1
|
Sun L, Sun S, Liu T, Lei X, Liu R, Zhang J, Dai S, Li J, Ding Y. Association Analysis of the Genomic and Functional Characteristics of Halotolerant Glutamicibacter endophyticus J2-5-19 from the Rhizosphere of Suaeda salsa. Microorganisms 2025; 13:208. [PMID: 39858975 PMCID: PMC11767460 DOI: 10.3390/microorganisms13010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as Glutamicibacter endophyticus J2-5-19. The strain was capable of growing in media with up to 13% NaCl and producing proteases, siderophores, and the plant hormone IAA. Under 4‱ salt stress, inoculation with strain J2-5-19 significantly increased the wheat seed germination rate from 37.5% to 95%, enhanced the dry weight of maize seedlings by 41.92%, and notably improved the development of maize root systems. Moreover, this work presented the first whole-genome of Glutamicibacter endophyticus, revealing that G. endophyticus J2-5-19 resisted salt stress by expelling sodium ions and taking up potassium ions through Na+/H+ antiporters and potassium uptake proteins, while also accumulating compatible solutes such as betaine, proline, and trehalose. Additionally, the genome contained multiple key plant growth-promoting genes, including those involved in IAA biosynthesis, siderophore production, and GABA synthesis. The findings provide a theoretical foundation and microbial resources for the development of specialized microbial inoculants for saline-alkali soils.
Collapse
Affiliation(s)
- Longhao Sun
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Shanshan Sun
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Tianyang Liu
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Xinmin Lei
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Ruiqi Liu
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Junyi Zhang
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Shanshan Dai
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Jing Li
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Yanqin Ding
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| |
Collapse
|
2
|
Ramos-Sevillano E, Ercoli G, Betts M, Guerra-Assunção JA, Iverson A, Frank M, Partridge F, Lo SW, Fernandes VE, Nasher F, Wall E, Wren B, Gordon SB, Ferreira DM, Heyderman R, Rosch J, Brown JS. Essential role of proline synthesis and the one-carbon metabolism pathways for systemic virulence of Streptococcus pneumoniae. mBio 2024; 15:e0175824. [PMID: 39422467 PMCID: PMC11559097 DOI: 10.1128/mbio.01758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/09/2024] [Indexed: 10/19/2024] Open
Abstract
Virulence screens have indicated potential roles during Streptococcus pneumoniae infection for the one-carbon metabolism pathway component Fhs and proline synthesis mediated by ProABC. To define how these metabolic pathways affect S. pneumoniae virulence, we have investigated the phenotypes, transcription, and metabolic profiles of Δfhs and ΔproABC mutants. S. pneumoniae capsular serotype 6B BHN418 Δfhs and ΔproABC mutant strains had strongly reduced virulence in mouse sepsis and pneumonia models but could colonize the nasopharynx. Both mutant strains grew normally in complete media but had markedly impaired growth in chemically defined medium, human serum, and human cerebrospinal fluid. The BHN418 ΔproABC strain also had impaired growth under conditions of osmotic and oxidative stress. The virulence role of proABC was strain specific, as the D39 ΔproABC strain could still cause septicemia and grow in serum. Compared to culture in broth, in serum, the BHN418 Δfhs and ΔproABC strains showed considerable derangement in global gene transcription that affected multiple but different metabolic pathways for each mutant strain. Metabolic data suggested that Δfhs had an impaired stringent response, and when cultured in sera, BHN418 Δfhs and ΔproABC were under increased oxidative stress and had altered lipid profiles. Loss of proABC also affected carbohydrate metabolism and the accumulation of peptidoglycan synthesis precursors in the BHN418 but not the D39 background, linking this phenotype to the conditional virulence phenotype. These data identify the S. pneumoniae metabolic functions affected by S. pneumoniae one-carbon metabolism and proline biosynthesis, and the role of these genetic loci for establishing systemic infection.IMPORTANCERapid adaptation to grow within the physiological conditions found in the host environment is an essential but poorly understood virulence requirement for systemic pathogens such as Streptococcus pneumoniae. We have now demonstrated an essential role for the one-carbon metabolism pathway and a conditional role depending on strain background for proline biosynthesis for S. pneumoniae growth in serum or cerebrospinal fluid, and therefore for systemic virulence. RNAseq and metabolomic data demonstrated that the loss of one-carbon metabolism or proline biosynthesis has profound but differing effects on S. pneumoniae metabolism in human serum, identifying the metabolic processes dependent on each pathway during systemic infection. These data provide a more detailed understanding of the adaptations required by systemic bacterial pathogens in order to cause infection and demonstrate that the requirement for some of these adaptations varies between strains from the same species and could therefore underpin strain variations in virulence potential.
