1
|
Tekeoğlu İ, Şahin MZ, Kamanlı A, Nas K. The influence of zinc levels on osteoarthritis: A comprehensive review. Nutr Res Rev 2025; 38:282-293. [PMID: 39311401 DOI: 10.1017/s0954422424000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Osteoarthritis (OA), a disease with a multifactorial aetiology and an enigmatic root cause, affects the quality of life of many elderly patients. Even though there are certain medications utilised to reduce the symptomatic effects, a reliable treatment method to reverse the disease is yet to be discovered. Zinc is a cofactor of over 3000 proteins and is the only metal found in all six classes of enzymes. We explored zinc’s effect on the immune system and the bones as OA affects both. We also discussed zinc-dependent enzymes, highlighting their significant role in the disease’s pathogenesis. It is important to note that both excessive and deficient zinc levels can negatively affect bone health and immune function, thereby exacerbating OA. The purpose of this review is to offer a better understanding of zinc’s impact on OA pathogenesis and to provide clarity regarding its beneficial and detrimental outcomes. We searched thoroughly systematic reviews, meta-analysis, review articles, research articles and randomised controlled trials to ensure a comprehensive review. In brief, using zinc supplementation in the treatment of OA may act as a doubled-edged sword, offering potential benefits but also posing risks.
Collapse
Affiliation(s)
- İbrahim Tekeoğlu
- Sakarya University Faculty of Medicine, Department of Rheumatology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Muhammed Zahid Şahin
- Sakarya University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Ayhan Kamanlı
- Sakarya University Faculty of Medicine, Department of Rheumatology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Kemal Nas
- Sakarya University Faculty of Medicine, Department of Rheumatology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| |
Collapse
|
2
|
Garstka K, Hecel A, Kozłowski H, Dominguez-Martin A, Szewczyk K, Rowińska-Żyrek M. AdcA lipoprotein involved in Zn(II) transport in Streptococcus mutans - is it as metal-specific as expected? Dalton Trans 2025; 54:6795-6804. [PMID: 40071445 DOI: 10.1039/d5dt00131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Streptococcus mutans, a Gram-positive pathogen, is a primary causative agent of dental caries. It modifies the oral biofilm architecture on tooth enamel and, like other bacteria, requires transition metal ions such as Zn(II), Cu(II), and Ni(II) for survival and virulence. Physiological salivary Zn(II) levels are insufficient for optimal bacterial growth, prompting S. mutans to develop a specialized ABC transport system comprising AdcA, AdcB, and AdcC. Among these, the lipoprotein AdcA plays a pivotal role in Zn(II) acquisition. In this study, we examined two probable Zn(II)-binding sites in AdcA-EGHGHKGHHHA and HGIKSQKAEHFH-and their Zn(II), Cu(II), and Ni(II) complexes, keeping in mind that Cu(II) and Ni(II) are essential nutrients for bacterial enzymes and can compete with Zn(II) for its binding sites. At physiological pH, in the Zn(II)-Ac-EGHGHKGHHHA-NH2 species, Zn(II) binds to histidine residues, forming complexes with up to four coordinated imidazole nitrogens, while in the Zn(II)-Ac-HGIKSQKAEHFH-NH2 complex, we found three coordinated histidine side chains. The same regions of the AdcA lipoprotein are able to bind Cu(II) with even higher affinity. The stability of Zn(II) and Ni(II) complexes, on the other hand, is more comparable, with a slight advantage for Ni(II). In this case, at pH 7.4, the coordination spheres of both Zn(II) and Ni(II) consist of the same set of donor atoms. The metal binding preferences align with the Irving-Williams series; however, given the significantly higher Zn(II) concentrations in saliva and dental plaques, Zn(II) occupies the AdcA binding sites in vivo, highlighting its critical role in S. mutans virulence and metal ion homeostasis.
Collapse
Affiliation(s)
- Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
- Institute of Health Sciences, University of Opole, Katowicka 68 St, 45-060 Opole, Poland
| | - Alicia Dominguez-Martin
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain
| | - Krzysztof Szewczyk
- Department of Oncology, Wrocław Medical University, pl. L. Hirszfelda 12, 53-413 Wrocław, Poland
| | | |
Collapse
|
3
|
Sadones O, Kramarska E, Sainz-Mejías M, Berisio R, Huebner J, McClean S, Romero-Saavedra F. Identification of cross-reactive vaccine antigen candidates in Gram-positive ESKAPE pathogens through subtractive proteome analysis using opsonic sera. PLoS One 2025; 20:e0319933. [PMID: 40138269 PMCID: PMC11940424 DOI: 10.1371/journal.pone.0319933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
The Gram-positive pathogens of the ESKAPE group, Enterococcus faecium, and Staphylococcus aureus, are well-known to pose a serious risk to human health because of their high virulence and numerous drug resistances. To narrow down the list of previously identified promising protein vaccine candidates, a combination of several antigen discovery approaches was performed, in particular a "false positive analysis" of peptides generated by trypsin shaving with a subtractive proteome analysis. The final list of nine potential antigens included AdcAau, a protein performing the same function as AdcAfm, an already discovered antigen in enterococci. Bioinformatic analyses revealed that AdcAau and AdcAfm share a sequence identity of 41.2% and that the conserved regions present a high antigenicity. AdcAau was selected for further investigation and the results reported in this manuscript demonstrate the opsonic properties of AdcAau-specific antibodies against the Staphylococcus aureus strain MW2, as well as their cross-binding and cross-opsonic activity against several S. aureus, E. faecium, and E. faecalis strains. The experimental design revealed several promising vaccine candidates, including the newly identified S. aureus antigen, AdcAau. The study shows its potential as a vaccine candidate to prevent infections by dangerous Gram-positive ESKAPE pathogens.
Collapse
Affiliation(s)
- Océane Sadones
- Division of Pediatric Infectious Disease, Hauner Children’s Hospital, LMU, Munich, Germany
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Maite Sainz-Mejías
- School of Biomolecular and Biomedical Sciences and UCD Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Johannes Huebner
- Division of Pediatric Infectious Disease, Hauner Children’s Hospital, LMU, Munich, Germany
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences and UCD Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Disease, Hauner Children’s Hospital, LMU, Munich, Germany
| |
Collapse
|
4
|
Kramarska E, Toumi E, Squeglia F, Laverde D, Napolitano V, Frapy E, Autiero I, Sadones O, Huebner J, Skurnik D, Romero-Saavedra F, Berisio R. A rationally designed antigen elicits protective antibodies against multiple nosocomial Gram-positive pathogens. NPJ Vaccines 2024; 9:151. [PMID: 39155280 PMCID: PMC11330964 DOI: 10.1038/s41541-024-00940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
ESKAPE pathogens are responsible for complicated nosocomial infections worldwide and are often resistant to commonly used antibiotics in clinical settings. Among ESKAPE, vancomycin-resistant Enterococcus faecium (VREfm) and methicillin-resistant Staphylococcus aureus (MRSA) are two important Gram-positive pathogens for which non-antibiotic alternatives are urgently needed. We previously showed that the lipoprotein AdcA of E. faecium elicits opsonic and protective antibodies against E. faecium and E. faecalis. Prompted by our observation, reported here, that AdcA also elicits opsonic antibodies against MRSA and other clinically relevant Gram-positive pathogens, we identified the dominant epitope responsible for AdcA cross-reactive activity and designed a hyper-thermostable and multi-presenting antigen, Sc(EH)3. We demonstrate that antibodies raised against Sc(EH)3 mediate opsonic killing of a wide-spectrum of Gram-positive pathogens, including VREfm and MRSA, and confer protection both in passive and active immunisation models. Our data indicate that Sc(EH)3 is a promising antigen for the development of vaccines against different Gram-positive pathogens.
