasites (P. vivax, P. falciparum, P. ovale, P. malariae, and P. knowlesi), remains a significant global health challenge, with 263 million cases and 567 000 deaths reported in 2023. Diagnosis in endemic regions relies on clinical symptoms, microscopy, and rapid diagnostic tests. Although widely used, microscopy suffers from variability in sensitivity due to operator expertise and low parasitemia. Rapid diagnostic tests, which are favored for their simplicity and speed, show high sensitivity for P. vivax but reduced accuracy (80%) for P. falciparum, which is attributed to deletions in histidine-rich protein 2/3 proteins caused by Pfhrp2/3 gene mutations. Innovative diagnostic and therapeutic technologies, such as aptamers, are gaining attention. Aptamers are single-stranded oligonucleotides that bind specifically to target molecules with high affinity. They have shown promise in disease diagnosis, therapeutics, and environmental monitoring. In malaria, aptamers are being explored as highly sensitive and specific diagnostic tools capable of detecting Plasmodium proteins across all infection stages. Additionally, they offer potential for novel therapeutic strategies, enhancing disease control and treatment options. These advancements highlight the use of aptamers as versatile and innovative approaches for addressing malaria and other infectious diseases. A comprehensive literature search was conducted in the PubMed, ScienceDirect, and SCOPUS databases via the keywords "Aptamers" AND "Malaria" AND "Aptamers" AND "Plasmodium." Additionally, patent searches were carried out in the LENS, WIPO, and LATIPAT databases via the same search terms. In total, 88 relevant articles were selected for this review, providing a comprehensive and evidence-based foundation to discuss emerging aptamer technologies for malaria diagnosis and treatment. The proteins commonly employed in rapid malaria diagnostic tests, such as histidine-rich protein 2, P. lactate dehydrogenase, and prostaglandin dehydrogenase, are highlighted. However, the identification of new targets, such as HMIGB1 and DRX1 (1-deoxy-d-xylulose-5-phosphate reductoisomerase), and the detection of whole cells have also been emphasized.
Collapse
Affiliation(s)
- Wendy Yulieth Royero-Bermeo
- Instituto Colombiano de Medicina Tropical, Universidad CES, Carrera 43A 52 S-99, Sabaneta, Antioquia, 055450, Colombia
| | - Miryan Margot Sánchez-Jiménez
- Instituto Colombiano de Medicina Tropical, Universidad CES, Carrera 43A 52 S-99, Sabaneta, Antioquia, 055450, Colombia
| | - Juan David Ospina-Villa
- Instituto Colombiano de Medicina Tropical, Universidad CES, Carrera 43A 52 S-99, Sabaneta, Antioquia, 055450, Colombia
| |
Collapse
|
2
|
Vaishalli PM, Das R, Cheema HS, Ghosh S, Chandana M, Anand A, Murmu KC, Padmanaban G, Ravindran B, Nagaraj VA. Plasmodium berghei HMGB1 controls the host immune responses and splenic clearance by regulating the expression of pir genes. J Biol Chem 2024; 300:107829. [PMID: 39341498 PMCID: PMC11541847 DOI: 10.1016/j.jbc.2024.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
High mobility group box (HMGB) proteins belong to the high mobility group (HMG) superfamily of non-histone nuclear proteins that are involved in chromatin remodeling, regulation of gene expression, and DNA repair. When extracellular, HMGBs serve as alarmins inducing inflammation, and this is attributed to the proinflammatory activity of box B. Here, we show that Plasmodium HMGB1 has key amino acid changes in box B resulting in the loss of TNF-α stimulatory activity. Site-directed mutagenesis of the critical amino acids in box B with respect to mouse HMGB1 renders recombinant Plasmodium berghei (Pb) HMGB1 capable of inducing TNF-α release. Targeted deletion of PbHMGB1 and a detailed in vivo phenotyping show that PbHMGB1 knockout (KO) parasites can undergo asexual stage development. Interestingly, Balb/c mice-infected with PbHMGB1KO parasites display a protective phenotype with subsequent clearance of blood parasitemia and develop long-lasting protective immunity against the challenges performed with Pb wildtype parasites. The characterization of splenic responses shows prominent germinal centers leading to effective humoral responses and enhanced T follicular helper cells. There is also complete protection from experimental cerebral malaria in CBA/CaJ mice susceptible to cerebral pathogenesis with subsequent parasite clearance. Transcriptomic studies suggest the involvement of PbHMGB1 in pir expression. Our findings highlight the gene regulatory function of parasite HMGB1 and its in vivo significance in modulating the host immune responses. Further, clearance of asexual stages in PbHMGB1KO-infected mice underscores the important role of parasite HMGB1 in host immune evasion. These findings have implications in developing attenuated blood-stage vaccines for malaria.
Collapse
Affiliation(s)
- Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Harveer Singh Cheema
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Department of Botany, Meerut College, Meerut, Uttar Pradesh, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | | | |
Collapse
|
3
|
Bonnell V, Zhang Y, Brown A, Horton J, Josling G, Chiu TP, Rohs R, Mahony S, Gordân R, Llinás M. DNA sequence and chromatin differentiate sequence-specific transcription factor binding in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2024; 52:10161-10179. [PMID: 38966997 PMCID: PMC11417369 DOI: 10.1093/nar/gkae585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Development of the malaria parasite, Plasmodium falciparum, is regulated by a limited number of sequence-specific transcription factors (TFs). However, the mechanisms by which these TFs recognize genome-wide binding sites is largely unknown. To address TF specificity, we investigated the binding of two TF subsets that either bind CACACA or GTGCAC DNA sequence motifs and further characterized two additional ApiAP2 TFs, PfAP2-G and PfAP2-EXP, which bind unique DNA motifs (GTAC and TGCATGCA). We also interrogated the impact of DNA sequence and chromatin context on P. falciparum TF binding by integrating high-throughput in vitro and in vivo binding assays, DNA shape predictions, epigenetic post-translational modifications, and chromatin accessibility. We found that DNA sequence context minimally impacts binding site selection for paralogous CACACA-binding TFs, while chromatin accessibility, epigenetic patterns, co-factor recruitment, and dimerization correlate with differential binding. In contrast, GTGCAC-binding TFs prefer different DNA sequence context in addition to chromatin dynamics. Finally, we determined that TFs that preferentially bind divergent DNA motifs may bind overlapping genomic regions due to low-affinity binding to other sequence motifs. Our results demonstrate that TF binding site selection relies on a combination of DNA sequence and chromatin features, thereby contributing to the complexity of P. falciparum gene regulatory mechanisms.
Collapse
Affiliation(s)
- Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Alan S Brown
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - John Horton
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Schwarz D, Lourido S. The multifaceted roles of Myb domain-containing proteins in apicomplexan parasites. Curr Opin Microbiol 2023; 76:102395. [PMID: 37866202 PMCID: PMC10872578 DOI: 10.1016/j.mib.2023.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Apicomplexan parasites are a large and diverse clade of protists responsible for significant diseases of humans and animals. Central to the ability of these parasites to colonize their host and evade immune responses is an expanded repertoire of gene-expression programs that requires the coordinated action of complex transcriptional networks. DNA-binding proteins and chromatin regulators are essential orchestrators of apicomplexan gene expression that often act in concert. Although apicomplexan genomes encode various families of putative DNA-binding proteins, most remain functionally and mechanistically unexplored. This review highlights the versatile role of myeloblastosis (Myb) domain-containing proteins in apicomplexan parasites as transcription factors and chromatin regulators. We explore the diversity of Myb domain structure and use phylogenetic analysis to identify common features across the phylum. This provides a framework to discuss functional heterogeneity and regulation of Myb domain-containing proteins particularly emphasizing their role in parasite differentiation.