Collapse
Affiliation(s)
- Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London, United Kingdom
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London, United Kingdom
| | - Modupeh Betts
- Research Department of Infection, Division of Infection and Immunity, University College London, Rayne Institute, London, United Kingdom
| | | | - Amy Iverson
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew Frank
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Frederick Partridge
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London, United Kingdom
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Vitor E. Fernandes
- Faculdade de Medicina e Ciências Biomédicas and ABC-RI. Faro, Faro, Portugal
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emma Wall
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London, United Kingdom
| | - Brendan Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephen B. Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Blantyre, Blantyre, Malawi
| | | | - Rob Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, Rayne Institute, London, United Kingdom
| | - Jason Rosch
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London, United Kingdom
| |
Collapse
|
3
|
Khanh HC, Kaothien-Nakayama P, Zou Z, Nakayama H. Expression of an engineered salt-inducible proline biosynthetic operon in a glutamic acid over-producing mutant, Halomonas elongata GOP, confers increased proline yield due to enhanced growth under high-salinity conditions. Biosci Biotechnol Biochem 2024; 88:1233-1241. [PMID: 39003245 DOI: 10.1093/bbb/zbae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
L-Proline (Pro) is an essential amino acid additive in livestock and aquaculture feeds. Previously, we created a Pro overproducing Halomonas elongata HN6 by introducing an engineered salt-inducible Pro biosynthetic mCherry-proBm1AC operon and deleting a putA gene that encoded a Pro catabolic enzyme in the genome of H. elongata OUT30018. Here, we report a generation of a novel Pro overproducing H. elongata HN10 strain with improved salt tolerance and higher Pro yield by expressing the mCherry-proBm1AC operon and deleting the putA gene in the genome of a spontaneous mutant H. elongata Glutamic acid Over-Producing, which overproduces glutamic acid (Glu) that is a precursor for Pro biosynthesis. The optimal salt concentration for growth of H. elongata HN10 was found to be 7% to 8% w/v NaCl, and the average Pro yield of 166 mg/L was achieved when H. elongata HN10 was cultivated in M63 minimal medium containing 4% w/v glucose and 8% w/v NaCl.
Collapse
Affiliation(s)
- Huynh Cong Khanh
- G raduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki City, Nagasaki, Japan
- College of Environment and Natural Resources, Can Tho University, Can Tho City, Can Tho, Vietnam
| | - Pulla Kaothien-Nakayama
- G raduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki City, Nagasaki, Japan
| | - Ziyan Zou
- G raduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki City, Nagasaki, Japan
| | - Hideki Nakayama
- G raduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki City, Nagasaki, Japan
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki City, Nagasaki, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki City, Nagasaki, Japan
| |
Collapse
|
4
|
Khanh HC, Kaothien-Nakayama P, Zou Z, Nakayama H. Metabolic pathway engineering of high-salinity-induced overproduction of L-proline improves high-salinity stress tolerance of an ectoine-deficient Halomonas elongata. Appl Environ Microbiol 2024; 90:e0119524. [PMID: 39158316 PMCID: PMC11409704 DOI: 10.1128/aem.01195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Halophilic bacteria have adapted to survive in high-salinity environments by accumulating amino acids and their derivatives as organic osmolytes. L-Proline (Pro) is one such osmolyte that is also being used as a feed stimulant in the aquaculture industry. Halomonas elongata OUT30018 is a moderately halophilic bacterium that