Collapse
Affiliation(s)
- Eliza Kramarska
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Eya Toumi
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Diana Laverde
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - Valeria Napolitano
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Eric Frapy
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Oceane Sadones
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - Johannes Huebner
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - David Skurnik
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France.
- Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris City, Paris, France.
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Felipe Romero-Saavedra
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy.
| |
Collapse
|
5
|
Lautenschläger N, Schmidt K, Schiffer C, Wulff TF, Hahnke K, Finstermeier K, Mansour M, Elsholz AKW, Charpentier E. Expanding the genetic toolbox for the obligate human pathogen Streptococcus pyogenes. Front Bioeng Biotechnol 2024; 12:1395659. [PMID: 38911550 PMCID: PMC11190166 DOI: 10.3389/fbioe.2024.1395659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Genetic tools form the basis for the study of molecular mechanisms. Despite many recent advances in the field of genetic engineering in bacteria, genetic toolsets remain scarce for non-model organisms, such as the obligatory human pathogen Streptococcus pyogenes. To overcome this limitation and enable the straightforward investigation of gene functions in S. pyogenes, we have developed a comprehensive genetic toolset. By adapting and combining different tools previously applied in other Gram-positive bacteria, we have created new replicative and integrative plasmids for gene expression and genetic manipulation, constitutive and inducible promoters as well as fluorescence reporters for S. pyogenes. The new replicative plasmids feature low- and high-copy replicons combined with different resistance cassettes and a standardized multiple cloning site for rapid cloning procedures. We designed site-specific integrative plasmids and verified their integration by nanopore sequencing. To minimize the effect of plasmid integration on bacterial physiology, we screened publicly available RNA-sequencing datasets for transcriptionally silent sites. We validated this approach by designing the integrative plasmid pSpy0K6 targeting the transcriptionally silent gene SPy_1078. Analysis of the activity of different constitutive promoters indicated a wide variety of strengths, with the lactococcal promoter P 23 showing the strongest activity and the synthetic promoter P xylS2 showing the weakest activity. Further, we assessed the functionality of three inducible regulatory elements including a zinc- and an IPTG-inducible promoter as well as an erythromycin-inducible riboswitch that showed low-to-no background expression and high inducibility. Additionally, we demonstrated the applicability of two codon-optimized fluorescent proteins, mNeongreen and mKate2, as reporters in S. pyogenes. We therefore adapted the chemically defined medium called RPMI4Spy that showed reduced autofluorescence and enabled efficient signal detection in plate reader assays and fluorescence microscopy. Finally, we developed a plasmid-based system for genome engineering in S. pyogenes featuring the counterselection marker pheS*, which enabled the scarless deletion of the sagB gene. This new toolbox simplifies previously laborious genetic manipulation procedures and lays the foundation for new methodologies to study gene functions in S. pyogenes, leading to a better understanding of its virulence mechanisms and physiology.
Collapse
Affiliation(s)
| | - Katja Schmidt
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Thomas F. Wulff
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Karin Hahnke
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Moïse Mansour
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Kreimendahl S, Pernas L. Metabolic immunity against microbes. Trends Cell Biol 2024; 34:496-508. [PMID: 38030541 DOI: 10.1016/j.tcb.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Pathogens, including viruses, bacteria, fungi, and parasites, remodel the metabolism of their host to acquire the nutrients they need to proliferate. Thus, host cells are often perceived as mere exploitable nutrient pools during infection. Mounting reports challenge this perception and instead suggest that host cells can actively reprogram their metabolism to the detriment of the microbial invader. In this review, we present metabolic mechanisms that host cells use to defend against pathogens. We highlight the contribution of domesticated microbes to host defenses and discuss examples of host-pathogen arms races that are derived from metabolic conflict.
Collapse
Affiliation(s)
| | - Lena Pernas
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
8
|
Hong Y, Mackenzie ES, Firth SJ, Bolton JRF, Stewart LJ, Waldron KJ, Djoko KY. Mis-regulation of Zn and Mn homeostasis is a key phenotype of Cu stress in Streptococcus pyogenes. Metallomics 2023; 15:mfad064. [PMID: 37849243 PMCID: PMC10644519 DOI: 10.1093/mtomcs/mfad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
All bacteria possess homeostastic mechanisms that control the availability of micronutrient metals within the cell. Cross-talks between different metal homeostasis pathways within the same bacterial organism have been reported widely. In addition, there have been previous suggestions that some metal uptake transporters can promote adventitious uptake of the wrong metal. This work describes the cross-talk between Cu and the Zn and Mn homeostasis pathways in Group A Streptococcus (GAS). Using a ∆copA mutant strain that lacks the primary Cu efflux pump and thus traps excess Cu in the cytoplasm, we show that growth in the presence of supplemental Cu promotes downregulation of genes that contribute to Zn or Mn uptake. This effect is not associated with changes in cellular Zn or Mn levels. Co-supplementation of the culture medium with Zn or, to a lesser extent, Mn alleviates key Cu stress phenotypes, namely bacterial growth and secretion of the fermentation end-product lactate. However, neither co-supplemental Zn nor Mn influences cellular Cu levels or Cu availability in Cu-stressed cells. In addition, we provide evidence that the Zn or Mn uptake transporters in GAS do not promote Cu uptake. Together, the results from this study strengthen and extend our previous proposal that mis-regulation of Zn and Mn homeostasis is a key phenotype of Cu stress in GAS.
Collapse
Affiliation(s)
- YoungJin Hong
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Eilidh S Mackenzie
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Samantha J Firth
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Jack R F Bolton
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Louisa J Stewart
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Kevin J Waldron
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Previous affiliation: Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Karrera Y Djoko
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
9
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
10
|
Stewart L, Hong Y, Holmes IR, Firth SJ, Ahmed Y, Quinn J, Santos Y, Cobb SL, Jakubovics NS, Djoko KY. Salivary Antimicrobial Peptide Histatin-5 Does Not Display Zn(II)-Dependent or -Independent Activity against Streptococci. ACS Infect Dis 2023; 9:631-642. [PMID: 36826226 PMCID: PMC10012264 DOI: 10.1021/acsinfecdis.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Histatin-5 (Hst5) is a member of the histatin superfamily of cationic, His-rich, Zn(II)-binding peptides in human saliva. Hst5 displays antimicrobial activity against fungal and bacterial pathogens, often in a Zn(II)-dependent manner. In contrast, here we showed that under in vitro conditions that are characteristic of human saliva, Hst5 does not kill seven streptococcal species that normally colonize the human oral cavity and oropharynx. We further showed that Zn(II) does not influence this outcome. We then hypothesized that Hst5 exerts more subtle effects on streptococci by modulating Zn(II) availability. We initially proposed that Hst5 contributes to nutritional immunity by limiting nutrient Zn(II) availability and promoting bacterial Zn(II) starvation. By examining the interactions between Hst5 and Streptococcus pyogenes as a model Streptococcus species, we showed that Hst5 does not influence the expression of Zn(II) uptake genes. In addition, Hst5 did not suppress growth of a ΔadcAI mutant strain that is impaired in Zn(II) uptake. These observations establish that Hst5 does not promote Zn(II) starvation. Biochemical examination of purified peptides further confirmed that Hst5 binds Zn(II) with high micromolar affinities and does not compete with the AdcAI high-affinity Zn(II) uptake protein for binding nutrient Zn(II). Instead, we showed that Hst5 weakly limits the availability of excess Zn(II) and suppresses Zn(II) toxicity to a ΔczcD mutant strain that is impaired in Zn(II) efflux. Altogether, our findings led us to reconsider the function of Hst5 as a salivary antimicrobial agent and the role of Zn(II) in Hst5 function.
