1
|
Banerjee A, Jacobs KR, Wang Y, Doud EH, Toh E, Stein BD, Mosley AL, Zhong G, Morrison RP, Morrison SG, Hu S, Brothwell JA, Nelson DE. Tail-specific protease is an essential Chlamydia virulence factor that mediates the differentiation of elementary bodies into reticulate bodies. Infect Immun 2024; 92:e0043624. [PMID: 39535210 PMCID: PMC11629628 DOI: 10.1128/iai.00436-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Tail-specific proteases (Tsp) are members of a widely distributed family of serine proteases that commonly target and process periplasmic proteins in Gram-negative bacteria. The obligately intracellular, Gram-negative Chlamydia encode a highly conserved Tsp homolog whose target and function are unclear. We identified a Chlamydia muridarum mutant with a nonsense mutation in tsp. Differentiation of the tsp mutant elementary bodies into vegetative reticulate bodies was delayed at 37°C and completely blocked at 40°C. Tsp localized to C. muridarum cells but was not detected outside the inclusion, suggesting that it targets chlamydial rather than host proteins. The abundance of key chlamydia outer membrane complex and virulence-related proteins differed in wild-type and tsp mutant elementary bodies, consistent with the possibility that Tsp regulates developmental cycle progression. The altered abundances of chlamydial structural and virulence factors could explain why the mutant, but not an isogenic recombinant with wild-type tsp, was highly attenuated in a mouse intravaginal infection model. Thus, chlamydial Tsp is required for timely differentiation of elementary bodies into reticulate bodies in vitro and is an essential virulence factor in vivo.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kaylee R. Jacobs
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Barry D. Stein
- Department of Biology, Electron Microscopy Center, Indiana University, Bloomington, Indiana, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Richard P. Morrison
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sandra G. Morrison
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shuai Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Julie A. Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David E. Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
He Y, Wang Y, He R, Abdelsalam AM, Zhong G. IL-23 receptor signaling licenses group 3-like innate lymphoid cells to restrict a live-attenuated oral Chlamydia vaccine in the gut. Infect Immun 2023; 91:e0037123. [PMID: 37850749 PMCID: PMC10652955 DOI: 10.1128/iai.00371-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
An IFNγ-susceptible mutant of Chlamydia muridarum is attenuated in pathogenicity in the genital tract and was recently licensed as an intracellular Oral vaccine vector or intrOv. Oral delivery of intrOv induces transmucosal protection in the genital tract, but intrOv itself is cleared from the gut (without shedding any infectious particles externally) by IFNγ from group 3-like innate lymphoid cells (ILC3s). We further characterized the intrOv interactions with ILC3s in the current study, since the interactions may impact both the safety and efficacy of intrOv as an oral Chlamydia vaccine. Intracolonic inoculation with intrOv induced IFNγ that in return inhibited intrOv. The intrOv-IFNγ interactions were dependent on RORγt, a signature transcriptional factor of ILC3s. Consistently, the transfer of oral intrOv-induced ILC3s from RORγt-GFP reporter mice to IFNγ-deficient mice rescued the inhibition of intrOv. Thus, IFNγ produced by intrOv-induced ILC3s is likely responsible for inhibiting intrOv, which is further supported by the observation that oral intrOv did induce significant levels of IFNγ-producing LC3s (IFNγ+ILC3s). Interestingly, IL-23 receptor knockout (IL-23R-/-) mice no longer inhibited intrOv, which was accompanied by reduced colonic IFNγ. Transfer of oral intrOv-induced ILC3s rescued the IL-23R-/- mice to inhibit intrOv, validating the dependence of ILC3s on IL-23R signaling for inhibiting intrOv. Clearly, intrOv induces intestinal IFNγ+ILC3s for its own inhibition in the gut, which is facilitated by IL-23R signaling. These findings have provided a mechanism for ensuring the safety of intrOv as an oral Chlamydia vaccine and a platform for investigating how oral intrOv induces transmucosal protection in the genital tract.
Collapse
Affiliation(s)
- Ying He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rongze He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ahmed Mohamed Abdelsalam
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Winner H, Friesenhahn A, Wang Y, Stanbury N, Wang J, He C, Zhong G. Regulation of chlamydial colonization by IFNγ delivered via distinct cells. Trends Microbiol 2023; 31:270-279. [PMID: 36175276 PMCID: PMC9974551 DOI: 10.1016/j.tim.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
The mouse-adapted pathogen Chlamydia muridarum (CM) induces pathology in the mouse genital tract but fails to do so in the gastrointestinal tract. CM is cleared from both the genital tract and small intestine by IFNγ delivered by antigen-specific CD4+ T cells but persists for a long period in the large intestine. The long-lasting colonization of CM in the large intestine is regulated by IFNγ delivered by group 3 innate lymphoid cells (ILC3s). Interestingly, the ILC3-delivered IFNγ can inhibit the human pathogen Chlamydia trachomatis (CT) in the mouse endometrium. Thus, IFNγ produced/delivered by different cells may selectively restrict chlamydial colonization in different tissues. Revealing the underlying mechanisms of chlamydial interactions with IFNγ produced by different cells may yield new insights into both chlamydial pathogenicity and mucosal immunity.