Collapse
Affiliation(s)
- Dominic Schwarz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Abstract
Plasmodium falciparum, the human malaria parasite, infects two hosts and various cell types, inducing distinct morphological and physiological changes in the parasite in response to different environmental conditions. These variations required the parasite to adapt and develop elaborate molecular mechanisms to ensure its spread and transmission. Recent findings have significantly improved our understanding of the regulation of gene expression in P. falciparum. Here, we provide an up-to-date overview of technologies used to highlight the transcriptomic adjustments occurring in the parasite throughout its life cycle. We also emphasize the complementary and complex epigenetic mechanisms regulating gene expression in malaria parasites. This review concludes with an outlook on the chromatin architecture, the remodeling systems, and how this 3D genome organization is critical in various biological processes.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| |
Collapse
|
6
|
Wang J, Chen K, Ren Q, Zhang S, Yang J, Wang Y, Nian Y, Li X, Liu G, Luo J, Yin H, Guan G. Comparative genomics reveals unique features of two Babesia motasi subspecies: Babesia motasi lintanensis and Babesia motasi hebeiensis. Int J Parasitol 2023; 53:265-283. [PMID: 37004737 DOI: 10.1016/j.ijpara.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 04/03/2023]
Abstract
Parasites of the Babesia genus are prevalent worldwide and infect a wide diversity of domestic animals and humans. Herein, using Oxford Nanopore Technology and Illumina sequencing technologies, we sequenced two Babesia sub-species, Babesia motasi lintanensis and Babesia motasi hebeiensis. We identified 3,815 one-to-one ortholog genes that are specific to ovine Babesia spp. Phylogenetic analysis reveals that the two B. motasi subspecies form a distinct clade from other Piroplasma spp. Consistent with their phylogenetic position, comparative genomic analysis reveals that these two ovine Babesia spp. share higher colinearity with Babesia bovis than with Babesia microti. Concerning the speciation date, B. m. lintanensis split from B. m. hebeiensis approximately 17 million years ago. Genes correlated to transcription, translation, protein modification and degradation, as well as differential/specialized gene family expansions in these two subspecies may favor adaptation to vertebrate and tick hosts. The close relationship between B. m. lintanensis and B. m. hebeiensis is underlined by a high degree of genomic synteny. Compositions of most invasion, virulence, development, and gene transcript regulation-related multigene families, including spherical body protein, variant erythrocyte surface antigen, glycosylphosphatidylinositol anchored proteins, and transcription factor Apetala 2 genes, is largely conserved, but in contrast to this conserved situation, we observe major differences in species-specific genes that may be involved in multiple functions in parasite biology. For the first time in Babesia spp., we find abundant fragments of long terminal repeat-retrotransposons in these two species. We provide fundamental information to characterize the genomes of B. m. lintanensis and B. m. hebeiensis, providing insights into the evolution of B. motasi group parasites.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Shangdi Zhang
- Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Yanbo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Yueli Nian
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| |
Collapse
|
7
|
Kumar S, Kappe SHI. PfHMGB2 has a role in malaria parasite mosquito infection. Front Cell Infect Microbiol 2022; 12:1003214. [PMID: 36506024 PMCID: PMC9732239 DOI: 10.3389/fcimb.2022.1003214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Differentiation of asexually replicating parasites into gametocytes is critical for successful completion of the sexual phase of the malaria parasite life cycle. Gametes generated from gametocytes fuse to form a zygote which differentiates into ookinetes and oocysts. The sporozoites are formed inside oocysts which migrate to the salivary glands for next cycle of human infection. These morphologically and functionally distinct stages require stage-specific gene expression via specific transcriptional regulators. The capacity of high mobility group box (HMGB) proteins to interact with DNA in a sequence independent manner enables them to regulate higher order chromosome organization and regulation of gene expression. Plasmodium falciparum HMGB2 (PfHMGB2) shows a typical L- shaped predicted structure which is similar to mammalian HMG box proteins and shows very high protein sequence similarity to PyHMGB2 and PbHMGB2. Functional characterization of PfHMGB2 by gene deletion (Pfhmgb2¯) showed that knockout parasites develop normally as asexual stages and undergo gametocytogenesis. Transmission experiments revealed that Pfhmgb2¯ can infect mosquitoes and develop as oocyst stages. However, transmission was reduced compared to wild type (WT) parasites and as a consequence, the salivary gland sporozoites were reduced in number. In summary, we demonstrate that PfHMGB2 has no role in asexual growth and a modest role in sexual phase development and parasite transmission to the mosquito.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics , University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Parreira KS, Scarpelli P, Rezende Lima W, Garcia RS. Contribution of Transcriptome to Elucidate the Biology of Plasmodium spp. Curr Top Med Chem 2022; 22:169-187. [PMID: 35021974 DOI: 10.2174/1568026622666220111140803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022]
Abstract
In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.
Collapse
Affiliation(s)
| | - Pedro Scarpelli
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Wânia Rezende Lima
- Departamento de Medicina, Instituto de Biotecnologia-Universidade Federal de Catalão
| | - R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
9
|
The Architectural Factor HMGB1 Is Involved in Genome Organization in the Human Malaria Parasite Plasmodium falciparum. mBio 2021; 12:mBio.00148-21. [PMID: 33906919 PMCID: PMC8092211 DOI: 10.1128/mbio.00148-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The three-dimensional (3D) genome organization plays a critical role in the regulation of gene expression in eukaryotic organisms. In the unicellular malaria parasite Plasmodium falciparum, the high-order chromosome organization has emerged as an important epigenetic pathway mediating gene expression, particularly for virulence genes, but the related architectural factors and underlying mechanism remain elusive. Herein, we have identified the high-mobility-group protein HMGB1 as a critical architectural factor for maintenance of genome organization in P. falciparum Genome-wide occupancy analysis (chromatin immunoprecipitation sequencing [ChIP-seq]) shows that the HMGB1 protein is recruited mainly to centromeric regions likely via a DNA-binding-independent pathway. Chromosome conformation capture coupled with next-generation sequencing (Hi-C-seq) and 3D modeling analysis show that the loss of HMGB1 disrupts the integrity of centromere/telomere-based chromosome organization accompanied with diminished interaction frequency among centromere clusters. This triggers local chromatin alteration and dysregulated gene expression. Notably, the entire repertoire of the primary virulence genes (var) was completely silenced in the absence of P. falciparum HMGB1 (PfHMGB1). Furthermore, the disrupted nuclear organization was reconstituted by complementation of HMGB1, thereby rescuing the mutually exclusive expression of the var gene family. Collectively, these data demonstrate that the architectural factor HMGB1 is associated with gene expression via mediating the high-order structure of genome organization. This finding not only contributes better understanding of the epigenetic regulation of gene expression but may also provide novel targets for antimalarial strategies.IMPORTANCE Malaria remains a major public health and economic burden currently. The mutually exclusive expression of the virulence genes is associated with the pathogenesis and immune evasion of human malaria parasites in the host. The nuclear architecture provides a well-organized environment for differential gene expression in the nucleus, but the underlying mechanism remains largely unknown. In this study, we have identified the highly conserved high-mobility-group protein HMGB1 as a key architecture regulator involved in virulence gene expression by establishing high-order genome organization in the nucleus of P. falciparum Mechanistic investigation revealed that the specific interaction of HMGB1 and centromeres constructed the precisely organized nuclear architecture, which coordinated with local chromatin structure to control the singular expression of virulence genes. Hence, this protein appears to be a critical architectural regulator for the pathogenesis of malaria infection and may be a new target for the development of an intervention strategy against malaria.