Collapse
Affiliation(s)
- Louisa
J. Stewart
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - YoungJin Hong
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Isabel R. Holmes
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Samantha J. Firth
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Yasmin Ahmed
- Biosciences
Institute, Newcastle University, Newcastle NE2 4HH, United Kingdom
| | - Janet Quinn
- Biosciences
Institute, Newcastle University, Newcastle NE2 4HH, United Kingdom
| | - Yazmin Santos
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L. Cobb
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | | | - Karrera Y. Djoko
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
11
|
Donaghy C, Javellana JG, Hong YJ, Djoko K, Angeles-Boza AM. The Synergy between Zinc and Antimicrobial Peptides: An Insight into Unique Bioinorganic Interactions. Molecules 2023; 28:2156. [PMID: 36903402 PMCID: PMC10004757 DOI: 10.3390/molecules28052156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Antimicrobial peptides (AMPs) are essential components of innate immunity across all species. AMPs have become the focus of attention in recent years, as scientists are addressing antibiotic resistance, a public health crisis that has reached epidemic proportions. This family of peptides represents a promising alternative to current antibiotics due to their broad-spectrum antimicrobial activity and tendency to avoid resistance development. A subfamily of AMPs interacts with metal ions to potentiate antimicrobial effectiveness, and, as such, they have been termed metalloAMPs. In this work, we review the scientific literature on metalloAMPs that enhance their antimicrobial efficacy when combined with the essential metal ion zinc(II). Beyond the role played by Zn(II) as a cofactor in different systems, it is well-known that this metal ion plays an important role in innate immunity. Here, we classify the different types of synergistic interactions between AMPs and Zn(II) into three distinct classes. By better understanding how each class of metalloAMPs uses Zn(II) to potentiate its activity, researchers can begin to exploit these interactions in the development of new antimicrobial agents and accelerate their use as therapeutics.
Collapse
Affiliation(s)
- Caroline Donaghy
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | - Young-Jin Hong
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Karrera Djoko
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
12
|
Gains AF, Lambert DW, Stafford GP. Identification of a Czc-like operon of the periodontal pathobiont P. gingivalis involved in metal ion efflux. Anaerobe 2023; 80:102696. [PMID: 36642290 DOI: 10.1016/j.anaerobe.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The study aimed to investigate the role of the PGN2012 gene of the periodontitis contributing pathobiont Porphyromonas gingivalis. PGN2012 is a homolgue of TolC and is a gene our group previously showed was overexpressed in hyperinvasive cells. METHODS The study used a combination of bioinformatics, knockout mutagenesis, growth experiments, biofilm assays and human cell invation assays to investigate PGN2012 function. RESULTS Bioinformatics identified that PGN2012 is part of one of four TolC containing gene loci in P. gingivalis that we predicted may encode a metal resistance RND family tripartite pump, similar to those present in other Gram-negative bacteria, but which are not well understood in anaerobic bacteria. A ΔPGN2012 deletion displayed slightly reduced growth in liquid culture but did not effect biofilm formation or human cell invasion. When metal ions were included in the medium the mutant displayed significantly increased sensitivity to the divalent metal ions Zn2+ (500 μM), Co2+ (2 mM), and Cd2+(0.1 mM) but not Cu2+. CONCLUSIONS We propose to rename the PGN2012-2014 genes czcCBA, which we suggest plays a role in intracellular stress resistance where zinc is often employed by host cells in antibacterial defence with implications for chronic infection in humans.
Collapse
Affiliation(s)
- A F Gains
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - D W Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - G P Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK.
| |
Collapse
|
13
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Akbari MS, Doran KS, Burcham LR. Metal Homeostasis in Pathogenic Streptococci. Microorganisms 2022; 10:1501. [PMID: 35893559 PMCID: PMC9331361 DOI: 10.3390/microorganisms10081501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus spp. are an important genus of Gram-positive bacteria, many of which are opportunistic pathogens that are capable of causing invasive disease in a wide range of populations. Metals, especially transition metal ions, are an essential nutrient for all organisms. Therefore, to survive across dynamic host environments, Streptococci have evolved complex systems to withstand metal stress and maintain metal homeostasis, especially during colonization and infection. There are many different types of transport systems that are used by bacteria to import or export metals that can be highly specific or promiscuous. Focusing on the most well studied transition metals of zinc, manganese, iron, nickel, and copper, this review aims to summarize the current knowledge of metal homeostasis in pathogenic Streptococci, and their role in virulence.
Collapse
Affiliation(s)
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | |
Collapse
|
15
|
Abstract
The nasopharynx and the skin are the major oxygen-rich anatomical sites for colonization by the human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]). To establish infection, GAS must survive oxidative stress generated during aerobic metabolism and the release of reactive oxygen species (ROS) by host innate immune cells. Glutathione is the major host antioxidant molecule, while GAS is glutathione auxotrophic. Here, we report the molecular characterization of the ABC transporter substrate binding protein GshT in the GAS glutathione salvage pathway. We demonstrate that glutathione uptake is critical for aerobic growth of GAS and that impaired import of glutathione induces oxidative stress that triggers enhanced production of the reducing equivalent NADPH. Our results highlight the interrelationship between glutathione assimilation, carbohydrate metabolism, virulence factor production, and innate immune evasion. Together, these findings suggest an adaptive strategy employed by extracellular bacterial pathogens to exploit host glutathione stores for their own benefit.
Collapse
|
16
|
Chen Y, Cai J, Liu D, Liu S, Lei D, Zheng L, Wei Q, Gao M. Zinc based metal organic framework with antibacterial and anti- inflammatory properties for promoting wound healing. Regen Biomater 2022; 9:rbac019. [PMID: 35493287 PMCID: PMC9046580 DOI: 10.1093/rb/rbac019] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/14/2022] Open
Abstract
The synergistic effect of antibacterial and anti-inflammatory is needed to overcome the problem of wound healing difficulties. Based on the favorable antibacterial and anti-inflammatory effect of zinc ions (Zn2+) and the physicochemical properties of metal organic frameworks (MOFs), we prepared nanosized zinc-based MOF: Zn-BTC with the ability to slowly release Zn2+. In cellular levels, Zn-BTC possessed lower toxicity to fibroblasts and enhanced capacity of cell proliferation and migration. It also had good bactericidal effect on multiple drug-resistant bacteria by reducing 41.4% MRSA and 47.2% Escherichia coli. In addition, Zn-BTC also displayed the ability of lowering the expression of antioxidant genes: superoxide dismutase 1, superoxide dismutase 2 and interleukin 6, and enhancing the expression of wound healing genes: transforming growth factors-β and type I collagen. Finally, it also demonstrated that Zn-BTC could effectively improve the skin wound healing of SD rats and had no toxicity on major organs. The favorable biocompatibility, antibacterial and anti-inflammatory properties of Zn-BTC gave a new insight of designing novel MOFs for promoting skin wound healing.
