1
|
Xu X, Rigas YE, Mattapallil MJ, Guo J, Nagarajan V, Bohrnsen E, Richards C, Gupta A, Gaud G, Love PE, Jiang T, Zhang A, Xu B, Peng Z, Jittayasothorn Y, Carr M, Magone MT, Brandes NT, Shane J, Schwarz B, St. Leger AJ, Caspi RR. Commensal-derived Trehalose Monocorynomycolate Triggers γδ T Cell-driven Protective Ocular Barrier Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643820. [PMID: 40166223 PMCID: PMC11956969 DOI: 10.1101/2025.03.17.643820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Commensals shape host physiology through molecular crosstalk with host receptors. Identifying specific microbial factors that causally influence host immunity is key to understanding homeostasis at the host-microbe interface and advancing microbial-based therapeutics. Here, we identify trehalose monocorynomycolate (TMCM) from Corynebacterium mastitidis (C. mast) as a potent stimulator of IL-17 production by γδ T cells at the ocular surface. Mechanistically, TMCM-driven IL-17 responses require both IL-1 signals and γδ TCR signaling, which also supports endogenous γδ T cell IL-1R1 expression. Notably, synthetic TMCM alone is sufficient to mimic the effect of C. mast in inducing γδ T cell immunity and protect against pathogenic corneal infection. Our findings establish TMCM as a key mediator of commensal-driven immune defense, highlighting its potential as a γδ T cell adjuvant and a microbiome-informed therapeutic to enhance IL-17-driven protection at barrier sites such as the ocular surface.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Immunoreg Sctn, Lab Immunol, NEI, NIH, Bethesda MD 20892, USA
| | - Yannis E. Rigas
- Univ of Pittsburgh Sch Med, Dept Ophthalmol & Immunol, Pittsburgh, PA 15213, USA
| | | | - Jing Guo
- Dept Microbiol & Immunol, Stanford Univ Sch Med, Stanford, CA 94305, USA
| | | | - Eric Bohrnsen
- Res & Tech Br, Rocky Mountain Labs, NIAID, NIH, Hamilton, MT, USA
| | - Crystal Richards
- Res & Tech Br, Rocky Mountain Labs, NIAID, NIH, Hamilton, MT, USA
- Current address: Health Research & Development Branch, NIGMS, NIH
| | - Akriti Gupta
- Immunoreg Sctn, Lab Immunol, NEI, NIH, Bethesda MD 20892, USA
| | - Guillaume Gaud
- Hematopoiesis & Lymphocyte Biol Sctn, NICHD, NIH, Bethesda, MD, USA
| | - Paul E. Love
- Hematopoiesis & Lymphocyte Biol Sctn, NICHD, NIH, Bethesda, MD, USA
| | - Timothy Jiang
- Immunoreg Sctn, Lab Immunol, NEI, NIH, Bethesda MD 20892, USA
| | - Amy Zhang
- Immunoreg Sctn, Lab Immunol, NEI, NIH, Bethesda MD 20892, USA
| | - Biying Xu
- Immunoreg Sctn, Lab Immunol, NEI, NIH, Bethesda MD 20892, USA
| | - Zixuan Peng
- Immunoreg Sctn, Lab Immunol, NEI, NIH, Bethesda MD 20892, USA
| | | | - Mary Carr
- Immunoreg Sctn, Lab Immunol, NEI, NIH, Bethesda MD 20892, USA
- Dept Cell & Mol Biol, Univ Mississippi Med Center, Jackson, MS 39216, Current address: Dept Microbiol & Immunol, Emory Univ Sch Med, Atlanta, GA 30322, USA
| | | | | | - Jackie Shane
- Univ of Pittsburgh Sch Med, Dept Ophthalmol & Immunol, Pittsburgh, PA 15213, USA
| | - Benjamin Schwarz
- Res & Tech Br, Rocky Mountain Labs, NIAID, NIH, Hamilton, MT, USA
| | - Anthony J. St. Leger
- Univ of Pittsburgh Sch Med, Dept Ophthalmol & Immunol, Pittsburgh, PA 15213, USA
| | - Rachel R. Caspi
- Immunoreg Sctn, Lab Immunol, NEI, NIH, Bethesda MD 20892, USA
| |
Collapse
|
2
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
3
|
Venkataraman S, Rajendran DS, Vaidyanathan VK. An insight into the utilization of microbial biosurfactants pertaining to their industrial applications in the food sector. Food Sci Biotechnol 2024; 33:245-273. [PMID: 38222912 PMCID: PMC10786815 DOI: 10.1007/s10068-023-01435-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 01/16/2024] Open
Abstract
Microbial biosurfactants surpass synthetic alternatives due to their biodegradability, minimal toxicity, selective properties, and efficacy across a wide range of environmental conditions. Owing to their remarkable advantages, biosurfactants employability as effective emulsifiers and stabilizers, antimicrobial and antioxidant attributes, rendering them for integration into food preservation, processing, formulations, and packaging. The biosurfactants can also be derived from various types of food wastes. Biosurfactants are harnessed across multiple sectors within the food industry, ranging from condiments (mayonnaise) to baked goods (bread, muffins, loaves, cookies, and dough), and extending into the dairy industry (cheese, yogurt, and fermented milk). Additionally, their impact reaches the beverage industry, poultry feed, seafood products like tuna, as well as meat processing and instant foods, collectively redefining each sector's landscape. This review thoroughly explores the multifaceted utilization of biosurfactants within the food industry as emulsifiers, antimicrobial, antiadhesive, antibiofilm agents, shelf-life enhancers, texture modifiers, and foaming agents.