Collapse
|
10
|
Briquet S, Marinach C, Silvie O, Vaquero C. Preparing for Transmission: Gene Regulation in Plasmodium Sporozoites. Front Cell Infect Microbiol 2021; 10:618430. [PMID: 33585284 PMCID: PMC7878544 DOI: 10.3389/fcimb.2020.618430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium sporozoites are transmitted to mammals by anopheline mosquitoes and first infect the liver, where they transform into replicative exoerythrocytic forms, which subsequently release thousands of merozoites that invade erythrocytes and initiate the malaria disease. In some species, sporozoites can transform into dormant hypnozoites in the liver, which cause malaria relapses upon reactivation. Transmission from the insect vector to a mammalian host is a critical step of the parasite life cycle, and requires tightly regulated gene expression. Sporozoites are formed inside oocysts in the mosquito midgut and become fully infectious after colonization of the insect salivary glands, where they remain quiescent until transmission. Parasite maturation into infectious sporozoites is associated with reprogramming of the sporozoite transcriptome and proteome, which depends on multiple layers of transcriptional and post-transcriptional regulatory mechanisms. An emerging scheme is that gene expression in Plasmodium sporozoites is controlled by alternating waves of transcription activity and translational repression, which shape the parasite RNA and protein repertoires for successful transition from the mosquito vector to the mammalian host.
Collapse
Affiliation(s)
- Sylvie Briquet
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Carine Marinach
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Catherine Vaquero
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
11
|
Briquet S, Lawson-Hogban N, Peronet R, Mécheri S, Vaquero C. A genetically hmgb2 attenuated blood stage P. berghei induces crossed-long live protection. PLoS One 2020; 15:e0232183. [PMID: 32379764 PMCID: PMC7205229 DOI: 10.1371/journal.pone.0232183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023] Open
Abstract
Due to the lack of efficiency to control malaria elicited by sub-unit vaccine preparations, vaccination with live-attenuated Plasmodium parasite as reported 70 years ago with irradiated sporozoites regained recently a significant interest. The complex life cycle of the parasite and the different stages of development between mammal host and anopheles do not help to propose an easy vaccine strategy. In order to achieve a complete long-lasting protection against Plasmodium infection and disease, we considered a genetically attenuated blood stage parasite in the hmgb2 gene coding for the high-mobility-group-box 2 (HMGB2). This Plasmodium protein belongs to the HMGB family and hold as the mammal proteins, a double life since it acts first as a nuclear factor involved in chromatin remodelling and transcription regulation and second, when secreted as an active pro-inflammatory alarmin protein. Even though the number of reports on whole living attenuated blood stage parasites is limited when compared to attenuated sporozoites, the results reported with Plasmodium KO parasites are very encouraging. In this report, we present a novel strategy based on pre-immunization with Δhmgb2PbNK65 parasitized red blood cells that confer long-lasting protection in a murine experimental cerebral malaria model against two highly pathogenic homologous and heterologous parasites.
Collapse
Affiliation(s)
- Sylvie Briquet
- Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
| | - Nadou Lawson-Hogban
- Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
| | - Roger Peronet
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
- Centre National de Recherche Scientifique ou CNRS, Unité de Recherche Associée 2581, Paris, France
| | - Salaheddine Mécheri
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
- Centre National de Recherche Scientifique ou CNRS, Unité de Recherche Associée 2581, Paris, France
| | - Catherine Vaquero
- Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
- * E-mail:
| |
Collapse
|
12
|
Abel S, Le Roch KG. The role of epigenetics and chromatin structure in transcriptional regulation in malaria parasites. Brief Funct Genomics 2019; 18:302-313. [PMID: 31220857 PMCID: PMC6859822 DOI: 10.1093/bfgp/elz005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Due to the unique selective pressures and extreme changes faced by the human malaria parasite Plasmodium falciparum throughout its life cycle, the parasite has evolved distinct features to alter its gene expression patterns. Along with classical gene regulation by transcription factors (TFs), of which only one family, the AP2 TFs, has been described in the parasite genome, a large body of evidence points toward chromatin structure and epigenetic factors mediating the changes in gene expression associated with parasite life cycle stages. These attributes may be critically important for immune evasion, host cell invasion and development of the parasite in its two hosts, the human and the Anopheles vector. Thus, the factors involved in the maintenance and regulation of chromatin and epigenetic features represent potential targets for antimalarial drugs. In this review, we discuss the mechanisms in P. falciparum that regulate chromatin structure, nucleosome landscape, the 3-dimensional structure of the genome and additional distinctive features created by parasite-specific genes and gene families. We review conserved traits of chromatin in eukaryotes in order to highlight what is unique in the parasite.
Collapse
Affiliation(s)
- Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
13
|
DNA aptamers for the recognition of HMGB1 from Plasmodium falciparum. PLoS One 2019; 14:e0211756. [PMID: 30964875 PMCID: PMC6456224 DOI: 10.1371/journal.pone.0211756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022] Open
Abstract
Rapid Diagnostic Tests (RDTs) for malaria are restricted to a few biomarkers and antibody-mediated detection. However, the expression of commonly used biomarkers varies geographically and the sensibility of immunodetection can be affected by batch-to-batch differences or limited thermal stability. In this study we aimed to overcome these limitations by identifying a potential biomarker and by developing molecular sensors based on aptamer technology. Using gene expression databases, ribosome profiling analysis, and structural modeling, we find that the High Mobility Group Box 1 protein (HMGB1) of Plasmodium falciparum is highly expressed, structurally stable, and present along all blood-stages of P. falciparum infection. To develop biosensors, we used in vitro evolution techniques to produce DNA aptamers for the recombinantly expressed HMG-box, the conserved domain of HMGB1. An evolutionary approach for evaluating the dynamics of aptamer populations suggested three predominant aptamer motifs. Representatives of the aptamer families were tested for binding parameters to the HMG-box domain using microscale thermophoresis and rapid kinetics. Dissociation constants of the aptamers varied over two orders of magnitude between nano- and micromolar ranges while the aptamer-HMG-box interaction occurred in a few seconds. The specificity of aptamer binding to the HMG-box of P. falciparum compared to its human homolog depended on pH conditions. Altogether, our study proposes HMGB1 as a candidate biomarker and a set of sensing aptamers that can be further developed into rapid diagnostic tests for P. falciparum detection.
Collapse
|
14
|
ApiAP2 Transcription Factors in Apicomplexan Parasites. Pathogens 2019; 8:pathogens8020047. [PMID: 30959972 PMCID: PMC6631176 DOI: 10.3390/pathogens8020047] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Apicomplexan parasites are protozoan organisms that are characterised by complex life cycles and they include medically important species, such as the malaria parasite Plasmodium and the causative agents of toxoplasmosis (Toxoplasma gondii) and cryptosporidiosis (Cryptosporidium spp.). Apicomplexan parasites can infect one or more hosts, in which they differentiate into several morphologically and metabolically distinct life cycle stages. These developmental transitions rely on changes in gene expression. In the last few years, the important roles of different members of the ApiAP2 transcription factor family in regulating life cycle transitions and other aspects of parasite biology have become apparent. Here, we review recent progress in our understanding of the different members of the ApiAP2 transcription factor family in apicomplexan parasites.