accumulates ectoine (Ect), but not Pro, as an osmolyte. Due to its ability to utilize diverse biomass-derived carbon and nitrogen sources for growth, H. elongata OUT30018 is used in this work to create a strain that overproduces Pro, which could be used as a sustainable Pro-rich feed additive. To achieve this, we replaced the coding region of H. elongata OUT30018's Ect biosynthetic operon with the artificial self-cloned proBm1AC gene cluster that encodes the Pro biosynthetic enzymes: feedback-inhibition insensitive mutant γ-glutamate kinase (γ-GKD118N/D119N), γ-glutamyl phosphate reductase, and pyrroline-5-carboxylate reductase. Additionally, the putA gene, which encodes the key enzyme of Pro catabolism, was deleted from the genome to generate H. elongata HN6. While the Ect-deficient H. elongata KA1 could not grow in minimal media containing more than 4% NaCl, H. elongata HN6 thrived in the medium containing 8% NaCl by accumulating Pro in the cell instead of Ect, reaching a concentration of 353.1 ± 40.5 µmol/g cell fresh weight, comparable to the Ect accumulated in H. elongata OUT30018 in response to salt stress. With its genetic background, H. elongata HN6 has the potential to be developed into a Pro-rich cell factory for upcycling biomass waste into single-cell feed additives, contributing to a more sustainable aquaculture industry.IMPORTANCEWe report here the evidence for de novo biosynthesis of Pro to be used as a major osmolyte in an ectoine-deficient Halomonas elongata. Remarkably, the concentration of Pro accumulated in H. elongata HN6 (∆ectABC::mCherry-proBm1AC ∆putA) is comparable to that of ectoine accumulated in H. elongata OUT30018 in response to high-salinity stress. We also found that among the two γ-glutamate kinase mutants (γ-GKD118N/D119N and γ-GKD154A/E155A) designed to resemble the two known Escherichia coli feedback-inhibition insensitive γ-GKD107N and γ-GKE143A, the γ-GKD118N/D119N mutant is the only one that became insensitive to feedback inhibition by Pro in H. elongata. As Pro is one of the essential feed additives for the poultry and aquaculture industries, the genetic makeup of the engineered H. elongata HN6 would allow for the sustainable upcycling of high-salinity waste biomass into a Pro-rich single-cell eco-feed.
Collapse
Affiliation(s)
- Huynh Cong Khanh
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
- College of Environment and Natural Resources, Can Tho University, Can Tho, Vietnam
| | - Pulla Kaothien-Nakayama
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Ziyan Zou
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Nakayama
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Wang Y, Li Y, Lv L, Zhu L, Hong L, Wang X, Zhang Y, Wang X, Diao H. Faecal hsa-miR-7704 inhibits the growth and adhesion of Bifidobacterium longum by suppressing ProB and aggravates hepatic encephalopathy. NPJ Biofilms Microbiomes 2024; 10:13. [PMID: 38396001 PMCID: PMC10891095 DOI: 10.1038/s41522-024-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Both gut microbiome and microRNAs (miRNAs) play a role in the development of hepatic encephalopathy (HE). However, the functional link between the microbiome and host-derived miRNAs in faeces remains poorly understood. In the present study, patients with HE had an altered gut microbiome and faecal miRNAs compared with patients with chronic hepatitis B. Transferring faeces and faecal miRNAs from patients with HE to the recipient mice aggravated thioacetamide-induced HE. Oral gavage of hsa-miR-7704, a host-derived miRNA highly enriched in faeces from patients with HE, aggravated HE in mice in a microbiome-dependent manner. Mechanistically, hsa-miR-7704 inhibited the growth and adhesion of Bifidobacterium longum by suppressing proB. B. longum and its metabolite acetate alleviated HE by inhibiting microglial activation and ammonia production. Our findings reveal the role of miRNA-microbiome axis in HE and suggest that faecal hsa-miR-7704 are potential regulators of HE progression.