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
4
|
Zhao Z, Li J, Yang L, Ren G, Zhang L, Wang T. Hemophagocytic lymphohistiocytosis and histiocytic necrotizing lymphadenitis secondary to hemodialysis catheter-related bloodstream infection caused by Corynebacterium Striatum. BMC Nephrol 2023; 24:294. [PMID: 37803308 PMCID: PMC10559591 DOI: 10.1186/s12882-023-03356-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND We herein described the coexistence of hemophagocytic lymphohistiocytosis (HLH) and histiocytic necrotizing lymphadenitis, alternatively known as the Kikuchi disease (KD), secondary to hemodialysis catheter-related bloodstream infection (BSI) caused by Corynebacterium striatum. CASE PRESENTATION A patient on maintenance hemodialysis had developed persistent fever and Corynebacterium striatum was subsequently identified from the culture of both catheter tip and peripheral blood. During mitigation of the BSI, however, his fever was unabated and ensuing workup further found thrombocytopenia, hyperferritinemia, hypertriglyceridemia, low NK cell activity and a surge in serum CD25 levels. Moreover, biopsy of the bone marrow and lymph node detected histopathological evidence of hemophagocytosis and KD, respectively. Upon these abnormalities, the title-bound diagnosis was considered and the patient was eventually recovered from the treatment of dexamethasone instead of antibiotics. Consistently, aberrations in his serum CD25 levels and NK cell activity had subsided two months after discharge. CONCLUSIONS Arguably, this encounter offered a unique chance to unravel the principal pathogenic cascade in immunobiology that made the three entities one disease continuum. As such, our work may add new understandings of HLH and/or KD secondary to severe infections in general and excessive release of cytokines in particular among patients with kidney diseases. The resultant early diagnosis is crucial to initiate appropriate treatment and improve the survival of patients with these challenging and potentially life-threatening disorders.
Collapse
Affiliation(s)
- ZhiPeng Zhao
- Graduate School of HeBei Medical University, No.361 East ZhongShan Boulevard, ShiJiaZhuang, 050011, China
- Department of Nephrology, the First Hospital of HeBei Medical University, No.89 DongGang Road, ShiJiaZhuang, 050030, China
| | - Jing Li
- Department of Nephrology, the First Hospital of HeBei Medical University, No.89 DongGang Road, ShiJiaZhuang, 050030, China
| | - Liu Yang
- Department of Hematology, the First Hospital of HeBei Medical University, No.89 DongGang Road, ShiJiaZhuang, 050030, China
| | - GuangWei Ren
- Department of Nephrology, the First Hospital of HeBei Medical University, No.89 DongGang Road, ShiJiaZhuang, 050030, China
| | - LiHong Zhang
- Department of Nephrology, the First Hospital of HeBei Medical University, No.89 DongGang Road, ShiJiaZhuang, 050030, China
| | - Tao Wang
- Department of Nephrology, the First Hospital of HeBei Medical University, No.89 DongGang Road, ShiJiaZhuang, 050030, China.
| |
Collapse
|
5
|
Kyselová J, Tichý L, Sztankóová Z, Marková J, Kavanová K, Beinhauerová M, Mušková M. Comparative Characterization of Immune Response in Sheep with Caseous Lymphadenitis through Analysis of the Whole Blood Transcriptome. Animals (Basel) 2023; 13:2144. [PMID: 37443943 DOI: 10.3390/ani13132144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Caseous lymphadenitis (CL) is a chronic contagious disease that affects small ruminants and is characterized by the formation of pyogranulomas in lymph nodes and other organs. However, the pathogenesis of this disease and the response of the host genome to infection are not yet fully understood. This study aimed to investigate the whole blood transcriptome and evaluate differential gene expression during the later stages of CL in naturally infected ewes. The study included diseased, serologically positive (EP), exposed, serologically negative (EN) ewes from the same infected flock and healthy ewes (CN) from a different flock. RNA sequencing was performed using the Illumina NextSeq system, and differential gene expression was estimated using DESeq2 and Edge R approaches. The analysis identified 191 annotated differentially expressed genes (DEGs) in the EP group (102 upregulated and 89 downregulated) and 256 DEGs in the EN group (106 upregulated and 150 downregulated) compared to the CN group. Numerous immunoregulatory interactions between lymphoid and nonlymphoid cells were influenced in both EP and EN ewes. Immune DEGs were preferentially assigned to antigen presentation through the MHC complex, T lymphocyte-mediated immunity, and extracellular matrix interactions. Furthermore, the EP group showed altered regulation of cytokine and chemokine signaling and activation and recombination of B-cell receptors. Conversely, NF-kappa B signaling, apoptosis, and stress response were the main processes influenced in the EN group. In addition, statistically significant enrichment of the essential immune pathways of binding and uptake of ligands by scavenger receptors in EP and p53 signaling in the EN group was found. In conclusion, this study provides new insights into the disease course and host-pathogen interaction in naturally CL-infected sheep by investigating the blood transcriptome.
Collapse
Affiliation(s)
- Jitka Kyselová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Ladislav Tichý
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Zuzana Sztankóová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Jiřina Marková
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Kateřina Kavanová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Monika Beinhauerová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Michala Mušková
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| |
Collapse
|
6
|
Gong Y, Wang J, Li F, Zhu B. Polysaccharides and glycolipids of Mycobacterium tuberculosis and their induced immune responses. Scand J Immunol 2023; 97:e13261. [PMID: 39008002 DOI: 10.1111/sji.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 07/16/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis (M. tuberculosis). The structures of polysaccharides and glycolipids at M. tuberculosis cell wall vary among different strains, which affect the physiology and pathogenesis of mycobacteria by activating or inhibiting innate and acquired immunity. Among them, some components such as lipomannan (LM) and lipoarabinomannan (LAM) activate innate immunity by recognizing some kinds of pattern recognition receptors (PRRs) like Toll-like receptors, while other components like mannose-capped lipoarabinomannan (ManLAM) could prevent innate immune responses by inhibiting the secretion of pro-inflammatory cytokines and maturation of phagosomes. In addition, many glycolipids can activate natural killer T (NKT) cells and CD1-restricted T cells to produce interferon-γ (IFN-γ). Furthermore, humoral immunity against cell wall components, such as antibodies against LAM, plays a role in immunity against M. tuberculosis infection. Cell wall polysaccharides and glycolipids of M. tuberculosis have potential applications as antigens and adjuvants for novel TB subunit vaccines.