Collapse
Affiliation(s)
- Yuting Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinhong Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Dachang Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shuhan Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Doudou Lei
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qingjun Wei
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
17
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
18
|
Transcriptional and Translational Responsiveness of the Neisseria gonorrhoeae Type IV Secretion System to Conditions of Host Infections. Infect Immun 2021; 89:e0051921. [PMID: 34581604 DOI: 10.1128/iai.00519-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD, the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. The data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.
Collapse
|
19
|
Fei K, Chao HJ, Hu Y, Francis MS, Chen S. CpxR regulates the Rcs phosphorelay system in controlling the Ysc-Yop type III secretion system in Yersinia pseudotuberculosis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33295859 DOI: 10.1099/mic.0.000998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The CpxRA two-component regulatory system and the Rcs phosphorelay system are both employed by the Enterobacteriaceae family to preserve bacterial envelope integrity and function when growing under stress. Although both systems regulate several overlapping physiological processes, evidence demonstrating a molecular connection between Cpx and Rcs signalling outputs is scarce. Here, we show that CpxR negatively regulates the transcription of the rcsB gene in the Rcs phosphorelay system in Yersinia pseudotuberculosis. Interestingly, transcription of rcsB is under the control of three promoters, which were all repressed by CpxR. Critically, synthetic activation of Cpx signalling through mislocalization of the NlpE lipoprotein to the inner membrane resulted in an active form of CpxR that repressed activity of rcsB promoters. On the other hand, a site-directed mutation of the phosphorylation site at residue 51 in CpxR generated an inactive non-phosphorylated variant that was unable to regulate output from these rcsB promoters. Importantly, CpxR-mediated inhibition of rcsB transcription in turn restricted activation of the Ysc-Yop type III secretion system (T3SS). Moreover, active CpxR blocks zinc-mediated activation of Rcs signalling and the subsequent activation of lcrF transcription. Our results demonstrate a novel regulatory cascade linking CpxR-RcsB-LcrF to control production of the Ysc-Yop T3SS.
Collapse
Affiliation(s)
- Keke Fei
- University of Chinese Academy of Sciences, Beijing, PR China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| | - Hong-Jun Chao
- Present address: School of Biological & pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
20
|
Ganguly T, Peterson AM, Kajfasz JK, Abranches J, Lemos JA. Zinc import mediated by AdcABC is critical for colonization of the dental biofilm by Streptococcus mutans in an animal model. Mol Oral Microbiol 2021; 36:214-224. [PMID: 33819383 PMCID: PMC9178666 DOI: 10.1111/omi.12337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Trace metals are essential to all domains of life but toxic when found at high concentrations. Although the importance of iron in host-pathogen interactions is firmly established, contemporary studies indicate that other trace metals, including manganese and zinc, are also critical to the infectious process. In this study, we sought to identify and characterize the zinc uptake system(s) of Streptococcus mutans, a keystone pathogen in dental caries and a causative agent of bacterial endocarditis. Different than other pathogenic bacteria, including several streptococci, that encode multiple zinc import systems, bioinformatic analysis indicated that the S. mutans core genome encodes a single, highly conserved, zinc importer commonly known as AdcABC. Inactivation of the genes coding for the metal-binding AdcA (ΔadcA) or both AdcC ATPase and AdcB permease (ΔadcCB) severely impaired the ability of S. mutans to grow under zinc-depleted conditions. Intracellular metal quantifications revealed that both mutants accumulated less zinc when grown in the presence of a subinhibitory concentration of a zinc-specific chelator. Notably, the ΔadcCB strain displayed a severe colonization defect in a rat oral infection model. Both Δadc strains were hypersensitive to high concentrations of manganese, showed reduced peroxide tolerance, and formed less biofilm in sucrose-containing media when cultivated in the presence of the lowest amount of zinc that support their growth, but not when zinc was supplied in excess. Collectively, this study identifies AdcABC as the major high affinity zinc importer of S. mutans and provides preliminary evidence that zinc is a growth-limiting factor within the dental biofilm.
Collapse
Affiliation(s)
- Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Alexandra M. Peterson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - José A. Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
21
|
Cellular Management of Zinc in Group B Streptococcus Supports Bacterial Resistance against Metal Intoxication and Promotes Disseminated Infection. mSphere 2021; 6:6/3/e00105-21. [PMID: 34011683 PMCID: PMC8265624 DOI: 10.1128/msphere.00105-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential trace element for normal bacterial physiology but, divergently, can intoxicate bacteria at high concentrations. Here, we define the molecular systems for Zn detoxification in Streptococcus agalactiae, also known as group B streptococcus, and examine the effects of resistance to Zn stress on virulence. We compared the growth of wild-type bacteria and mutants deleted for the Zn exporter, czcD, and the response regulator, sczA, using Zn-stress conditions in vitro Macrophage antibiotic protection assays and a mouse model of disseminated infection were used to assess virulence. Global bacterial transcriptional responses to Zn stress were defined by RNA sequencing and quantitative reverse transcription-PCR. czcD and sczA enabled S. agalactiae to survive Zn stress, with the putative CzcD efflux system activated by SczA. Additional genes activated in response to Zn stress encompassed divalent cation transporters that contribute to regulation of Mn and Fe homeostasis. In vivo, the czcD-sczA Zn management axis supported virulence in the blood, heart, liver, and bladder. Additionally, several genes not previously linked to Zn stress in any bacterium, including, most notably, arcA for arginine deamination, also mediated resistance to Zn stress, representing a novel molecular mechanism of bacterial resistance to metal intoxication. Taken together, these findings show that S. agalactiae responds to Zn stress by sczA regulation of czcD, with additional novel mechanisms of resistance supported by arcA, encoding arginine deaminase. Cellular management of Zn stress in S. agalactiae supports virulence by facilitating bacterial survival in the host during systemic infection.IMPORTANCE Streptococcus agalactiae, also known as group B streptococcus, is an opportunistic pathogen that causes various diseases in humans and animals. This bacterium has genetic systems that enable zinc detoxification in environments of metal stress, but these systems remain largely undefined. Using a combination of genomic, genetic, and cellular assays, we show that this pathogen controls Zn export through CzcD to manage Zn stress and utilizes a system of arginine deamination never previously linked to metal stress responses in bacteria to survive metal intoxication. We show that these systems are crucial for survival of S. agalactiae in vitro during Zn stress and also enhance virulence during systemic infection in mice. These discoveries establish new molecular mechanisms of resistance to metal intoxication in bacteria; we suggest these mechanisms operate in other bacteria as a way to sustain microbial survival under conditions of metal stress, including in host environments.
Collapse
|
22
|
Dow A, Sule P, O’Donnell TJ, Burger A, Mattila JT, Antonio B, Vergara K, Marcantonio E, Adams LG, James N, Williams PG, Cirillo JD, Prisic S. Zinc limitation triggers anticipatory adaptations in Mycobacterium tuberculosis. PLoS Pathog 2021; 17:e1009570. [PMID: 33989345 PMCID: PMC8121289 DOI: 10.1371/journal.ppat.1009570] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn2+) availability as a likely driver of bacterial phenotypic heterogeneity in vivo. Zn2+ sequestration is part of "nutritional immunity", where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn2+-limitation is an environmental cue sensed by Mtb, as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn2+-limited Mtb in vivo. Prolonged Zn2+ limitation leads to numerous physiological changes in vitro, including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn2+-limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn2+-limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn2+ availability likely plays a key role during early interactions with host cells.