Collapse
Affiliation(s)
- Yuchong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuyu Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| | - Yu Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
8
|
Yamaguchi S, Fujioka T, Yoshimi A, Kumagai T, Umemura M, Abe K, Machida M, Kawai K. Discovery of a gene cluster for the biosynthesis of novel cyclic peptide compound, KK-1, in Curvularia clavata. FRONTIERS IN FUNGAL BIOLOGY 2023; 3:1081179. [PMID: 37746209 PMCID: PMC10512319 DOI: 10.3389/ffunb.2022.1081179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 09/26/2023]
Abstract
KK-1, a cyclic depsipeptide with 10 residues produced by a filamentous fungus Curvularia clavata BAUA-2787, is a promising pesticide active compound with high activity against many plant pathogens, especially Botrytis cinerea. As a first step toward the future mass production of KK-1 through synthetic biological approaches, we aimed to identify the genes responsible for the KK-1 biosynthesis. To achieve this, we conducted whole genome sequencing and transcriptome analysis of C. clavata BAUA-2787 to predict the KK-1 biosynthetic gene cluster. We then generated the overexpression and deletion mutants for each cluster gene using our originally developed transformation system for this fungus, and analyzed the KK-1 production and the cluster gene expression levels to confirm their involvement in KK-1 biosynthesis. As a result of these, a region of approximately 71 kb was found, containing 10 open reading frames, which were co-induced during KK-1 production, as a biosynthetic gene cluster. These include kk1B, which encodes nonribosomal peptide synthetase with a domain structure that is consistent with the structural features of KK-1, and kk1F, which encodes a transcription factor. The overexpression of kk1F increased the expression of the entire cluster genes and, consequently, improved KK-1 production, whereas its deletion decreased the expression of the entire cluster genes and almost eliminated KK-1 production, demonstrating that the protein encoded by kk1F regulates the expressions of the other nine cluster genes cooperatively as the pathway-specific transcription factor. Furthermore, the deletion of each cluster gene caused a reduction in KK-1 productivity, indicating that each gene is involved in KK-1 production. The genes kk1A, kk1D, kk1H, and kk1I, which showed a significant decrease in KK-1 productivity due to deletion, were presumed to be directly involved in KK-1 structure formation, including the biosynthesis of the constituent residues. kk1C, kk1E, kk1G, and kk1J, which maintained a certain level of KK-1 productivity despite deletion, were possibly involved in promoting or assisting KK-1 production, such as extracellular transportation and the removal of aberrant units incorporated into the peptide chain.
Collapse
Affiliation(s)
- Shigenari Yamaguchi
- Biotechnology Laboratory, Life & Environment Research Center, Life Science Research Institute, Research & Development Division, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Tomonori Fujioka
- Biotechnology Laboratory, Life & Environment Research Center, Life Science Research Institute, Research & Development Division, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Maiko Umemura
- Bio-system Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Keietsu Abe
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masayuki Machida
- Bio-system Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Graduate School of Engineering, Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Kiyoshi Kawai
- Biotechnology Laboratory, Life & Environment Research Center, Life Science Research Institute, Research & Development Division, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| |
Collapse
|
9
|
Abatedaga I, Perez Mora B, Tuttobene M, Müller G, Biancotti D, Borsarelli CD, Valle L, Mussi MA. Characterization of BLUF-photoreceptors present in Acinetobacter nosocomialis. PLoS One 2022; 17:e0254291. [PMID: 35442978 PMCID: PMC9020721 DOI: 10.1371/journal.pone.0254291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter nosocomialis is a Gram-negative opportunistic pathogen, whose ability to cause disease in humans is well recognized. Blue light has been shown to modulate important physiological traits related to persistence and virulence in this microorganism. In this work, we characterized the three Blue Light sensing Using FAD (BLUF) domain-containing proteins encoded in the A. nosocomialis genome, which account for the only canonical light sensors present in this microorganism. By focusing on a light-modulated bacterial process such as motility, the temperature dependence of light regulation was studied, as well as the expression pattern and spectroscopic characteristics of the different A. nosocomialis BLUFs. Our results show that the BLUF-containing proteins AnBLUF65 and AnBLUF46 encode active photoreceptors in the light-regulatory temperature range when expressed recombinantly. In fact, AnBLUF65 is an active photoreceptor in the temperature range from 15°C to 37°C, while AnBLUF46 between 15°C to 32°C, in vitro. In vivo, only the Acinetobacter baumannii BlsA’s ortholog AnBLUF65 was expressed in A. nosocomialis cells recovered from motility plates. Moreover, complementation assays showed that AnBLUF65 is able to mediate light regulation of motility in A. baumannii ΔblsA strain at 30°C, confirming its role as photoreceptor and in modulation of motility by light. Intra-protein interactions analyzed using 3D models built based on A. baumannii´s BlsA photoreceptor, show that hydrophobic/aromatic intra-protein interactions may contribute to the stability of dark/light- adapted states of the studied proteins, reinforcing the previous notion on the importance of these interactions in BLUF photoreceptors. Overall, the results presented here reveal the presence of BLUF photoreceptors in A. nosocomialis with idiosyncratic characteristics respect to the previously characterized A. baumannii’s BlsA, both regarding the photoactivity temperature-dependency as well as expression patterns, contributing thus to broaden our knowledge on the BLUF family.