Collapse
Affiliation(s)
- Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Bailo R, Radhakrishnan A, Singh A, Nakaya M, Fujiwara N, Bhatt A. The mycobacterial desaturase DesA2 is associated with mycolic acid biosynthesis. Sci Rep 2022; 12:6943. [PMID: 35484172 PMCID: PMC9050676 DOI: 10.1038/s41598-022-10589-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Mycolic acids are critical for the survival and virulence of Mycobacterium tuberculosis, the causative agent of tuberculosis. Double bond formation in the merochain of mycolic acids remains poorly understood, though we have previously shown desA1, encoding an aerobic desaturase, is involved in mycolic acid desaturation. Here we show that a second desaturase encoded by desA2 is also involved in mycolate biosynthesis. DesA2 is essential for growth of the fast-growing Mycobacterium smegmatis in laboratory media. Conditional depletion of DesA2 led to a decrease in mycolic acid biosynthesis and loss of mycobacterial viability. Additionally, DesA2-depleted cells also accumulated fatty acids of chain lengths C19-C24. The complete loss of mycolate biosynthesis following DesA2 depletion, and the absence of any monoenoic derivatives (found to accumulate on depletion of DesA1) suggests an early role for DesA2 in the mycolic acid biosynthesis machinery, highlighting its potential as a drug target.
Collapse
Affiliation(s)
- Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Makoto Nakaya
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai City, Osaka, 599-8531, Japan
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara City, Nara, 631-8585, Japan
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Ott L, Möller J, Burkovski A. Interactions between the Re-Emerging Pathogen Corynebacterium diphtheriae and Host Cells. Int J Mol Sci 2022; 23:3298. [PMID: 35328715 PMCID: PMC8952647 DOI: 10.3390/ijms23063298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
Corynebacterium diphtheriae, the etiological agent of diphtheria, is a re-emerging pathogen, responsible for several thousand deaths per year. In addition to diphtheria, systemic infections, often by non-toxigenic strains, are increasingly observed. This indicates that besides the well-studied and highly potent diphtheria toxin, various other virulence factors may influence the progression of the infection. This review focuses on the known components of C. diphtheriae responsible for adhesion, invasion, inflammation, and cell death, as well as on the cellular signaling pathways activated upon infection.
Collapse
Affiliation(s)
- Lisa Ott
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Jens Möller
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Dover LG, Thompson AR, Sutcliffe IC, Sangal V. Phylogenomic Reappraisal of Fatty Acid Biosynthesis, Mycolic Acid Biosynthesis and Clinical Relevance Among Members of the Genus Corynebacterium. Front Microbiol 2021; 12:802532. [PMID: 35003033 PMCID: PMC8733736 DOI: 10.3389/fmicb.2021.802532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The genus Corynebacterium encompasses many species of biotechnological, medical or veterinary significance. An important characteristic of this genus is the presence of mycolic acids in their cell envelopes, which form the basis of a protective outer membrane (mycomembrane). Mycolic acids in the cell envelope of Mycobacterium tuberculosis have been associated with virulence. In this study, we have analysed the genomes of 140 corynebacterial strains, including representatives of 126 different species. More than 50% of these strains were isolated from clinical material from humans or animals, highlighting the true scale of pathogenic potential within the genus. Phylogenomically, these species are very diverse and have been organised into 19 groups and 30 singleton strains. We find that a substantial number of corynebacteria lack FAS-I, i.e., have no capability for de novo fatty acid biosynthesis and must obtain fatty acids from their habitat; this appears to explain the well-known lipophilic phenotype of some species. In most species, key genes associated with the condensation and maturation of mycolic acids are present, consistent with the reports of mycolic acids in their species descriptions. Conversely, species reported to lack mycolic acids lacked these key genes. Interestingly, Corynebacterium ciconiae, which is reported to lack mycolic acids, appears to possess all genes required for mycolic acid biosynthesis. We suggest that although a mycolic acid-based mycomembrane is widely considered to be the target for interventions by the immune system and chemotherapeutics, the structure is not essential in corynebacteria and is not a prerequisite for pathogenicity or colonisation of animal hosts.
Collapse
|
10
|
Abstract
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is an enzootic, obligate, intracellular bacterial pathogen. Nitric oxide (NO) synthesized by the inducible NO synthase (iNOS) is a potent antimicrobial component of innate immunity and has been implicated in the control of virulent Rickettsia spp. in diverse cell types. In this study, we examined the antibacterial role of NO on R. rickettsii. Our results indicate that NO challenge dramatically reduces R. rickettsii adhesion through the disruption of bacterial energetics. Additionally, NO-treated R. rickettsii cells were unable to synthesize protein or replicate in permissive cells. Activated, NO-producing macrophages restricted R. rickettsii infections, but inhibition of iNOS ablated the inhibition of bacterial growth. These data indicate that NO is a potent antirickettsial effector of innate immunity that targets energy generation in these pathogenic bacteria to prevent growth and subversion of infected host cells.