Collapse
Affiliation(s)
- Allexa Dow
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Preeti Sule
- Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, Texas, United States of America
| | - Timothy J. O’Donnell
- Department of Chemistry, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Andrew Burger
- School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Brandi Antonio
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Kevin Vergara
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Endrei Marcantonio
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Philip G. Williams
- Department of Chemistry, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Jeffrey D. Cirillo
- Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, Texas, United States of America
| | - Sladjana Prisic
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
23
|
Gonciarz RL, Renslo AR. Emerging role of ferrous iron in bacterial growth and host-pathogen interaction: New tools for chemical (micro)biology and antibacterial therapy. Curr Opin Chem Biol 2021; 61:170-178. [PMID: 33714882 PMCID: PMC8106656 DOI: 10.1016/j.cbpa.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 01/27/2023]
Abstract
Chemical tools capable of detecting ferrous iron with oxidation-state specificity have only recently become available. Coincident with this development in chemical biology has been increased study and appreciation for the importance of ferrous iron during infection and more generally in host-pathogen interaction. Some of the recent findings are surprising and challenge long-standing assumptions about bacterial iron homeostasis and the innate immune response to infection. Here, we review these recent developments and their implications for antibacterial therapy.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
| |
Collapse
|
24
|
Xia P, Lian S, Wu Y, Yan L, Quan G, Zhu G. Zinc is an important inter-kingdom signal between the host and microbe. Vet Res 2021; 52:39. [PMID: 33663613 PMCID: PMC7931793 DOI: 10.1186/s13567-021-00913-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) is an essential trace element in living organisms and plays a vital role in the regulation of both microbial virulence and host immune responses. A growing number of studies have shown that zinc deficiency or the internal Zn concentration does not meet the needs of animals and microbes, leading to an imbalance in zinc homeostasis and intracellular signalling pathway dysregulation. Competition for zinc ions (Zn2+) between microbes and the host exists in the use of Zn2+ to maintain cell structure and physiological functions. It also affects the interplay between microbial virulence factors and their specific receptors in the host. This review will focus on the role of Zn in the crosstalk between the host and microbe, especially for changes in microbial pathogenesis and nociceptive neuron-immune interactions, as it may lead to new ways to prevent or treat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
25
|
Sukumaran A, Pladwig S, Geddes-McAlister J. Zinc limitation in Klebsiella pneumoniae profiled by quantitative proteomics influences transcriptional regulation and cation transporter-associated capsule production. BMC Microbiol 2021; 21:43. [PMID: 33568055 PMCID: PMC7874612 DOI: 10.1186/s12866-021-02091-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Background Microbial organisms encounter a variety of environmental conditions, including changes to metal ion availability. Metal ions play an important role in many biological processes for growth and survival. As such, microbes alter their cellular protein levels and secretion patterns in adaptation to a changing environment. This study focuses on Klebsiella pneumoniae, an opportunistic bacterium responsible for nosocomial infections. By using K. pneumoniae, we aim to determine how a nutrient-limited environment (e.g., zinc depletion) modulates the cellular proteome and secretome of the bacterium. By testing virulence in vitro, we provide novel insight into bacterial responses to limited environments in the presence of the host. Results Analysis of intra- and extracellular changes identified 2380 proteins from the total cellular proteome (cell pellet) and 246 secreted proteins (supernatant). Specifically, HutC, a repressor of the histidine utilization operon, showed significantly increased abundance under zinc-replete conditions, which coincided with an expected reduction in expression of genes within the hut operon from our validating qRT-PCR analysis. Additionally, we characterized a putative cation transport regulator, ChaB that showed significantly higher abundance under zinc-replete vs. -limited conditions, suggesting a role in metal ion homeostasis. Phenotypic analysis of a chaB deletion strain demonstrated a reduction in capsule production, zinc-dependent growth and ion utilization, and reduced virulence when compared to the wild-type strain. Conclusions This is first study to comprehensively profile the impact of zinc availability on the proteome and secretome of K. pneumoniae and uncover a novel connection between zinc transport and capsule production in the bacterial system. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02091-8.
Collapse
Affiliation(s)
- A Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - S Pladwig
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - J Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
26
|
Abstract
The study of metabolic changes associated with host-pathogen interactions have largely focused on the strategies that microbes use to subvert host metabolism to support their own proliferation. However, recent reports demonstrate that changes in host cell metabolism can also be detrimental to pathogens and restrict their growth. In this Review, I present a framework to consider how the host cell exploits the multifaceted roles of metabolites to defend against microbes. I also highlight how the rewiring of metabolic processes can strengthen cellular barriers to microbial invasion, regulate microbial virulence programs and factors, limit microbial access to nutrient sources and generate toxic environments for microbes. Collectively, the studies described here support a critical role for the rewiring of cellular metabolism in the defense against microbes. Further study of host-pathogen interactions from this framework has the potential to reveal novel aspects of host defense and metabolic control, and may inform how human metabolism impacts the progression of infectious disease.
Collapse
Affiliation(s)
- Lena Pernas
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany .,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
27
|
C-2 derivatized 8-sulfonamidoquinolines as antibacterial compounds. Bioorg Med Chem 2021; 29:115837. [PMID: 33223463 DOI: 10.1016/j.bmc.2020.115837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
A series of C-2 derivatized 8-sulfonamidoquinolines were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc (50 µM ZnSO4). The vast majority of compounds tested were demonstrated to be significantly more active against S. uberis when in the presence of supplementary zinc (MICs as low as 0.125 µg/mL were observed in the presence of 50 µM ZnSO4). Compounds 5, 34-36, 39, 58, 79, 82, 94 and 95 were shown to display the greatest antibacterial activity against S. aureus (MIC ≤ 8 µg/mL; both in the presence and absence of supplementary zinc), while compounds 56, 58 and 66 were demonstrated to also exhibit activity against E. coli (MIC ≤ 16 µg/mL; under all conditions). Compounds 56, 58 and 66 were subsequently confirmed to be bactericidal against all three mastitis pathogens studied, with MBCs (≥3log10 CFU/mL reduction) of ≤ 32 µg/mL (in both the presence and absence of 50 µM ZnSO4). To validate the sanitizing activity of compounds 56, 58 and 66, a quantitative suspension disinfection (sanitizer) test was performed. Sanitizing activity (>5log10 CFU/mL reduction in 5 min) was observed against both S. uberis and E. coli at compound concentrations as low as 1 mg/mL (compounds 56, 58 and 66), and against S. aureus at 1 mg/mL (compound 58); thereby validating the potential of compounds 56, 58 and 66 to function as topical sanitizers designed explicitly for use in non-human applications.
Collapse
|
28
|
Abstract
Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.