Collapse
|
15
|
Ararat-Sarria M, Patarroyo MA, Curtidor H. Parasite-Related Genetic and Epigenetic Aspects and Host Factors Influencing Plasmodium falciparum Invasion of Erythrocytes. Front Cell Infect Microbiol 2019; 8:454. [PMID: 30693273 PMCID: PMC6339890 DOI: 10.3389/fcimb.2018.00454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023] Open
Abstract
Malaria, a disease caused by Plasmodium parasites, is widespread throughout tropical and sub-tropical regions worldwide; it mostly affects children and pregnant woman. Eradication has stalled despite effective prevention measures and medication being available for this disease; this has mainly been due to the parasite's resistance to medical treatment and the mosquito vector's resistance to insecticides. Tackling such resistance involves using renewed approaches and techniques for accruing a deep understanding of the parasite's biology, and developing new drugs and vaccines. Studying the parasite's invasion of erythrocytes should shed light on its ability to switch between invasion phenotypes related to the expression of gene sets encoding proteins acting as ligands during target cell invasion, thereby conferring mechanisms for evading a particular host's immune response and adapting to changes in target cell surface receptors. This review considers some factors influencing the expression of such phenotypes, such as Plasmodium's genetic, transcriptional and epigenetic characteristics, and explores some host-related aspects which could affect parasite phenotypes, aiming at integrating knowledge regarding this topic and the possible relationship between the parasite's biology and host factors playing a role in erythrocyte invasion.
Collapse
Affiliation(s)
- Monica Ararat-Sarria
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Hernando Curtidor
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
16
|
Overexpression of Trypanosoma cruzi High Mobility Group B protein (TcHMGB) alters the nuclear structure, impairs cytokinesis and reduces the parasite infectivity. Sci Rep 2019; 9:192. [PMID: 30655631 PMCID: PMC6336821 DOI: 10.1038/s41598-018-36718-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022] Open
Abstract
Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.
Collapse
|
17
|
Toenhake CG, Fraschka SAK, Vijayabaskar MS, Westhead DR, van Heeringen SJ, Bártfai R. Chromatin Accessibility-Based Characterization of the Gene Regulatory Network Underlying Plasmodium falciparum Blood-Stage Development. Cell Host Microbe 2018; 23:557-569.e9. [PMID: 29649445 PMCID: PMC5899830 DOI: 10.1016/j.chom.2018.03.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/05/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
Abstract
Underlying the development of malaria parasites within erythrocytes and the resulting pathogenicity is a hardwired program that secures proper timing of gene transcription and production of functionally relevant proteins. How stage-specific gene expression is orchestrated in vivo remains unclear. Here, using the assay for transposase accessible chromatin sequencing (ATAC-seq), we identified ∼4,000 regulatory regions in P. falciparum intraerythrocytic stages. The vast majority of these sites are located within 2 kb upstream of transcribed genes and their chromatin accessibility pattern correlates positively with abundance of the respective mRNA transcript. Importantly, these regions are sufficient to drive stage-specific reporter gene expression and DNA motifs enriched in stage-specific sets of regulatory regions interact with members of the P. falciparum AP2 transcription factor family. Collectively, this study provides initial insights into the in vivo gene regulatory network of P. falciparum intraerythrocytic stages and should serve as a valuable resource for future studies.
Collapse
Affiliation(s)
- Christa Geeke Toenhake
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen, 6525 GA, the Netherlands
| | | | | | - David Robert Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Simon Jan van Heeringen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, 6525 GA, the Netherlands
| | - Richárd Bártfai
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen, 6525 GA, the Netherlands.
| |
Collapse
|
18
|
Fitri LE, Rosmarwati E, Rizky Y, Budiarti N, Samsu N, Mintaroem K. Strong renal expression of heat shock protein 70, high mobility group box 1, inducible nitric oxide synthase, and nitrotyrosine in mice model of severe malaria. Rev Soc Bras Med Trop 2017; 50:489-498. [PMID: 28954070 DOI: 10.1590/0037-8682-0049-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/10/2017] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Renal damage is a consequence of severe malaria, and is generally caused by sequestration of Plasmodium falciparum -infected erythrocytes in the renal microcirculation, which leads to obstruction, hypoxia, and ischemia. This triggers high mobility group box 1 (HMGB1) to send a danger signal through toll-like receptors 2 and 4. This signal up-regulates inducible nitric oxide (iNOS) and nitrotyrosine to re-perfuse the tissue, and also increases heat shock protein 70 (HSP70) expression. As no study has examined the involvement of intracellular secondary molecules in this setting, the present study compared the renal expressions of HSP70, HMGB1, iNOS, and nitrotyrosine between mice suffered from severe malaria and normal mice. METHODS C57BL/6 mice were divided into an infected group (intraperitoneal injection of 10 6 P. berghei ANKA) and a non-infected group. Renal damage was evaluated using hematoxylin eosin staining, and immunohistochemistry was used to evaluate the expressions of HSP70, HMGB1, iNOS, and nitrotyrosine. RESULTS Significant inter-group differences were observed in the renal expressions of HSP70, HMGB1, and iNOS (p=0.000, Mann-Whitney test), as well as nitrotyrosine (p=0.000, independent t test). The expressions of HSP70 and HMGB1 were strongly correlated (p=0.000, R=1.000). No correlations were observed between iNOS and HMGB, HMGB1 and nitrotyrosine, HSP70 and nitrotyrosine, or iNOS and nitrotyrosine. CONCLUSIONS It appears that HMGB1, HSP70, iNOS, and nitrotyrosine play roles in the renal damage that is observed in mice with severe malaria. Only HSP70 expression is strongly correlated with the expression of HMGB1.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ervina Rosmarwati
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Yesita Rizky
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Niniek Budiarti
- Tropical Medicine Division, Internal Medicine Department, Faculty of Medicine, Universitas Brawijaya, dr. Saiful Anwar Public Hospital, Malang, Indonesia
| | - Nur Samsu
- Renal and Hypertension Division, Internal Medicine Department, Faculty of Medicine, Universitas Brawijaya, dr Saiful Anwar Public Hospital, Malang, Indonesia
| | - Karyono Mintaroem
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
19
|
Ubhe S, Rawat M, Verma S, Anamika K, Karmodiya K. Genome-wide identification of novel intergenic enhancer-like elements: implications in the regulation of transcription in Plasmodium falciparum. BMC Genomics 2017; 18:656. [PMID: 28836940 PMCID: PMC5569477 DOI: 10.1186/s12864-017-4052-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/11/2017] [Indexed: 01/28/2023] Open
Abstract
Background The molecular mechanisms of transcriptional regulation are poorly understood in Plasmodium falciparum. In addition, most of the genes in Plasmodium falciparum are transcriptionally poised and only a handful of cis-regulatory elements are known to operate in transcriptional regulation. Here, we employed an epigenetic signature based approach to identify significance of previously uncharacterised intergenic regions enriched with histone modification marks leading to discovery of enhancer-like elements. Results We found that enhancer-like elements are significantly enriched with H3K4me1, generate unique non-coding bi-directional RNAs and majority of them can function as cis-regulators. Furthermore, functional enhancer reporter assay demonstrates that the enhancer-like elements regulate transcription of target genes in Plasmodium falciparum. Our study also suggests that the Plasmodium genome segregates functionally related genes into discrete housekeeping and pathogenicity/virulence clusters, presumably for robust transcriptional control of virulence/pathogenicity genes. Conclusions This report contributes to the understanding of parasite regulatory genomics by identification of enhancer-like elements, defining their epigenetic and transcriptional features and provides a resource of functional cis-regulatory elements that may give insights into the virulence/pathogenicity of Plasmodium falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4052-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suyog Ubhe
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India
| | - Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India
| | - Srikant Verma
- Labs, Persistent Systems Limited, Pingala - Aryabhata, Erandwane, Pune, 411004, India
| | - Krishanpal Anamika
- Labs, Persistent Systems Limited, Pingala - Aryabhata, Erandwane, Pune, 411004, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India.