Collapse
|
11
|
Human macrophages utilize a wide range of pathogen recognition receptors to recognize Legionella pneumophila, including Toll-Like Receptor 4 engaging Legionella lipopolysaccharide and the Toll-like Receptor 3 nucleic-acid sensor. PLoS Pathog 2021; 17:e1009781. [PMID: 34280250 PMCID: PMC8321404 DOI: 10.1371/journal.ppat.1009781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/29/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO's in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.
Collapse
|
12
|
Schell SL, Schneider AM, Nelson AM. Yin and Yang: A disrupted skin microbiome and an aberrant host immune response in hidradenitis suppurativa. Exp Dermatol 2021; 30:1453-1470. [PMID: 34018644 DOI: 10.1111/exd.14398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
The skin microbiome plays an important role in maintaining skin homeostasis by controlling inflammation, providing immune education and maintaining host defense. However, in many inflammatory skin disorders the skin microbiome is disrupted. This dysbiotic community may contribute to disease initiation or exacerbation through the induction of aberrant immune responses in the absence of infection. Hidradenitis suppurativa (HS) is a complex, multifaceted disease involving the skin, innate and adaptive immunity, microbiota and environmental stimuli. Herein, we discuss the current state of HS skin microbiome research and how microbiome components may activate pattern recognition receptor (PRR) pathways, metabolite sensing pathways and antigenic receptors to drive antimicrobial peptide, cytokine, miRNA and adaptive immune cell responses in HS. We highlight the major open questions that remain to be addressed and how antibiotic therapies for HS likely influence both microbial burden and inflammation. Ultimately, we hypothesize that the two-way communication between the skin microbiome and host immune response in HS skin generates a chronic positive feed-forward loop that perpetuates chronic inflammation, tissue destruction and disease exacerbation.
Collapse
Affiliation(s)
- Stephanie L Schell
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Andrea M Schneider
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Amanda M Nelson
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
13
|
Santoro D, Archer L, Fagman L. Intradermal immunotherapy with actinomycetales preparations as treatment for feline atopic syndrome: a randomized, placebo-controlled, double-blinded study. Vet Dermatol 2021; 32:638-e170. [PMID: 33890342 DOI: 10.1111/vde.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Feline atopic syndrome (FAS) is a common disease. Single intradermal injections of heat-killed actinomycetales have shown beneficial effects in canine allergies. HYPOTHESIS/OBJECTIVE To evaluate the clinical effects of heat-killed actinomycetales [Gordonia bronchialis (GB) and Rodococcus coprophilus (RC)], alone or in combination, in FAS. METHODS AND MATERIALS Privately owned cats with a diagnosis of FAS were assigned randomly in three treatment groups (GB, RC and GB/RC combination) or placebo. Five intradermal injections were performed over a one year period. At each visit [Day (D)0, D20, D40, D60, D90, D180 and D365], clinical signs, global owner assessment score, use of rescue medications, clinical adverse effects, skin hydration and cutaneous pH were assessed. RESULTS Seventeen cats were enrolled. When compared to the placebo group and improvement in treatment GB was sustained from D90. When compared with D0 significant improvement in the GB group was seen from D60. Over one year, a complete remission of the clinical signs was seen in 30-67% of cats in the treatment groups. A reduction in the pruritus score was seen for RC after 365 days of treatment (P = 0.04). Differences in the other variables were not seen. CONCLUSIONS AND CLINICAL IMPORTANCE The use of multiple intradermal injections of heat-killed GB shows promise as effective and well-tolerated treatment for FAS. Because of the low cost and the lack of adverse effects, GB could be a beneficial treatment option for FAS. A larger study is needed to confirm these data and to evaluate the immunological changes occurring in the treated cats.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Linda Archer
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Lana Fagman
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| |
Collapse
|
14
|
Udayan S, Buttó LF, Rossini V, Velmurugan J, Martinez-Lopez M, Sancho D, Melgar S, O'Toole PW, Nally K. Macrophage cytokine responses to commensal Gram-positive Lactobacillus salivarius strains are TLR2-independent and Myd88-dependent. Sci Rep 2021; 11:5896. [PMID: 33723368 PMCID: PMC7961041 DOI: 10.1038/s41598-021-85347-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
The mechanisms through which cells of the host innate immune system distinguish commensal bacteria from pathogens are currently unclear. Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) expressed by host cells which recognize microbe-associated molecular patterns (MAMPs) common to both commensal and pathogenic bacteria. Of the different TLRs, TLR2/6 recognize bacterial lipopeptides and trigger cytokines responses, especially to Gram-positive and Gram-negative pathogens. We report here that TLR2 is dispensable for triggering macrophage cytokine responses to different strains of the Gram-positive commensal bacterial species Lactobacillus salivarius. The L. salivarius UCC118 strain strongly upregulated expression of the PRRs, Mincle (Clec4e), TLR1 and TLR2 in macrophages while downregulating other TLR pathways. Cytokine responses triggered by L. salivarius UCC118 were predominantly TLR2-independent but MyD88-dependent. However, macrophage cytokine responses triggered by another Gram-positive commensal bacteria, Bifidobacterium breve UCC2003 were predominantly TLR2-dependent. Thus, we report a differential requirement for TLR2-dependency in triggering macrophage cytokine responses to different commensal Gram-positive bacteria. Furthermore, TNF-α responses to the TLR2 ligand FSL-1 and L. salivarius UCC118 were partially Mincle-dependent suggesting that PRR pathways such as Mincle contribute to the recognition of MAMPs on distinct Gram-positive commensal bacteria. Ultimately, integration of signals from these different PRR pathways and other MyD88-dependent pathways may determine immune responses to commensal bacteria at the host-microbe interface.