Collapse
|
29
|
Barnawi H, Masri N, Hussain N, Al-Lawati B, Mayasari E, Gulbicka A, Jervis AJ, Huang MH, Cavet JS, Linton D. RNA-based thermoregulation of a Campylobacter jejuni zinc resistance determinant. PLoS Pathog 2020; 16:e1009008. [PMID: 33064782 PMCID: PMC7592916 DOI: 10.1371/journal.ppat.1009008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/28/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
RNA thermometers (RNATs) trigger bacterial virulence factor expression in response to the temperature shift on entering a warm-blooded host. At lower temperatures these secondary structures sequester ribosome-binding sites (RBSs) to prevent translation initiation, whereas at elevated temperatures they "melt" allowing translation. Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide yet little is known about how it interacts with the host including host induced gene regulation. Here we demonstrate that an RNAT regulates a C. jejuni gene, Cj1163c or czcD, encoding a member of the Cation Diffusion Facilitator family. The czcD upstream untranslated region contains a predicted stem loop within the mRNA that sequesters the RBS to inhibit translation at temperatures below 37°C. Mutations that disrupt or enhance predicted secondary structure have significant and predictable effects on temperature regulation. We also show that in an RNAT independent manner, CzcD expression is induced by Zn(II). Mutants lacking czcD are hypersensitive to Zn(II) and also over-accumulate Zn(II) relative to wild-type, all consistent with CzcD functioning as a Zn(II) exporter. Importantly, we demonstrate that C. jejuni Zn(II)-tolerance at 32°C, a temperature at which the RNAT limits CzcD production, is increased by RNAT disruption. Finally we show that czcD inactivation attenuates larval killing in a Galleria infection model and that at 32°C disrupting RNAT secondary structure to allow CzcD production can enhance killing. We hypothesise that CzcD regulation by metals and temperature provides a mechanism for C. jejuni to overcome innate immune system-mediated Zn(II) toxicity in warm-blooded animal hosts.
Collapse
Affiliation(s)
- Heba Barnawi
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nader Masri
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Natasha Hussain
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Bushra Al-Lawati
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Evita Mayasari
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Microbiology Department, Faculty of Medicine, Universitas Sumatera Utara, Indonesia
| | - Aleksandra Gulbicka
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Adrian J. Jervis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Min-Hsuan Huang
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (JSC); (DL)
| | - Dennis Linton
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (JSC); (DL)
| |
Collapse
|
30
|
Makthal N, Do H, Wendel BM, Olsen RJ, Helmann JD, Musser JM, Kumaraswami M. Group A Streptococcus AdcR Regulon Participates in Bacterial Defense against Host-Mediated Zinc Sequestration and Contributes to Virulence. Infect Immun 2020; 88:e00097-20. [PMID: 32393509 PMCID: PMC7375770 DOI: 10.1128/iai.00097-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Colonization by pathogenic bacteria depends on their ability to overcome host nutritional defenses and acquire nutrients. The human pathogen group A streptococcus (GAS) encounters the host defense factor calprotectin (CP) during infection. CP inhibits GAS growth in vitro by imposing zinc (Zn) limitation. However, GAS counterstrategies to combat CP-mediated Zn limitation and the in vivo relevance of CP-GAS interactions to bacterial pathogenesis remain unknown. Here, we report that GAS upregulates the AdcR regulon in response to CP-mediated Zn limitation. The AdcR regulon includes genes encoding Zn import (adcABC), Zn sparing (rpsN.2), and Zn scavenging systems (adcAII, phtD, and phtY). Each gene in the AdcR regulon contributes to GAS Zn acquisition and CP resistance. The ΔadcC and ΔrpsN.2 mutant strains were the most susceptible to CP, whereas the ΔadcA, ΔadcAII, and ΔphtD mutant strains displayed less CP sensitivity during growth in vitro However, the ΔphtY mutant strain did not display an increased CP sensitivity. The varied sensitivity of the mutant strains to CP-mediated Zn limitation suggests distinct roles for individual AdcR regulon genes in GAS Zn acquisition. GAS upregulates the AdcR regulon during necrotizing fasciitis infection in WT mice but not in S100a9-/- mice lacking CP. This suggests that CP induces Zn deficiency in the host. Finally, consistent with the in vitro results, several of the AdcR regulon genes are critical for GAS virulence in WT mice, whereas they are dispensable for virulence in S100a9-/- mice, indicating the direct competition for Zn between CP and proteins encoded by the GAS AdcR regulon during infection.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Brian M Wendel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
31
|
Genome-Wide Screens Identify Group A Streptococcus Surface Proteins Promoting Female Genital Tract Colonization and Virulence. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:862-873. [PMID: 32200972 DOI: 10.1016/j.ajpath.2019.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Group A streptococcus (GAS) is a major pathogen that impacts health and economic affairs worldwide. Although the oropharynx is the primary site of infection, GAS can colonize the female genital tract and cause severe diseases, such as puerperal sepsis, neonatal infections, and necrotizing myometritis. Our understanding of how GAS genes contribute to interaction with the primate female genital tract is limited by the lack of relevant animal models. Using two genome-wide transposon mutagenesis screens, we identified 69 GAS genes required for colonization of the primate vaginal mucosa in vivo and 96 genes required for infection of the uterine wall ex vivo. We discovered a common set of 39 genes important for GAS fitness in both environments. They include genes encoding transporters, surface proteins, transcriptional regulators, and metabolic pathways. Notably, the genes that encode the surface-exclusion protein (SpyAD) and the immunogenic secreted protein 2 (Isp2) were found to be crucial for GAS fitness in the female primate genital tract. Targeted gene deletion confirmed that isogenic mutant strains ΔspyAD and Δisp2 are significantly impaired in ability to colonize the primate genital tract and cause uterine wall pathologic findings. Our studies identified novel GAS genes that contribute to female reproductive tract interaction that warrant translational research investigation.
Collapse
|
32
|
Harbison-Price N, Ferguson SA, Heikal A, Taiaroa G, Hards K, Nakatani Y, Rennison D, Brimble MA, El-Deeb IM, Bohlmann L, McDevitt CA, von Itzstein M, Walker MJ, Cook GM. Multiple Bactericidal Mechanisms of the Zinc Ionophore PBT2. mSphere 2020; 5:e00157-20. [PMID: 32188750 PMCID: PMC7082140 DOI: 10.1128/msphere.00157-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/29/2020] [Indexed: 12/21/2022] Open
Abstract
Globally, more antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance (AMR). The development of novel ionophores, a class of antimicrobials used exclusively in animals, holds promise as a strategy to replace or reduce essential human antimicrobials in veterinary practice. PBT2 is a zinc ionophore with recently demonstrated antibacterial activity against several Gram-positive pathogens, although the underlying mechanism of action is unknown. Here, we investigated the bactericidal mechanism of PBT2 in the bovine mastitis-causing pathogen, Streptococcus uberis In this work, we show that PBT2 functions as a Zn2+/H+ ionophore, exchanging extracellular zinc for intracellular protons in an electroneutral process that leads to cellular zinc accumulation. Zinc accumulation occurs concomitantly with manganese depletion and the production of reactive oxygen species (ROS). PBT2 inhibits the activity of the manganese-dependent superoxide dismutase, SodA, thereby impairing oxidative stress protection. We propose that PBT2-mediated intracellular zinc toxicity in S. uberis leads to lethality through multiple bactericidal mechanisms: the production of toxic ROS and the impairment of manganese-dependent antioxidant functions. Collectively, these data show that PBT2 represents a new class of antibacterial ionophores capable of targeting bacterial metal ion homeostasis and cellular redox balance. We propose that this novel and multitarget mechanism of PBT2 makes the development of cross-resistance to medically important antimicrobials unlikely.IMPORTANCE More antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance. Therefore, the elimination of antimicrobial crossover between human and veterinary medicine is of great interest. Unfortunately, the development of new antimicrobials is an expensive high-risk process fraught with difficulties. The repurposing of chemical agents provides a solution to this problem, and while many have not been originally developed as antimicrobials, they have been proven safe in clinical trials. PBT2, a zinc ionophore, is an experimental therapeutic that met safety criteria but failed efficacy checkpoints against both Alzheimer's and Huntington's diseases. It was recently found that PBT2 possessed potent antimicrobial activity, although the mechanism of bacterial cell death is unresolved. In this body of work, we show that PBT2 has multiple mechanisms of antimicrobial action, making the development of PBT2 resistance unlikely.