| |
Collapse
|
20
|
Chi JH, Seo GS, Cheon JH, Lee SH. Isoliquiritigenin inhibits TNF-α-induced release of high-mobility group box 1 through activation of HDAC in human intestinal epithelial HT-29 cells. Eur J Pharmacol 2017; 796:101-109. [PMID: 28012970 DOI: 10.1016/j.ejphar.2016.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/27/2023]
Abstract
The suppression of pro-inflammatory cytokine-induced inflammation responses is an attractive pharmacological target for the development of therapeutic strategies for inflammatory bowel disease (IBD). In the present study, we evaluated the anti-inflammatory properties of flavonoid isoliquiritigenin (ISL) in intestinal epithelial cells and determined its mechanism of action. ISL suppressed the expression of inflammatory molecules, including IL-8, IL-1β and COX-2, in TNF-α-stimulated HT-29 cells. Moreover, ISL induced activation of Nrf2 and expression of its target genes, such as HO-1 and NQO1. ISL also inhibited the TNF-α-induced NF-κB activation in HT-29 cells. High-mobility group box 1 (HMGB1), which is one of the critical mediators of inflammation, is actively secreted from inflammatory cytokine-stimulated immune or non-immune cells. ISL inhibited HMGB1 secretion by preventing TNF-α-stimulated HMGB1 relocation, whereas the RNA and protein expression levels of cellular HMGB1 did not change in response to TNF-α or ISL. Moreover, we found that HMGB1 acetylation was associated with HMGB1 translocation to the cytoplasm and the extracellular release in TNF-α-stimulated HT-29 cells; however, ISL significantly decreased the amount of acetylated HMGB1 in both the cytoplasm and extracellular space of HT-29 cells. Histone deacetylase (HDAC) inhibition by Scriptaid abrogated ISL-induced HDAC activity and reversed the ISL-mediated decrease in acetylated HMGB1 release in TNF-α-stimulated HT-29 cells, suggesting that, at least in TNF-α-stimulated HT-29 cells, ISL suppresses acetylated HMGB1 release via the induction of HDAC activity. Together, the current results suggest that inhibition of HMGB1 release via the induction of HDAC activity using ISL may be a promising therapeutic intervention for IBD.
Collapse
Affiliation(s)
- Jin-Hua Chi
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, South Korea
| | - Geom Seog Seo
- Digestive Disease Research Institute, Wonkwang University College of Medicine, Jeonbuk, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea.
| | - Sung Hee Lee
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, South Korea.
| |
Collapse
|
21
|
Alzan HF, Knowles DP, Suarez CE. Comparative Bioinformatics Analysis of Transcription Factor Genes Indicates Conservation of Key Regulatory Domains among Babesia bovis, Babesia microti, and Theileria equi. PLoS Negl Trop Dis 2016; 10:e0004983. [PMID: 27832060 PMCID: PMC5104403 DOI: 10.1371/journal.pntd.0004983] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Apicomplexa tick-borne hemoparasites, including Babesia bovis, Babesia microti, and Theileria equi are responsible for bovine and human babesiosis and equine theileriosis, respectively. These parasites of vast medical, epidemiological, and economic impact have complex life cycles in their vertebrate and tick hosts. Large gaps in knowledge concerning the mechanisms used by these parasites for gene regulation remain. Regulatory genes coding for DNA binding proteins such as members of the Api-AP2, HMG, and Myb families are known to play crucial roles as transcription factors. Although the repertoire of Api-AP2 has been defined and a HMG gene was previously identified in the B. bovis genome, these regulatory genes have not been described in detail in B. microti and T. equi. In this study, comparative bioinformatics was used to: (i) identify and map genes encoding for these transcription factors among three parasites' genomes; (ii) identify a previously unreported HMG gene in B. microti; (iii) define a repertoire of eight conserved Myb genes; and (iv) identify AP2 correlates among B. bovis and the better-studied Plasmodium parasites. Searching the available transcriptome of B. bovis defined patterns of transcription of these three gene families in B. bovis erythrocyte stage parasites. Sequence comparisons show conservation of functional domains and general architecture in the AP2, Myb, and HMG proteins, which may be significant for the regulation of common critical parasite life cycle transitions in B. bovis, B. microti, and T. equi. A detailed understanding of the role of gene families encoding DNA binding proteins will provide new tools for unraveling regulatory mechanisms involved in B. bovis, B. microti, and T. equi life cycles and environmental adaptive responses and potentially contributes to the development of novel convergent strategies for improved control of babesiosis and equine piroplasmosis.
Collapse
Affiliation(s)
- Heba F. Alzan
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Donald P. Knowles
- Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Carlos E. Suarez
- Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
22
|
Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity. Infect Immun 2015; 83:2771-84. [PMID: 25916985 DOI: 10.1128/iai.03129-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/19/2015] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic high-mobility-group-box (HMGB) proteins are nuclear factors involved in chromatin remodeling and transcription regulation. When released into the extracellular milieu, HMGB1 acts as a proinflammatory cytokine that plays a central role in the pathogenesis of several immune-mediated inflammatory diseases. We found that the Plasmodium genome encodes two genuine HMGB factors, Plasmodium HMGB1 and HMGB2, that encompass, like their human counterparts, a proinflammatory domain. Given that these proteins are released from parasitized red blood cells, we then hypothesized that Plasmodium HMGB might contribute to the pathogenesis of experimental cerebral malaria (ECM), a lethal neuroinflammatory syndrome that develops in C57BL/6 (susceptible) mice infected with Plasmodium berghei ANKA and that in many aspects resembles human cerebral malaria elicited by P. falciparum infection. The pathogenesis of experimental cerebral malaria was suppressed in C57BL/6 mice infected with P. berghei ANKA lacking the hmgb2 gene (Δhmgb2 ANKA), an effect associated with a reduction of histological brain lesions and with lower expression levels of several proinflammatory genes. The incidence of ECM in pbhmgb2-deficient mice was restored by the administration of recombinant PbHMGB2. Protection from experimental cerebral malaria in Δhmgb2 ANKA-infected mice was associated with reduced sequestration in the brain of CD4(+) and CD8(+) T cells, including CD8(+) granzyme B(+) and CD8(+) IFN-γ(+) cells, and, to some extent, neutrophils. This was consistent with a reduced parasite sequestration in the brain, lungs, and spleen, though to a lesser extent than in wild-type P. berghei ANKA-infected mice. In summary, Plasmodium HMGB2 acts as an alarmin that contributes to the pathogenesis of cerebral malaria.