Collapse
Affiliation(s)
- Sreeram Udayan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Maria Martinez-Lopez
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
15
|
Shin JH, Yang JP, Seo SH, Kim SG, Kim EM, Ham DW, Shin EH. Immune-triggering effect of the foodborne parasite Kudoa septempunctata through the C-type lectin Mincle in HT29 cells. BMB Rep 2020. [PMID: 32843128 PMCID: PMC7526980 DOI: 10.5483/bmbrep.2020.53.9.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kudoa septempunctata is a myxozoan parasite that causes food poisoning in individuals consuming olive flounder. The present study aimed to investigate the currently insufficiently elucidated early molecular mechanisms of inflammatory responses in the intestine owing to parasite ingestion. After Kudoa spores were isolated from olive flounder, HT29 cells were exposed to spores identified to be alive using SYTO-9 and propidium iodide staining or to antigens of Kudoa spores (KsAg). IL-1β, IL-8, TNF-α and NFKB1 expression and NF-κB activation were assessed using real-time PCR, cytokine array and western blotting. The immunofluorescence of FITC-conjugated lectins, results of ligand binding assays using Mincle-Fc and IgG-Fc, CLEC4E expres-sions in response to KsAg stimulation, and Mincle-dependent NF-κB activation were assessed to clarify the early immunetriggering mechanism. Inflammatory cytokines (IL-1β, GM-CSF and TNF-α), chemokines (IL-8, CCL2, CCL5 and CXCL1) and NF-κB activation (pNF-κB/NF-κB) in HT29 cells increased following stimulation by KsAg. The immunofluorescence results of spores and lectins (concanavalin A and wheat germ agglu-tinin) suggested the importance of Mincle in molecular recog-nition between Kudoa spores and intestinal cells. Practically, data for Mincle-Fc and KsAg binding affinity, CLEC4E mRNA expression, Mincle immunofluorescence staining and hMincle-dependent NF-κB activation demonstrated the involvement of Mincle in the early immune-triggering mechanism. The present study newly elucidated that the molecular recognition and immune-triggering mechanism of K. septempunctata are associated with Mincle on human intestinal epithelial cells.
Collapse
Affiliation(s)
- Ji-Hun Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul 03080, Korea
| | - Jung-Pyo Yang
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul 03080, Korea
| | - Seung-Hwan Seo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul 03080, Korea
| | - Sang-Gyun Kim
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul 03080, Korea
| | - Eun-Min Kim
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Do-Won Ham
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul 03080, Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul 03080, Korea
- Seoul National University Bundang Hospital, Seongnam 13620, Korea
| |
Collapse
|
16
|
Chen S, Teng T, Wen S, Zhang T, Huang H. The aceE involves in mycolic acid synthesis and biofilm formation in Mycobacterium smegmatis. BMC Microbiol 2020; 20:259. [PMID: 32811434 PMCID: PMC7437000 DOI: 10.1186/s12866-020-01940-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background The integrity of cell wall structure is highly significant for the in vivo survival of mycobacteria. We hypothesized that changes in morphology may indicate changes in cell wall metabolism and identified an aceE gene mutant (aceE-mut) which presented a deficient colony morphology on 7H10 agar by screening transposon mutagenesis in Mycolicibacterium smegmatis, basonym Mycobacterium smegmatis (M. smegmatis). This study aimed to identify the functional role of aceE gene in cell wall biosynthesis in M. smegmatis. Results We observed that the colony morphology of aceE-mut was quite different, smaller and smoother on the solid culture medium than the wild-type (WT) strain during the transposon library screening of M. smegmatis. Notably, in contrast with the WT, which aggregates and forms biofilm, the aceE-mut lost its ability of growing aggregately and biofilm formation, which are two very important features of mycobacteria. The morphological changes in the aceE-mut strain were further confirmed by electron microscopy which indicated smoother and thinner cell envelope images in contrast with the rough morphology of WT strains. Additionally, the aceE-mut was more fragile to acidic stress and exhibited a pronounced defects in entering the macrophages as compared to the WT. The analysis of mycolic acid (MA) using LC-MS indicated deficiency of alpha-MA and epoxy-MA in aceE-mut strain whereas complementation of the aceE-mut with a wild-type aceE gene restored the composition of MA. Conclusions Over all, this study indicates that aceE gene plays a significant role in the mycolic acid synthesis and affects the colony morphology, biofilm formation of M. smegmatis and bacteria invasion of macrophage.
Collapse
Affiliation(s)
- Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China
| | - Tianlu Teng
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China
| | - Shuan Wen
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China
| | - Tingting Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, China.
| |
Collapse
|
17
|
Lindenwald DL, Lepenies B. C-Type Lectins in Veterinary Species: Recent Advancements and Applications. Int J Mol Sci 2020; 21:ijms21145122. [PMID: 32698416 PMCID: PMC7403975 DOI: 10.3390/ijms21145122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
C-type lectins (CTLs), a superfamily of glycan-binding receptors, play a pivotal role in the host defense against pathogens and the maintenance of immune homeostasis of higher animals and humans. CTLs in innate immunity serve as pattern recognition receptors and often bind to glycan structures in damage- and pathogen-associated molecular patterns. While CTLs are found throughout the whole animal kingdom, their ligand specificities and downstream signaling have mainly been studied in humans and in model organisms such as mice. In this review, recent advancements in CTL research in veterinary species as well as potential applications of CTL targeting in veterinary medicine are outlined.