Collapse
Affiliation(s)
- Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Bárbara Perez Mora
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Marisel Tuttobene
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Gabriela Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Daiana Biancotti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), UNSE, Santiago del Estero, Argentina
| | - Lorena Valle
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), UNSE, Santiago del Estero, Argentina
- * E-mail: (MAM); (LV)
| | - Maria A. Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
- * E-mail: (MAM); (LV)
| |
Collapse
|
10
|
Zhang G, Ren X, Liang X, Wang Y, Feng D, Zhang Y, Xian M, Zou H. Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Laroute V, Mazzoli R, Loubière P, Pessione E, Cocaign-Bousquet M. Environmental Conditions Affecting GABA Production in Lactococcus lactis NCDO 2118. Microorganisms 2021; 9:microorganisms9010122. [PMID: 33430203 PMCID: PMC7825684 DOI: 10.3390/microorganisms9010122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/19/2023] Open
Abstract
GABA (γ-aminobutyric acid) production has been widely described as an adaptive response to abiotic stress, allowing bacteria to survive in harsh environments. This work aimed to clarify and understand the relationship between GABA production and bacterial growth conditions, with particular reference to osmolarity. For this purpose, Lactococcus lactis NCDO 2118, a GABA-producing strain, was grown in glucose-supplemented chemically defined medium containing 34 mM L-glutamic acid, and different concentrations of salts (chloride, sulfate or phosphate ions) or polyols (sorbitol, glycerol). Unexpectedly, our data demonstrated that GABA production was not directly related to osmolarity. Chloride ions were the most significant factor influencing GABA yield in response to acidic stress while sulfate ions did not enhance GABA production. We demonstrated that the addition of chloride ions increased the glutamic acid decarboxylase (GAD) synthesis and the expression of the gadBC genes. Finally, under fed-batch conditions in a complex medium supplemented with 0.3 M NaCl and after a pH shift to 4.6, L. lactis NCDO 2118 was able to produce up to 413 mM GABA from 441 mM L-glutamic acid after only 56 h of culture, revealing the potential of L. lactis strains for intensive production of this bioactive molecule.
Collapse
Affiliation(s)
- Valérie Laroute
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
- Correspondence: (V.L.); (M.C.-B.)
| | - Roberto Mazzoli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.M.); (E.P.)
| | - Pascal Loubière
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.M.); (E.P.)
| | - Muriel Cocaign-Bousquet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
- Correspondence: (V.L.); (M.C.-B.)
| |
Collapse
|
12
|
Long M, Xu M, Qiao Z, Ma Z, Osire T, Yang T, Zhang X, Shao M, Rao Z. Directed Evolution of Ornithine Cyclodeaminase Using an EvolvR-Based Growth-Coupling Strategy for Efficient Biosynthesis of l-Proline. ACS Synth Biol 2020; 9:1855-1863. [PMID: 32551572 DOI: 10.1021/acssynbio.0c00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
l-Proline takes a significant role in the pharmaceutical and chemical industries as well as graziery. Typical biosynthesis of l-proline is from l-glutamate, involving three enzyme reactions as well as a spontaneous cyclization. Alternatively, l-proline can be also synthesized in l-ornithine and/or l-arginine producing strains by an ornithine aminotransferase (OCD). In this study, a strategy of directed evolution combining rare codon selection and pEvolvR was developed to screen OCD with high catalytic efficiency, improving l-proline production from l-arginine chassis cells. The mutations were generated by CRISPR-assisted DNA polymerases and were screened by growth-coupled rare codon selection system. OCDK205G/M86K/T162A from Pseudomonas putida was identified with 2.85-fold increase in catalytic efficiency for the synthesis of l-proline. Furthermore, we designed and optimized RBS for the BaargI and Ppocd coupling cascade using RedLibs, as well as sRNA inhibition of argF to moderate l-proline biosynthesis in l-arginine overproducing Corynebacterium crenatum. The strain PS6 with best performance reached 15.3 g/L l-proline in the shake flask and showed a titer of 38.4 g/L in a 5 L fermenter with relatively low concentration of residual l-ornithine and/or l-arginine.