Collapse
|
23
|
A nuclear factor of high mobility group box protein in Toxoplasma gondii. PLoS One 2014; 9:e111993. [PMID: 25369210 PMCID: PMC4219823 DOI: 10.1371/journal.pone.0111993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/08/2014] [Indexed: 01/28/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear factor that usually binds DNA and modulates gene expression in multicellular organisms. Three HMGB1 orthologs were predicted in the genome of Toxoplasma gondii, an obligate intracellular protozoan pathogen, termed TgHMGB1a, b and c. Phylogenetic and bioinformatic analyses indicated that these proteins all contain a single HMG box and which shared in three genotypes. We cloned TgHMGB1a, a 33.9 kDa protein that can stimulates macrophages to release TNF-α, and, we demonstrated that the TgHMGB1a binds distorted DNA structures such as cruciform DNA in electrophoretic mobility shift assays (EMSA). Immunofluorescence assay indicated TgHMGB1a concentrated in the nucleus of intracellular tachyzoites but translocated into the cytoplasm while the parasites release to extracellular. There were no significant phenotypic changes when the TgHMGB1a B box was deleted, while transgenic parasites that overexpressed TgHMGB1a showed slower intracellular growth and caused delayed death in mouse, further quantitative RT-PCR analyses showed that the expression levels of many important genes, including virulence factors, increased when TgHMGB1a was overexpressed, but no significant changes were observed in TgHMGB1a B box-deficient parasites. Our findings demonstrated that TgHMGB1a is indeed a nuclear protein that maintains HMG box architectural functions and is a potential proinflammatory factor during the T.gondii infection. Further studies that clarify the functions of TgHMGB1s will increase our knowledge of transcriptional regulation and parasite virulence, and might provide new insight into host-parasite interactions for T. gondii infection.
Collapse
|
24
|
Oehring SC, Woodcroft BJ, Moes S, Wetzel J, Dietz O, Pulfer A, Dekiwadia C, Maeser P, Flueck C, Witmer K, Brancucci NMB, Niederwieser I, Jenoe P, Ralph SA, Voss TS. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. Genome Biol 2012. [PMID: 23181666 PMCID: PMC4053738 DOI: 10.1186/gb-2012-13-11-r108] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. CONCLUSION Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.
Collapse
|
25
|
Ribeiro FS, de Abreu da Silva IC, Carneiro VC, Belgrano FDS, Mohana-Borges R, de Andrade Rosa I, Benchimol M, Souza NRQ, Mesquita RD, Sorgine MHF, Gazos-Lopes F, Vicentino ARR, Wu W, de Moraes Maciel R, da Silva-Neto MAC, Fantappié MR. The dengue vector Aedes aegypti contains a functional high mobility group box 1 (HMGB1) protein with a unique regulatory C-terminus. PLoS One 2012; 7:e40192. [PMID: 22802955 PMCID: PMC3388995 DOI: 10.1371/journal.pone.0040192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/02/2012] [Indexed: 12/20/2022] Open
Abstract
The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB) proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1). The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich) C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus.
Collapse
Affiliation(s)
- Fabio Schneider Ribeiro
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isabel Caetano de Abreu da Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Vitor Coutinho Carneiro
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ivone de Andrade Rosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Universidade Santa Úrsula, Rio de Janeiro, Brasil
| | | | - Nathalia Rocha Quintino Souza
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcos Henrique Ferreira Sorgine
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Felipe Gazos-Lopes
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amanda Roberta Revoredo Vicentino
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Wenjie Wu
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Renata de Moraes Maciel
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mario Alberto Cardoso da Silva-Neto
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo Rosado Fantappié
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
26
|
Duffy MF, Selvarajah SA, Josling GA, Petter M. The role of chromatin in Plasmodium gene expression. Cell Microbiol 2012; 14:819-28. [DOI: 10.1111/j.1462-5822.2012.01777.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Cloning and characterization of high mobility group box protein 1 (HMGB1) of Wuchereria bancrofti and Brugia malayi. Parasitol Res 2012; 111:619-27. [PMID: 22402610 DOI: 10.1007/s00436-012-2878-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
A human homologue of high mobility group box 1 (HMGB1) protein was cloned and characterized from the human filarial parasites Wuchereria bancrofti and Brugia malayi. Sequence analysis showed that W. bancrofti HMGB1 (WbHMGB1) and B. malayi HMGB1 (BmHMGB1) proteins share 99 % sequence identity. Filarial HMGB1 showed typical architectural sequence characteristics of HMGB family of proteins and consisted of only a single HMG box domain that had significant sequence similarity to the pro-inflammatory B box domain of human HMGB1. When incubated with mouse peritoneal macrophages and human promyelocytic leukemia cells, rBmHMGB1 induced secretion of significant levels of pro-inflammatory cytokines such as TNF-α, GM-CSF, and IL-6. Functional analysis also showed that the filarial HMGB1 proteins can bind to supercoiled DNA similar to other HMG family of proteins. BmHMGB1 protein is expressed in the adult and microfilarial stages of the parasite and is found in the excretory secretions of the live parasites. These findings suggest that filarial HMGB1 may have a significant role in lymphatic pathology associated with lymphatic filariasis.
Collapse
|
28
|
Emerging functions of transcription factors in malaria parasite. J Biomed Biotechnol 2011; 2011:461979. [PMID: 22131806 PMCID: PMC3216465 DOI: 10.1155/2011/461979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/31/2022] Open
Abstract
Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs) are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.
Collapse
|
29
|
Laurentino EC, Taylor S, Mair GR, Lasonder E, Bartfai R, Stunnenberg HG, Kroeze H, Ramesar J, Franke-Fayard B, Khan SM, Janse CJ, Waters AP. Experimentally controlled downregulation of the histone chaperone FACT in Plasmodium berghei reveals that it is critical to male gamete fertility. Cell Microbiol 2011; 13:1956-74. [PMID: 21899698 PMCID: PMC3429858 DOI: 10.1111/j.1462-5822.2011.01683.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human FACT (facilitates chromatin transcription) consists of the proteins SPT16 and SSRP1 and acts as a histone chaperone in the (dis)assembly of nucleosome (and thereby chromatin) structure during transcription and DNA replication. We identified a Plasmodium berghei protein, termed FACT-L, with homology to the SPT16 subunit of FACT. Epitope tagging of FACT-L showed nuclear localization with high expression in the nuclei of (activated) male gametocytes. The gene encoding FACT-L could not be deleted indicating an essential role during blood-stage development. Using a ‘promoter-swap’ approach whereby the fact-l promoter was replaced by an ‘asexual blood stage-specific’ promoter that is silent in gametocytes, transcription of fact-l in promoter-swap mutant gametocytes was downregulated compared with wild-type gametocytes. These mutant male gametocytes showed delayed DNA replication and gamete formation. Male gamete fertility was strongly reduced while female gamete fertility was unaffected; residual ookinetes generated oocysts that arrested early in development and failed to enter sporogony. Therefore FACT is critically involved in the formation of fertile male gametes and parasite transmission. ‘Promoter swapping’ is a powerful approach for the functional analysis of proteins in gametocytes (and beyond) that are essential during asexual blood-stage development.
Collapse
Affiliation(s)
- Eliane C Laurentino
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cribb P, Perozzi M, Villanova GV, Trochine A, Serra E. Characterization of TcHMGB, a high mobility group B family member protein from Trypanosoma cruzi. Int J Parasitol 2011; 41:1149-56. [PMID: 21854779 DOI: 10.1016/j.ijpara.2011.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/03/2011] [Accepted: 06/25/2011] [Indexed: 11/17/2022]
Abstract
High mobility group B (HMGB) proteins are highly abundant non-histone chromatin proteins that play important roles in the execution and control of many nuclear functions. Based on homology searches, we identified the coding sequence for the TcHMGB protein, an HMGB family member from Trypanosoma cruzi. TcHMGB has two HMG box domains, similar to mammalian HMGBs, but lacks the typical C-terminal acidic tail. Instead, it contains a 110 amino acid long N-terminal domain. The TcHMGB N-terminal domain is conserved between the TriTryp sequences (70-80% similarity) and seems to be characteristic of kinetoplastid HMGBs. Despite these differences, TcHMGB maintains HMG box architectural functions: we demonstrated that the trypanosomatid HMGB binds distorted DNA structures such as cruciform DNA in gel shift assays. TcHMGB is also able to bend linear DNA as determined by T4 ligase circularization assays, similar to other HMGB family members. Immunofluorescence and western blot assays showed that TcHMGB is a nuclear protein expressed in all life cycle stages. Protein levels, however, seem to vary throughout the life cycle, which may be related to previously described changes in heterochromatin distribution and transcription rates.