Collapse
|
18
|
Schick J, Schäfer J, Alexander C, Dichtl S, Murray PJ, Christensen D, Sorg U, Pfeffer K, Schleicher U, Lang R. Cutting Edge: TNF Is Essential for Mycobacteria-Induced MINCLE Expression, Macrophage Activation, and Th17 Adjuvanticity. THE JOURNAL OF IMMUNOLOGY 2020; 205:323-328. [PMID: 32540999 DOI: 10.4049/jimmunol.2000420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 02/04/2023]
Abstract
TNF blockade is a successful treatment for human autoimmune disorders like rheumatoid arthritis and inflammatory bowel disease yet increases susceptibility to tuberculosis and other infections. The C-type lectin receptors (CLR) MINCLE, MCL, and DECTIN-2 are expressed on myeloid cells and sense mycobacterial cell wall glycolipids. In this study, we show that TNF is sufficient to upregulate MINCLE, MCL, and DECTIN-2 in macrophages. TNF signaling through TNFR1 p55 was required for upregulation of these CLR and for cytokine secretion in macrophages stimulated with the MINCLE ligand trehalose-6,6-dibehenate or infected with Mycobacterium bovis bacillus Calmette-Guérin. The Th17 response to immunization with the MINCLE-dependent adjuvant trehalose-6,6-dibehenate was specifically abrogated in TNF-deficient mice and strongly attenuated by TNF blockade with etanercept. Together, interference with production or signaling of TNF antagonized the expression of DECTIN-2 family CLR, thwarting vaccine responses and possibly increasing infection risk.
Collapse
Affiliation(s)
- Judith Schick
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Johanna Schäfer
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Alexander
- Zelluläre Mikrobiologie, Forschungszentrum Borstel, Leibniz Lungenzentrum, 23845 Borstel, Germany
| | - Stefanie Dichtl
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter J Murray
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Dennis Christensen
- Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institute, 2300 Copenhagen, Denmark; and
| | - Ursula Sorg
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Heinrich Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Klaus Pfeffer
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Heinrich Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrike Schleicher
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
19
|
Kuyukina MS, Kochina OA, Gein SV, Ivshina IB, Chereshnev VA. Mechanisms of Immunomodulatory and Membranotropic Activity of Trehalolipid Biosurfactants (a Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Weerasekera D, Fastner T, Lang R, Burkovski A, Ott L. Of mice and men: Interaction of Corynebacterium diphtheriae strains with murine and human phagocytes. Virulence 2020; 10:414-428. [PMID: 31057086 PMCID: PMC6527023 DOI: 10.1080/21505594.2019.1614384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Seven non-toxigenic C. diphtheriae strains and one toxigenic strain were analyzed with regard to their interaction with murine macrophages (BMM) and human THP-1 macrophage-like cells. Proliferation assays with BMM and THP-1 revealed similar intracellular CFUs for C. diphtheriae strains independent of the host cell. Strain ISS4060 showed highest intracellular CFUs, while the toxigenic DSM43989 was almost not detectable. This result was confirmed by TLR 9 reporter assays, showing a low signal for DSM43989, indicating that the bacteria are not endocytosed. In contrast, the non-pathogenic C. glutamicum showed almost no intracellular CFUs independent of the host cell, but was recognized by TLR9, indicating that the bacteria were degraded immediately after endocytosis. In terms of G-CSF and IL-6 production, no significant differences between BMM and THP-1 were observed. G-CSF production was considerably higher than IL-6 for all C. diphtheriae strains and the C. glutamicum did not induce high cytokine secretion in general. Furthermore, all corynebacteria investigated in this study were able to induce NFκB signaling but only viable C. diphtheriae strains were able to cause host cell damage, whereas C. glutamicum did not. The absence of Mincle resulted in reduced G-CSF production, while no influence on the uptake of the bacteria was observed. In contrast, when MyD88 was absent, both the uptake of the bacteria and cytokine production were blocked. Consequently, phagocytosis only occurs when the TLR/MyD88 pathway is functional, which was also supported by showing that all corynebacteria used in this study interact with human TLR2.
Collapse
Affiliation(s)
- Dulanthi Weerasekera
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Tamara Fastner
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Roland Lang
- b Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universtitätsklinikum Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Andreas Burkovski
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Lisa Ott
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
21
|
Miyake Y, Yamasaki S. Immune Recognition of Pathogen-Derived Glycolipids Through Mincle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:31-56. [DOI: 10.1007/978-981-15-1580-4_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Foster AJ, Kodar K, Timmer MSM, Stocker BL. ortho-Substituted lipidated Brartemicin derivative shows promising Mincle-mediated adjuvant activity. Org Biomol Chem 2020; 18:1095-1103. [DOI: 10.1039/c9ob02397f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure activity relationship studies of lipidated Brartemicin analogues have revealed the potent adjuvant activity of ortho-substituted Brartemicin analogue 5a, which was better than that of p-OC18 (5c) and C18dMeBrar (4).
Collapse
Affiliation(s)
- Amy J. Foster
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
- Centre for Biodiscovery
| | - Kristel Kodar
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
- Centre for Biodiscovery
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
- Centre for Biodiscovery
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
- Centre for Biodiscovery
| |
Collapse
|
23
|
Induction of Necrosis in Human Macrophage Cell Lines by Corynebacterium diphtheriae and Corynebacterium ulcerans Strains Isolated from Fatal Cases of Systemic Infections. Int J Mol Sci 2019; 20:ijms20174109. [PMID: 31443569 PMCID: PMC6747468 DOI: 10.3390/ijms20174109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023] Open
Abstract
When infecting a human host, Corynebacterium diphtheriae and Corynebacterium ulcerans are able to impair macrophage maturation and induce cell death. However, the underlying molecular mechanisms are not well understood. As a framework for this project, a combination of fluorescence microscopy, cytotoxicity assays, live cell imaging, and fluorescence-activated cell sorting was applied to understand the pathogenicity of two Corynebacterium strains isolated from fatal cases of systemic infections. The results showed a clear cytotoxic effect of the bacteria. The observed survival of the pathogens in macrophages and, subsequent, necrotic lysis of cells may be mechanisms explaining dissemination of C. diphtheriae and C. ulcerans to distant organs in the body.