Collapse
Affiliation(s)
| | - Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Adam Heikal
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - George Taiaroa
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yoshio Nakatani
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Lisa Bohlmann
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mark J Walker
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Substituted sulfonamide bioisosteres of 8-hydroxyquinoline as zinc-dependent antibacterial compounds. Bioorg Med Chem Lett 2020; 30:127110. [PMID: 32229060 DOI: 10.1016/j.bmcl.2020.127110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
A series of substituted sulfonamide bioisosteres of 8-hydroxyquinoline were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc. Compounds 9a-e, 10a-c, 11a-e, 12 and 13 were demonstrated to have MICs of 0.0625 µg/mL against S. uberis in the presence of 50 µM ZnSO4. Against S. aureus compounds 9g (MIC 4 µg/mL) and 11d (MIC 8 µg/mL) showed the greatest activity, whereas all compounds were found to be inactive against E. coli (MIC > 256 µg/mL); again in the presence of 50 µM ZnSO4. All compounds were demonstrated to be significantly less active in the absence of supplementary zinc. Compound 9g was subsequently confirmed to be bactericidal, with an MBC (≥3log10 cfu/mL reduction) of 0.125 µg/mL against S. uberis in the presence of 50 µM ZnSO4. To validate the sanitising activity of compound 9g in the presence of supplementary zinc, a quantitative suspension disinfection (sanitizer) test was performed. In this preliminary test, sanitizing activity (>5log10 reduction of CFU/mL in 5 min) was observed against S. uberis for compound 9g at concentrations as low as 1 mg/mL, validating the potential of this compound to function as a topical sanitizer against the major environmental mastitis-causing microorganism S. uberis.
Collapse
|
34
|
Kachroo P, Eraso JM, Olsen RJ, Zhu L, Kubiak SL, Pruitt L, Yerramilli P, Cantu CC, Ojeda Saavedra M, Pensar J, Corander J, Jenkins L, Kao L, Granillo A, Porter AR, DeLeo FR, Musser JM. New Pathogenesis Mechanisms and Translational Leads Identified by Multidimensional Analysis of Necrotizing Myositis in Primates. mBio 2020; 11:e03363-19. [PMID: 32071274 PMCID: PMC7029145 DOI: 10.1128/mbio.03363-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023] Open
Abstract
A fundamental goal of contemporary biomedical research is to understand the molecular basis of disease pathogenesis and exploit this information to develop targeted and more-effective therapies. Necrotizing myositis caused by the bacterial pathogen Streptococcus pyogenes is a devastating human infection with a high mortality rate and few successful therapeutic options. We used dual transcriptome sequencing (RNA-seq) to analyze the transcriptomes of S. pyogenes and host skeletal muscle recovered contemporaneously from infected nonhuman primates. The in vivo bacterial transcriptome was strikingly remodeled compared to organisms grown in vitro, with significant upregulation of genes contributing to virulence and altered regulation of metabolic genes. The transcriptome of muscle tissue from infected nonhuman primates (NHPs) differed significantly from that of mock-infected animals, due in part to substantial changes in genes contributing to inflammation and host defense processes. We discovered significant positive correlations between group A streptococcus (GAS) virulence factor transcripts and genes involved in the host immune response and inflammation. We also discovered significant correlations between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness, as assessed by previously conducted genome-wide transposon-directed insertion site sequencing (TraDIS). By integrating the bacterial RNA-seq data with the fitness data generated by TraDIS, we discovered five new pathogen genes, namely, S. pyogenes 0281 (Spy0281 [dahA]), ihk-irr, slr, isp, and ciaH, that contribute to necrotizing myositis and confirmed these findings using isogenic deletion-mutant strains. Taken together, our study results provide rich new information about the molecular events occurring in severe invasive infection of primate skeletal muscle that has extensive translational research implications.IMPORTANCE Necrotizing myositis caused by Streptococcus pyogenes has high morbidity and mortality rates and relatively few successful therapeutic options. In addition, there is no licensed human S. pyogenes vaccine. To gain enhanced understanding of the molecular basis of this infection, we employed a multidimensional analysis strategy that included dual RNA-seq and other data derived from experimental infection of nonhuman primates. The data were used to target five streptococcal genes for pathogenesis research, resulting in the unambiguous demonstration that these genes contribute to pathogen-host molecular interactions in necrotizing infections. We exploited fitness data derived from a recently conducted genome-wide transposon mutagenesis study to discover significant correlation between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness. Collectively, our findings have significant implications for translational research, potentially including vaccine efforts.
Collapse
Affiliation(s)
- Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Layne Pruitt
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Prasanti Yerramilli
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Johan Pensar
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Leslie Jenkins
- Comparative Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lillian Kao
- Department of Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Alejandro Granillo
- Department of Internal Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
35
|
Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol 2019; 29:727-739. [PMID: 31227311 DOI: 10.1016/j.tcb.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022]
Abstract
Since their invention about two decades ago, super-resolution microscopes have become a method of choice in cell biology. Owing to a spatial resolution below 50 nm, smaller than the size of most organelles, and an order of magnitude better than the diffraction limit of conventional light microscopes, super-resolution microscopy is a powerful technique for resolving intracellular trafficking. In this review we discuss discoveries in endocytosis and phagocytosis that have been made possible by super-resolution microscopy - from uptake at the plasma membrane, endocytic coat formation, and cytoskeletal rearrangements to endosomal maturation. The detailed visualization of the diverse molecular assemblies that mediate endocytic uptake will provide a better understanding of how cells ingest extracellular material.
Collapse
|
36
|
Sheldon JR, Skaar EP. Metals as phagocyte antimicrobial effectors. Curr Opin Immunol 2019; 60:1-9. [PMID: 31063946 DOI: 10.1016/j.coi.2019.04.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022]
Abstract
Transition metal ions are essential to bacterial pathogens and their hosts alike but are harmful in excess. In an effort to curtail the replication of intracellular bacteria, host phagocytes exploit both the essentiality and toxicity of transition metals. In the paradigmatic description of nutritional immunity, iron and manganese are withheld from phagosomes to starve microbial invaders of these nutrients. Conversely, the destructive properties of copper and zinc appear to be harnessed by phagocytes, where these metals are delivered in excess to phagosomes to intoxicate internalized bacteria. Here, we briefly summarize key players in metal withholding from intracellular pathogens, before focusing on recent findings supporting the function of copper and zinc as phagocyte antimicrobial effectors. The mechanisms of copper and zinc toxicity are explored, along with strategies employed by intracellular bacterial pathogens to avoid killing by these metals.