Collapse
Affiliation(s)
- Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario CP2000, Argentina
| | | | | | | | | |
Collapse
|
31
|
Painter HJ, Campbell TL, Llinás M. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol Biochem Parasitol 2010; 176:1-7. [PMID: 21126543 DOI: 10.1016/j.molbiopara.2010.11.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/20/2010] [Accepted: 11/23/2010] [Indexed: 12/01/2022]
Abstract
Malaria is caused by protozoan parasites of the genus Plasmodium and involves infection of multiple hosts and cell types during the course of an infection. To complete its complex life cycle the parasite requires strict control of gene regulation for survival and successful propagation. Thus far, the Apicomplexan AP2 (ApiAP2) family of DNA-binding proteins is the sole family of proteins to have surfaced as candidate transcription factors in all apicomplexan species. Work from several laboratories is beginning to shed light on how the ApiAP2 proteins from Plasmodium spp. contribute to the regulation of gene expression at various stages of parasite development. Here we highlight recent progress toward understanding the role of Plasmodium ApiAP2 proteins in DNA related regulatory processes including transcriptional regulation and gene silencing.
Collapse
Affiliation(s)
- Heather J Painter
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544,, USA
| | | | | |
Collapse
|
32
|
Campbell TL, De Silva EK, Olszewski KL, Elemento O, Llinás M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog 2010; 6:e1001165. [PMID: 21060817 PMCID: PMC2965767 DOI: 10.1371/journal.ppat.1001165] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum.
Collapse
Affiliation(s)
- Tracey L. Campbell
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Erandi K. De Silva
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Kellen L. Olszewski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Olivier Elemento
- Institute for Computational Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Manuel Llinás
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
33
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
34
|
Bischoff E, Vaquero C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum. BMC Genomics 2010; 11:34. [PMID: 20078850 PMCID: PMC2821373 DOI: 10.1186/1471-2164-11-34] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/15/2010] [Indexed: 11/12/2022] Open
Abstract
Background Malaria is the most important parasitic disease in the world with approximately two million people dying every year, mostly due to Plasmodium falciparum infection. During its complex life cycle in the Anopheles vector and human host, the parasite requires the coordinated and modulated expression of diverse sets of genes involved in epigenetic, transcriptional and post-transcriptional regulation. However, despite the availability of the complete sequence of the Plasmodium falciparum genome, we are still quite ignorant about Plasmodium mechanisms of transcriptional gene regulation. This is due to the poor prediction of nuclear proteins, cognate DNA motifs and structures involved in transcription. Results A comprehensive directory of proteins reported to be potentially involved in Plasmodium transcriptional machinery was built from all in silico reports and databanks. The transcription-associated proteins were clustered in three main sets of factors: general transcription factors, chromatin-related proteins (structuring, remodelling and histone modifying enzymes), and specific transcription factors. Only a few of these factors have been molecularly analysed. Furthermore, from transcriptome and proteome data we modelled expression patterns of transcripts and corresponding proteins during the intra-erythrocytic cycle. Finally, an interactome of these proteins based either on in silico or on 2-yeast-hybrid experimental approaches is discussed. Conclusion This is the first attempt to build a comprehensive directory of potential transcription-associated proteins in Plasmodium. In addition, all complete transcriptome, proteome and interactome raw data were re-analysed, compared and discussed for a better comprehension of the complex biological processes of Plasmodium falciparum transcriptional regulation during the erythrocytic development.
Collapse
Affiliation(s)
- Emmanuel Bischoff
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, 25-28 rue du Dr Roux, 75724, Paris cedex 15, France.
| | | |
Collapse
|
35
|
Wasmuth J, Daub J, Peregrín-Alvarez JM, Finney CAM, Parkinson J. The origins of apicomplexan sequence innovation. Genome Res 2009; 19:1202-13. [PMID: 19363216 DOI: 10.1101/gr.083386.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Apicomplexa are a group of phylogenetically related parasitic protists that include Plasmodium, Cryptosporidium, and Toxoplasma. Together they are a major global burden on human health and economics. To meet this challenge, several international consortia have generated vast amounts of sequence data for many of these parasites. Here, we exploit these data to perform a systematic analysis of protein family and domain incidence across the phylum. A total of 87,736 protein sequences were collected from 15 apicomplexan species. These were compared with three protein databases, including the partial genome database, PartiGeneDB, which increases the breadth of taxonomic coverage. From these searches we constructed taxonomic profiles that reveal the extent of apicomplexan sequence diversity. Sequences without a significant match outside the phylum were denoted as apicomplexan specialized. These were collated into 9134 discrete protein families and placed in the context of the apicomplexan phylogeny, identifying the putative origin of each family. Most apicomplexan families were associated with an individual genus or species. Interestingly, many genera-specific innovations were associated with specialized host cell invasion and/or parasite survival processes. Contrastingly, those families reflecting more ancestral relationships were enriched in generalized housekeeping functions such as translation and transcription, which have diverged within the apicomplexan lineage. Protein domain searches revealed 192 domains not previously reported in apicomplexans together with a number of novel domain combinations. We highlight domains that may be important to parasite survival.
Collapse
Affiliation(s)
- James Wasmuth
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 2L3, Canada.
| | | | | | | | | |
Collapse
|
36
|
Horrocks P, Wong E, Russell K, Emes RD. Control of gene expression in Plasmodium falciparum - ten years on. Mol Biochem Parasitol 2008; 164:9-25. [PMID: 19110008 DOI: 10.1016/j.molbiopara.2008.11.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/24/2023]
Abstract
Ten years ago this journal published a review with an almost identical title detailing how the then recent introduction of transfection technology had advanced our understanding of the molecular control of transcriptional processes in Plasmodium falciparum, particularly in terms of promoter structure and function. In the succeeding years, sequencing of several Plasmodium spp. genomes and application of high throughput global postgenomic technologies have proven as significant, if not more, as has the ability to genetically manipulate these parasites in dissecting the molecular control of gene expression. Here we aim to review our current understanding of the control of gene expression in P. falciparum, including evidence available from other Plasmodium spp. and apicomplexan parasites. Specifically, however, we will address the current polarised debate regarding the level at which control is mediated, and attempt to identify some of the challenges this field faces in the next 10 years.