Collapse
|
24
|
Deusenbery CB, Kalan L, Meisel JS, Gardner SE, Grice EA, Spiller KL. Human macrophage response to microbial supernatants from diabetic foot ulcers. Wound Repair Regen 2019; 27:598-608. [DOI: 10.1111/wrr.12752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Carly B. Deusenbery
- School of Biomedical Engineering Science and Health SystemsDrexel University Philadelphia Pennsylvania
| | - Lindsay Kalan
- Department of Microbiology & ImmunologyUniversity of Wisconsin‐Madison Madison Wisconsin
| | - Jacquelyn S. Meisel
- Department of DermatologyUniversity of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
- The Center for Bioinformatics and Computational BiologyUniversity of Maryland College Park
| | | | - Elizabeth A. Grice
- Department of DermatologyUniversity of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
| | - Kara L. Spiller
- School of Biomedical Engineering Science and Health SystemsDrexel University Philadelphia Pennsylvania
| |
Collapse
|
25
|
Lu X, Nagata M, Yamasaki S. Mincle: 20 years of a versatile sensor of insults. Int Immunol 2019; 30:233-239. [PMID: 29726997 DOI: 10.1093/intimm/dxy028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Macrophage-inducible C-type lectin, better known as Mincle, is a member of the C-type lectin receptor family and is encoded by Clec4e. Mincle was an orphan receptor for a long time after having been discovered as a lipopolysaccharide-induced protein, yet later an adjuvant glycolipid in mycobacteria-trehalose dimycolate-was identified as a ligand. Ligands for Mincle were also found existing in bacteria, fungi and even mammals. When confronted with foreign elements, Mincle can recognize characteristic pathogen-associated molecular patterns, mostly glycolipids, from Mycobacterium tuberculosis and other pathogens, and thus induce immune responses against infection. To maintain self-homeostasis, Mincle can recognize lipid-based damage-associated molecular patterns, thereby monitoring the internal environment. The mechanism by which Mincle functions in the immune system is also becoming more clear along with the identification of its ligands. Being expressed widely on antigen-presenting cells, Mincle activation leads to the production of cytokines and chemokines, neutrophil infiltration and other inflammatory responses. Besides, Mincle can induce acquired immunity such as antigen-specific T-cell responses and antibody production as an adjuvant receptor. In this review, we will retrospectively sketch the discovery and study of Mincle, and outline some current work on this receptor.
Collapse
Affiliation(s)
- Xiuyuan Lu
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Masahiro Nagata
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan.,Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
26
|
Li L, Chen X, Zhang Y, Li Q, Qi C, Fei X, Zheng F, Gong F, Fang M. Toll-like receptor 2 deficiency promotes the generation of alloreactive Th17 cells after cardiac transplantation in mice. Cell Immunol 2019; 338:9-20. [DOI: 10.1016/j.cellimm.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
|
27
|
Friberg IM, Taylor JD, Jackson JA. Diet in the Driving Seat: Natural Diet-Immunity-Microbiome Interactions in Wild Fish. Front Immunol 2019; 10:243. [PMID: 30837993 PMCID: PMC6389695 DOI: 10.3389/fimmu.2019.00243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Natural interactions between the diet, microbiome, and immunity are largely unstudied. Here we employ wild three-spined sticklebacks as a model, combining field observations with complementary experimental manipulations of diet designed to mimic seasonal variation in the wild. We clearly demonstrate that season-specific diets are a powerful causal driver of major systemic immunophenotypic variation. This effect occurred largely independently of the bulk composition of the bacterial microbiome (which was also driven by season and diet) and of host condition, demonstrating neither of these, per se, constrain immune allocation in healthy individuals. Nonetheless, through observations in multiple anatomical compartments, differentially exposed to the direct effects of food and immunity, we found evidence of immune-driven control of bacterial community composition in mucus layers. This points to the interactive nature of the host-microbiome relationship, and is the first time, to our knowledge, that this causal chain (diet → immunity → microbiome) has been demonstrated in wild vertebrates. Microbiome effects on immunity were not excluded and, importantly, we identified outgrowth of potentially pathogenic bacteria (especially mycolic-acid producing corynebacteria) as a consequence of the more animal-protein-rich summertime diet. This may provide part of the ultimate explanation (and possibly a proximal cue) for the dramatic immune re-adjustments that we saw in response to diet change.
Collapse
Affiliation(s)
- Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Joe D Taylor
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| |
Collapse
|
28
|
Del Fresno C, Iborra S, Saz-Leal P, Martínez-López M, Sancho D. Flexible Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation. Front Immunol 2018; 9:804. [PMID: 29755458 PMCID: PMC5932189 DOI: 10.3389/fimmu.2018.00804] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Myeloid C-type lectin receptors (CLRs) are important sensors of self and non-self that work in concert with other pattern recognition receptors (PRRs). CLRs have been previously classified based on their signaling motifs as activating or inhibitory receptors. However, specific features of the ligand binding process may result in distinct signaling through a single motif, resulting in the triggering of non-canonical pathways. In addition, CLR ligands are frequently exposed in complex structures that simultaneously bind different CLRs and other PRRs, which lead to integration of heterologous signaling among diverse receptors. Herein, we will review how sensing by myeloid CLRs and crosstalk with heterologous receptors is modulated by many factors affecting their signaling and resulting in differential outcomes for immunity and inflammation. Finding common features among those flexible responses initiated by diverse CLR-ligand partners will help to harness CLR function in immunity and inflammation.