Collapse
Affiliation(s)
- Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhina Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenfeng Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Long M, Xu M, Ma Z, Pan X, You J, Hu M, Shao Y, Yang T, Zhang X, Rao Z. Significantly enhancing production of trans-4-hydroxy-l-proline by integrated system engineering in Escherichia coli. SCIENCE ADVANCES 2020; 6:eaba2383. [PMID: 32494747 PMCID: PMC7244267 DOI: 10.1126/sciadv.aba2383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/16/2020] [Indexed: 05/05/2023]
Abstract
Trans-4-hydroxy-l-proline is produced by trans-proline-4-hydroxylase with l-proline through glucose fermentation. Here, we designed a thorough "from A to Z" strategy to significantly improve trans-4-hydroxy-l-proline production. Through rare codon selected evolution, Escherichia coli M1 produced 18.2 g L-1 l-proline. Metabolically engineered M6 with the deletion of putA, proP, putP, and aceA, and proB mutation focused carbon flux to l-proline and released its feedback inhibition. It produced 15.7 g L-1 trans-4-hydroxy-l-proline with 10 g L-1 l-proline retained. Furthermore, a tunable circuit based on quorum sensing attenuated l-proline hydroxylation flux, resulting in 43.2 g L-1 trans-4-hydroxy-l-proline with 4.3 g L-1 l-proline retained. Finally, rationally designed l-proline hydroxylase gave 54.8 g L-1 trans-4-hydroxy-l-proline in 60 hours almost without l-proline remaining-the highest production to date. The de novo engineering carbon flux through rare codon selected evolution, dynamic precursor modulation, and metabolic engineering provides a good technological platform for efficient hydroxyl amino acid synthesis.
Collapse
Affiliation(s)
| | | | - Zhenfeng Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuewei Pan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiajia You
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengkai Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
15
|
RNA Sequencing-Based Transcriptional Overview of Xerotolerance in Cronobacter sakazakii SP291. Appl Environ Microbiol 2019; 85:AEM.01993-18. [PMID: 30446557 DOI: 10.1128/aem.01993-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022] Open
Abstract
Cronobacter sakazakii is a xerotolerant neonatal pathogen epidemiologically linked to powdered infant food formula, often resulting in high mortality rates. Here, we used transcriptome sequencing (RNA-seq) to provide transcriptional insights into the survival of C. sakazakii in desiccated conditions. Our RNA-seq data show that about 22% of the total C. sakazakii genes were significantly upregulated and 9% were downregulated during desiccation survival. When reverse transcription-quantitative PCR (qRT-PCR) was used to validate the RNA-seq data, we found that the primary desiccation response was gradually downregulated during the tested 4 hours of desiccation, while the secondary response remained constitutively upregulated. The 4-hour desiccation tolerance of C. sakazakii was dependent on the immediate microenvironment surrounding the bacterial cell. The removal of Trypticase soy broth (TSB) salts and the introduction of sterile infant formula residues in the microenvironment enhanced the desiccation survival of C. sakazakii SP291. The trehalose biosynthetic pathway encoded by otsA and otsB, a prominent secondary bacterial desiccation response, was highly upregulated in desiccated C. sakazakii C. sakazakii SP291 ΔotsAB was significantly inhibited compared with the isogenic wild type in an 8-hour desiccation survival assay, confirming the physiological importance of trehalose in desiccation survival. Overall, we provide a comprehensive RNA-seq-based transcriptional overview along with confirmation of the phenotypic importance of trehalose metabolism in Cronobacter sakazakii during desiccation.IMPORTANCE Cronobacter sakazakii is a pathogen of importance to neonatal health and is known to persist in dry food matrices, such as powdered infant formula (PIF) and its associated production environment. When infections are reported in neonates, mortality rates can be high. The success of this bacterium in surviving these low-moisture environments suggests that Cronobacter species can respond to a variety of environmental signals. Therefore, understanding those signals that aid the persistence of this pathogen in these ecological niches is an important step toward the development of strategies to reduce the risk of contamination of PIF. This research led to the identification of candidate genes that play a role in the persistence of this pathogen in desiccated conditions and, thereby, serve as a model target to design future strategies to mitigate PIF-associated survival of C. sakazakii.