Collapse
Affiliation(s)
- Jessica R Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.
| |
Collapse
|
37
|
Brunke-Reese D, Ssentongo P, Ssentongo AE, Phillips BE, Pauli EM, Berg A, Kelleher SL, Soybel DI. The Role of Genetic Variant rs13266634 in SLC30A8/ZnT8 in Post-Operative Hyperglycemia after Major Abdominal Surgery. J Clin Endocrinol Metab 2019; 104:3877-3892. [PMID: 31220282 DOI: 10.1210/jc.2018-02588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/04/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Following major surgery, post-operative hyperglycemia (POHG) is associated with suboptimal outcomes, among diabetics and non-diabetics. A specific genetic variant, rs13266634 (c.973C>T; p.ARG325TRP) in zinc transporter SLC30A8/ZnT8, is associated with protection against Type-2 Diabetes, suggesting it may be actionable for predicting and preventing POHG. OBJECTIVE To determine independent and mediated influences of a genetic variant on POHG in patients undergoing a model major operation, complex abdominal ventral hernia repair (cVHR). PATIENTS AND METHODS For 110 patients (mean BMI 34.9±5.8, T2D history 28%) undergoing cVHR at a tertiary referral center (January 2012 to March 2017), multivariate regression was used to correlate the rs13266634 variant to pre-operative clinical, laboratory and imaging-based indices of liver steatosis and central abdominal adiposity to POHG. Causal Mediation Analysis (CMA) was used to determine direct and mediated contributions of SLC30A8/ZnT8 status to POHG. RESULTS Variant rs13266634 was present in 61 patients (55.4%). In univariate models, when compared to patients with rs13266634, the homozygous wild-genotype (C/C, n=49) was associated with significantly higher risks of POHG (OR= 0.30 95%CI =0.14, 0.67, P=0.0038). Multivariate regression indicated that the association was independent (OR= 0.39 95%CI 0.15-0.97, p=0.040). In addition, CMA suggested that rs13266634 protects against POHG directly and indirectly through its influence on liver steatosis and central adiposity. CONCLUSIONS In medically complex patients undergoing major operations, the rs13266634 variant protects against POHG and its associated outcomes, through independent and mediated contributions. In C/C patients undergoing major operations, SLC30A8/ZnT8 may prove useful to stratify risk of POHG and potentially as a therapeutic target.
Collapse
Affiliation(s)
- Deborah Brunke-Reese
- Department of Surgery, Penn State Hershey College of Medicine and Milton S. Hershey Medical Center, Hershey, PA
| | - Paddy Ssentongo
- Department of Surgery, Penn State Hershey College of Medicine and Milton S. Hershey Medical Center, Hershey, PA
- Center for Neural Engineering, Department of Engineering, Science and Mechanics, The Pennsylvania State University, PA, USA
| | - Anna E Ssentongo
- Department of Surgery, Penn State Hershey College of Medicine and Milton S. Hershey Medical Center, Hershey, PA
- Department of Public Health Sciences, Penn State Hershey College of Medicine and Milton S. Hershey Medical Center, Hershey
| | - Brett E Phillips
- Allegheny Health Network Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Eric M Pauli
- Department of Surgery, Penn State Hershey College of Medicine and Milton S. Hershey Medical Center, Hershey, PA
| | - Arthur Berg
- Department of Public Health Sciences, Penn State Hershey College of Medicine and Milton S. Hershey Medical Center, Hershey
| | - Shannon L Kelleher
- Department of Surgery, Penn State Hershey College of Medicine and Milton S. Hershey Medical Center, Hershey, PA
- Department of Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts- Lowell, Lowell, MA
| | - David I Soybel
- Department of Surgery, Penn State Hershey College of Medicine and Milton S. Hershey Medical Center, Hershey, PA
- Department of Cellular & Molecular Physiology, Penn State Hershey College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
38
|
Uropathogenic Escherichia coli employs both evasion and resistance to subvert innate immune-mediated zinc toxicity for dissemination. Proc Natl Acad Sci U S A 2019; 116:6341-6350. [PMID: 30846555 PMCID: PMC6442554 DOI: 10.1073/pnas.1820870116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is responsible for most urinary tract infections and is also a frequent cause of sepsis, thus necessitating an understanding of UPEC-mediated subversion of innate immunity. The role of zinc in the innate immune response against UPEC infection, and whether this pathogen counters this response, has not been examined. Here we demonstrate, both in vitro and in vivo, that UPEC both evades and resists innate immune-mediated zinc toxicity to persist and disseminate within the host. Moreover, we have defined the set of UPEC genes conferring zinc resistance and have developed highly selective E. coli reporter systems to track zinc toxicity. These innovative approaches substantially enhance our understanding of immune-mediated metal ion toxicity and bacterial pathogenesis. Toll-like receptor (TLR)-inducible zinc toxicity is a recently described macrophage antimicrobial response used against bacterial pathogens. Here we investigated deployment of this pathway against uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections. Primary human macrophages subjected EC958, a representative strain of the globally disseminated multidrug-resistant UPEC ST131 clone, to zinc stress. We therefore used transposon-directed insertion site sequencing to identify the complete set of UPEC genes conferring protection against zinc toxicity. Surprisingly, zinc-susceptible EC958 mutants were not compromised for intramacrophage survival, whereas corresponding mutants in the nonpathogenic E. coli K-12 strain MG1655 displayed significantly reduced intracellular bacterial loads within human macrophages. To investigate whether the intramacrophage zinc stress response of EC958 reflected the response of only a subpopulation of bacteria, we generated and validated reporter systems as highly specific sensors of zinc stress. Using these tools we show that, in contrast to MG1655, the majority of intramacrophage EC958 evades the zinc toxicity response, enabling survival within these cells. In addition, EC958 has a higher tolerance to zinc than MG1655, with this likely being important for survival of the minor subset of UPEC cells exposed to innate immune-mediated zinc stress. Indeed, analysis of zinc stress reporter strains and zinc-sensitive mutants in an intraperitoneal challenge model in mice revealed that EC958 employs both evasion and resistance against zinc toxicity, enabling its dissemination to the liver and spleen. We thus demonstrate that a pathogen of global significance uses multiple mechanisms to effectively subvert innate immune-mediated zinc poisoning for systemic spread.
Collapse
|
39
|
The role of metal ions in the virulence and viability of bacterial pathogens. Biochem Soc Trans 2019; 47:77-87. [PMID: 30626704 DOI: 10.1042/bst20180275] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 01/18/2023]
Abstract
Metal ions fulfil a plethora of essential roles within bacterial pathogens. In addition to acting as necessary cofactors for cellular proteins, making them indispensable for both protein structure and function, they also fulfil roles in signalling and regulation of virulence. Consequently, the maintenance of cellular metal ion homeostasis is crucial for bacterial viability and pathogenicity. It is therefore unsurprising that components of the immune response target and exploit both the essentiality of metal ions and their potential toxicity toward invading bacteria. This review provides a brief overview of the transition metal ions iron, manganese, copper and zinc during infection. These essential metal ions are discussed in the context of host modulation of bioavailability, bacterial acquisition and efflux, metal-regulated virulence factor expression and the molecular mechanisms that contribute to loss of viability and/or virulence during host-imposed metal stress.
Collapse
|