Collapse
Affiliation(s)
- Carlos Del Fresno
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula Saz-Leal
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Martínez-López
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
29
|
The role of corynomycolic acids in Corynebacterium-host interaction. Antonie Van Leeuwenhoek 2018; 111:717-725. [PMID: 29435693 DOI: 10.1007/s10482-018-1036-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Within the Actinobacteria, the genera Corynebacterium, Mycobacterium, Nocardia and Rhodococcus form the so-called CMNR group, also designated as mycolic acid-containing actinomycetes. Almost all members of this group are characterized by a mycolic acid layer, the mycomembrane, which covers the cell wall and is responsible for a high resistance of these bacteria against chemical and antibiotic stress. Furthermore, components of the mycomembrane are crucial for the interaction of bacteria with host cells. This review summarizes the current knowledge of mycolic acid synthesis and interaction with components of the immune system for the genus Corynebacterium with an emphasis on the pathogenic species Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis and Corynebacterium ulcerans as well as the biotechnology workhorse Corynebacterium glutamicum.
Collapse
|
30
|
Williams SJ. Sensing Lipids with Mincle: Structure and Function. Front Immunol 2017; 8:1662. [PMID: 29230225 PMCID: PMC5711825 DOI: 10.3389/fimmu.2017.01662] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/13/2017] [Indexed: 01/06/2023] Open
Abstract
Mincle is a C-type lectin receptor that has emerged as an important player in innate immunity through its capacity to recognize a wide range of lipidic species derived from damaged/altered self and foreign microorganisms. Self-ligands include sterols (e.g., cholesterol), and β-glucosylceramides, and the protein SAP130, which is released upon cell death. Foreign lipids comprise those from both microbial pathogens and commensals and include glycerol, glucose and trehalose mycolates, and glycosyl diglycerides. A large effort has focused on structural variation of these ligands to illuminate the structure–activity relationships required for the agonism of signaling though Mincle and has helped identify key differences in ligand recognition between human and rodent Mincle. These studies in turn have helped identify new Mincle ligands, further broadening our understanding of the diversity of organisms and lipidic species recognized by Mincle. Finally, progress toward the development of Mincle agonists as vaccine adjuvants providing humoral and cell-mediated immunity with reduced toxicity is discussed.
Collapse
Affiliation(s)
- Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
31
|
Sparber F, LeibundGut-Landmann S. Host Responses to Malassezia spp. in the Mammalian Skin. Front Immunol 2017; 8:1614. [PMID: 29213272 PMCID: PMC5702624 DOI: 10.3389/fimmu.2017.01614] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
The skin of mammalian organisms is home for a myriad of microbes. Many of these commensals are thought to have beneficial effects on the host by critically contributing to immune homeostasis. Consequently, dysbiosis can have detrimental effects for the host that may manifest with inflammatory diseases at the barrier tissue. Besides bacteria, fungi make an important contribution to the microbiota and among these, the yeast Malassezia widely dominates in most areas of the skin in healthy individuals. There is accumulating evidence that Malassezia spp. are involved in a variety of skin disorders in humans ranging from non- or mildly inflammatory conditions such as dandruff and pityriasis versicolor to more severe inflammatory skin diseases like seborrheic eczema and atopic dermatitis. In addition, Malassezia is strongly linked to the development of dermatitis and otitis externa in dogs. However, the association of Malassezia spp. with such diseases remains poorly characterized. Until now, studies on the fungus–host interaction remain sparse and they are mostly limited to experiments with isolated host cells in vitro. They suggest a multifaceted crosstalk of Malassezia spp. with the skin by direct activation of the host via conserved pattern recognition receptors and indirectly via the release of fungus-derived metabolites that can modulate the function of hematopoietic and/or non-hematopoietic cells in the barrier tissue. In this review, we discuss our current understanding of the host response to Malassezia spp. in the mammalian skin.
Collapse
Affiliation(s)
- Florian Sparber
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
32
|
Patin EC, Orr SJ, Schaible UE. Macrophage Inducible C-Type Lectin As a Multifunctional Player in Immunity. Front Immunol 2017; 8:861. [PMID: 28791019 PMCID: PMC5525440 DOI: 10.3389/fimmu.2017.00861] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023] Open
Abstract
The macrophage-inducible C-type lectin (Mincle) is an innate immune receptor on myeloid cells sensing diverse entities including pathogens and damaged cells. Mincle was first described as a receptor for the mycobacterial cell wall glycolipid, trehalose-6,6′-dimycolate, or cord factor, and the mammalian necrotic cell-derived alarmin histone deacetylase complex unit Sin3-associated protein 130. Upon engagement by its ligands, Mincle induces secretion of innate cytokines and other immune mediators modulating inflammation and immunity. Since its discovery more than 25 years ago, the understanding of Mincle’s immune function has made significant advances in recent years. In addition to mediating immune responses to infectious agents, Mincle has been linked to promote tumor progression, autoimmunity, and sterile inflammation; however, further studies are required to completely unravel the complex role of Mincle in these distinct host responses. In this review, we discuss recent findings on Mincle’s biology with an emphasis on its diverse functions in immunity.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Priority Area Infections, Department Cellular Microbiology, Forschungszentrum Borstel, and German Center for Infection Research, TTU-TB, Borstel, Germany.,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Selinda Jane Orr
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ulrich E Schaible
- Priority Area Infections, Department Cellular Microbiology, Forschungszentrum Borstel, and German Center for Infection Research, TTU-TB, Borstel, Germany
| |
Collapse
|