Collapse
|
16
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
17
|
Gene Expression Knockdown by Modulating Synthetic Small RNA Expression in Escherichia coli. Cell Syst 2017; 5:418-426.e4. [DOI: 10.1016/j.cels.2017.08.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/30/2017] [Accepted: 08/24/2017] [Indexed: 11/20/2022]
|
18
|
Forlani G, Nocek B, Chakravarthy S, Joachimiak A. Functional Characterization of Four Putative δ 1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis. Front Microbiol 2017; 8:1442. [PMID: 28824574 PMCID: PMC5539093 DOI: 10.3389/fmicb.2017.01442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022] Open
Abstract
In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, University of ChicagoChicago, IL, United States
| | - Srinivas Chakravarthy
- Argonne National Laboratory, BioCAT, Center for Synchrotron Radiation Research and InstrumentationArgonne, IL, United States
- Department of Biological and Chemical Sciences, Illinois Institute of TechnologyChicago, IL, United States
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of ChicagoChicago, IL, United States
| |
Collapse
|
19
|
The γ-aminobutyrate permease GabP serves as the third proline transporter of Bacillus subtilis. J Bacteriol 2013; 196:515-26. [PMID: 24142252 DOI: 10.1128/jb.01128-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PutP and OpuE serve as proline transporters when this imino acid is used by Bacillus subtilis as a nutrient or as an osmostress protectant, respectively. The simultaneous inactivation of the PutP and OpuE systems still allows the utilization of proline as a nutrient. This growth phenotype pointed to the presence of a third proline transport system in B. subtilis. We took advantage of the sensitivity of a putP opuE double mutant to the toxic proline analog 3,4-dehydro-dl-proline (DHP) to identify this additional proline uptake system. DHP-resistant mutants were selected and found to be defective in the use of proline as a nutrient. Whole-genome resequencing of one of these strains provided the lead that the inactivation of the γ-aminobutyrate (GABA) transporter GabP was responsible for these phenotypes. DNA sequencing of the gabP gene in 14 additionally analyzed DHP-resistant strains confirmed this finding. Consistently, each of the DHP-resistant mutants was defective not only in the use of proline as a nutrient but also in the use of GABA as a nitrogen source. The same phenotype resulted from the targeted deletion of the gabP gene in a putP opuE mutant strain. Hence, the GabP carrier not only serves as an uptake system for GABA but also functions as the third proline transporter of B. subtilis. Uptake studies with radiolabeled GABA and proline confirmed this conclusion and provided information on the kinetic parameters of the GabP carrier for both of these substrates.
Collapse
|
20
|
Abstract
The mgtCBR operon from Salmonella enterica serovar Typhimurium specifies the virulence protein MgtC, the Mg2+ transporter MgtB and the regulatory peptide MgtR. The mgtCBR transcript includes a long leader region harbouring two short open reading frames (ORFs). Translation of these ORFs is anticipated to impact the formation of particular stem-loop structures and control transcription of the coding region by an attenuation-like mechanism. We previously reported that ORF mgtM enables Salmonella to promote transcription of the mgtC and mgtB coding regions when experiencing a rise in cytoplasmic ATP levels. We now show that the proline codon-rich ORF mgtP mediates an increase in transcription of the mgtC and mgtB coding regions under conditions predicted to decrease the levels of proline-charged tRNAPro. The high ATP and low proline signals act independently in an additive form. Replacing conserved mgtP proline codons with codons specifying other amino acids abolished the response to proline limitation but had no effect on the response to ATP. Substitution of conserved adenine nucleotides in mgtM abolished the response to ATP but had no effect in the response to proline limitation. This provides a singular example of a leader mRNA with tandem attenuators responding to different signals.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Howard Hughes Medical Institute, Yale School of Medicine, Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, New Haven, CT 06536-0812, USA
| | | |
Collapse
|