Collapse
Affiliation(s)
- Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Gissot M, Kim K, Schaap D, Ajioka JW. New eukaryotic systematics: a phylogenetic perspective of developmental gene expression in the Apicomplexa. Int J Parasitol 2008; 39:145-51. [PMID: 18983845 DOI: 10.1016/j.ijpara.2008.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/01/2008] [Accepted: 10/14/2008] [Indexed: 12/14/2022]
Abstract
The phylum Apicomplexa consists of obligate intracellular protistan parasites, some of which are responsible for global disease causing serious morbidity and mortality in humans and animals. Understanding the mechanisms of gene expression that drive the cellular changes required to complete their life cycles will be critical in combating infection and disease. Plasmodium spp. and Toxoplasma gondii have served as good models for growth and development in the Apicomplexa. Elucidating developmental gene expression relies on comparisons with known mechanisms and their DNA, RNA and protein components. Transcriptional profiling across asexual development suggests a model where a cascade of gene expression results in a "just-in-time" production process that makes products only when needed. Some mechanisms that control transcription such as chromatin/histone modification are highly conserved in the phylum compared with the traditional model organisms, yeast, worms, flies and mammals. Studies exploiting this phenomenon show great potential for both investigating the effects of chromatin structure on developmental gene expression, and helping to identify genes that are expressed in a stage-specific manner. Transcription factors and their cognate cis-acting binding sites have been difficult to identify. This may be because the DNA binding motifs that have evolved to act as transcription factors in the Apicomplexa, e.g. the AP2 family, may be more like plants than the traditional model organisms. A new eukaryotic phylogenetic model comprised of six super-groups divides the traditional model organisms, plants and the Apicomplexa into separate super-groups. This phylogenetic model helps explain why basic functions such as transcriptional regulation appear be a composite of mechanisms in the Apicomplexa compared with what is known from other eukaryotes.
Collapse
Affiliation(s)
- Mathieu Gissot
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
38
|
Characterization of an Entamoeba histolytica high-mobility-group box protein induced during intestinal infection. EUKARYOTIC CELL 2008; 7:1565-72. [PMID: 18658254 DOI: 10.1128/ec.00123-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The unicellular eukaryote Entamoeba histolytica is a human parasite that causes amebic dysentery and liver abscess. A genome-wide analysis of gene expression modulated by intestinal colonization and invasion identified an upregulated transcript that encoded a putative high-mobility-group box (HMGB) protein, EhHMGB1. We tested if EhHMGB1 encoded a functional HMGB protein and determined its role in control of parasite gene expression. Recombinant EhHMGB1 was able to bend DNA in vitro, a characteristic of HMGB proteins. Core conserved residues required for DNA bending activity in other HMGB proteins were demonstrated by mutational analysis to be essential for EhHMGB1 activity. EhHMGB1 was also able to enhance the binding of human p53 to its cognate DNA sequence in vitro, which is expected for an HMGB1 protein. Confocal microscopy, using antibodies against the recombinant protein, confirmed its nuclear localization. Overexpression of EhHMGB1 in HM1:IMSS trophozoites led to modulation of 33 transcripts involved in a variety of cellular functions. Of these, 20 were also modulated at either day 1 or day 29 in the mouse model of intestinal amebiasis. Notably, four transcripts with known roles in virulence, including two encoding Gal/GalNAc lectin light chains, were modulated in response to EhHMGB1 overexpression. We concluded that EhHMGB1 was a bona fide HMGB protein with the capacity to recapitulate part of the modulation of parasite gene expression seen during adaptation to the host intestine.
Collapse
|
39
|
Coleman BI, Duraisingh MT. Transcriptional control and gene silencing in Plasmodium falciparum. Cell Microbiol 2008; 10:1935-46. [PMID: 18637022 DOI: 10.1111/j.1462-5822.2008.01203.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infection with the apicomplexan parasite Plasmodium falciparum is associated with a high burden of morbidity and mortality across the developing world, yet the mechanisms of transcriptional control in this organism are poorly understood. While P. falciparum possesses many of the characteristics common to eukaryotic transcription, including much of the canonical machinery, it also demonstrates unique patterns of gene expression and possesses unusually AT-rich intergenic sequences. Importantly, several biological processes that are critical to parasite virulence involve highly regulated patterns of gene expression and silencing. The relative scarcity of transcription-associated proteins and specific cis-regulatory motifs recognized in the P. falciparum genome have been thought to reflect a reduced role for transcription factors in transcriptional control in these parasites. New approaches and technologies, however, have led to the discovery of many more of these elements, including an expanded family of DNA-binding proteins, and a re-assessment of this hypothesis is required. We review the current understanding of transcriptional control in P. falciparum, specifically highlighting promoter-driven and epigenetic mechanisms involved in the control of transcription initiation.
Collapse
Affiliation(s)
- Bradley I Coleman
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Gissot M, Ting LM, Daly TM, Bergman LW, Sinnis P, Kim K. High mobility group protein HMGB2 is a critical regulator of plasmodium oocyst development. J Biol Chem 2008; 283:17030-8. [PMID: 18400754 DOI: 10.1074/jbc.m801637200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sexual cycle of Plasmodium is required for transmission of malaria from mosquitoes to mammals, but how parasites induce the expression of genes required for the sexual stages is not known. We disrupted the Plasmodium yoelii gene encoding high mobility group nuclear factor hmgb2, which encodes a DNA-binding protein potentially implicated in transcriptional regulation of malaria gene expression. We investigated its function in vivo in the vertebrate and invertebrate hosts. Deltapyhmgb2 parasites develop into gametocytes but have drastic impairment of oocyst formation. A global transcriptome analysis of the Deltapyhmgb2 parasites identified approximately 30 genes whose expression is down-regulated in the Deltapyhmgb2 parasites. These genes are conserved in all malaria species, and more than 90% of these genes show a peak of mRNA expression at the gametocyte stage. Surprisingly, the transcripts coding for the Plasmodium berghei orthologues of those genes are stored and translated in the ookinete stage. Therefore, sexual stage protein expression appears to be both transcriptionally and translationally regulated with Plasmodium HMGB2 acting as an important regulator of malaria sexual stage gene expression.
Collapse
Affiliation(s)
- Mathieu Gissot
- Department of Medicine and of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
41
|
Kumar K, Singal A, Rizvi MMA, Chauhan VS. High mobility group box (HMGB) proteins of Plasmodium falciparum: DNA binding proteins with pro-inflammatory activity. Parasitol Int 2007; 57:150-7. [PMID: 18234548 DOI: 10.1016/j.parint.2007.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 11/21/2007] [Accepted: 11/23/2007] [Indexed: 11/17/2022]
Abstract
High mobility group box chromosomal protein 1 (HMGB1), known as an abundant, non-histone architectural chromosomal protein, is highly conserved across different species. Homologues of HMGB1 were identified and cloned from malaria parasite, Plasmodium falciparum. Sequence analyses showed that the P. falciparum HMGB1 (PfHMGB1) exhibits 45, 23 and 18%, while PfHMGB2 shares 42, 21 and 17% homology with Saccharomyces cerevisiae, human and mouse HMG box proteins respectively. Parasite PfHMGB1and PfHMGB2 proteins contain one HMG Box domain similar to B-Box of mammalian HMGB1. Electrophoretic Mobility Shift Assay (EMSA) showed that recombinant PfHMGB1 and PfHMGB2 bind to DNA. Immunofluorescence Assay using specific antibodies revealed that these proteins are expressed abundantly in the ring stage nuclei. Significant levels of PfHMGB1 and PfHMGB2 were also present in the parasite cytosol at trophozoite and schizont stages. Both, PfHMGB1 and PfHMGB2 were found to be potent inducers of pro-inflammatory cytokines such as TNFalpha from mouse peritoneal macrophages as analyzed by both reverse transcription PCR and by ELISA. These results suggest that secreted PfHMGB1 and PfHMGB2 may be responsible for eliciting/ triggering host inflammatory immune responses associated with malaria infection.
Collapse
Affiliation(s)
- Krishan Kumar
- International Centre of Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | |
Collapse
|