Collapse
Affiliation(s)
- Halah Winner
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA
| | - Ann Friesenhahn
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA; College of Veterinary Medicine, China Agricultural University, Two Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Nicholas Stanbury
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Cheng He
- College of Veterinary Medicine, China Agricultural University, Two Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, PR China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78230, USA.
| |
Collapse
|
4
|
Dimond ZE, Suchland RJ, Baid S, LaBrie SD, Soules KR, Stanley J, Carrell S, Kwong F, Wang Y, Rockey DD, Hybiske K, Hefty PS. Inter-species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability. Mol Microbiol 2021; 116:1433-1448. [PMID: 34738268 PMCID: PMC9119408 DOI: 10.1111/mmi.14832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022]
Abstract
Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remain elusive. Overall genomic similarity leads to challenges in the understanding of these significant differences in tropism. A region of major genetic divergence termed the plasticity zone (PZ) has been hypothesized to contribute to the host specificity. To evaluate this hypothesis, lateral gene transfer was used to generate multiple hetero-genomic strains that are predominately C. trachomatis but have replaced regions of the PZ with those from C. muridarum. In vitro analysis of these chimeras revealed C. trachomatis-like growth as well as poor mouse infection capabilities. Growth-independent cytotoxicity phenotypes have been ascribed to three large putative cytotoxins (LCT) encoded in the C. muridarum PZ. However, analysis of PZ chimeras supported that gene products other than the LCTs are responsible for cytopathic and cytotoxic phenotypes. Growth analysis of associated chimeras also led to the discovery of an inclusion protein, CTL0402 (CT147), and homolog TC0424, which was critical for the integrity of the inclusion and preventing apoptosis.
Collapse
Affiliation(s)
- Zoe E. Dimond
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Robert J. Suchland
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Srishti Baid
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Scott D. LaBrie
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Katelyn R. Soules
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Jacob Stanley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Steven Carrell
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Forrest Kwong
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Yibing Wang
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel D. Rockey
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - P. Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Characterization of pathogenic CD8 + T cells in Chlamydia-infected OT1 mice. Infect Immun 2021; 90:e0045321. [PMID: 34724387 DOI: 10.1128/iai.00453-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a leading infectious cause of infertility in women due to its induction of lasting pathology such as hydrosalpinx. Chlamydia muridarum induces mouse hydrosalpinx because C. muridarum can both invade tubal epithelia directly (as a 1st hit) and induce lymphocytes to promote hydrosalpinx indirectly (as a 2nd hit). In the current study, a critical role of CD8+ T cells in chlamydial induction of hydrosalpinx was validated in both wild type C57BL/6J and OT1 transgenic mice. OT1 mice failed to develop hydrosalpinx partially due to the failure of their lymphocytes to recognize chlamydial antigens. CD8+ T cells from naïve C57BL/6J rescued the recipient OT1 mice to develop hydrosalpinx when naïve CD8+ T cells were transferred at the time of infection with Chlamydia. However, when the transfer was delayed for 2 weeks or longer after the chlamydial infection, naïve CD8+ T cells no longer promoted hydrosalpinx. Nevertheless, Chlamydia-immunized CD8+ T cells still promoted significant hydrosalpinx in the recipient OT1 mice even when the transfer was delayed for 3 weeks. Thus, CD8+ T cells must be primed within 2 weeks after chlamydial infection to be pathogenic but once primed, they can promote hydrosalpinx for >3 weeks. However, Chlamydia-primed CD4+ T cells failed to promote chlamydial induction of pathology in OT1 mice. This study has optimized an OT1 mouse-based model for revealing the pathogenic mechanisms of Chlamydia-specific CD8+ T cells.
Collapse
|
6
|
Banerjee A, Nelson DE. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis. Pathog Dis 2021; 79:ftab025. [PMID: 33930127 PMCID: PMC8112481 DOI: 10.1093/femspd/ftab025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple species of obligate intracellular bacteria in the genus Chlamydia are important veterinary and/or human pathogens. These pathogens all share similar biphasic developmental cycles and transition between intracellular vegetative reticulate bodies and infectious elementary forms, but vary substantially in their host preferences and pathogenic potential. A lack of tools for genetic engineering of these organisms has long been an impediment to the study of their biology and pathogenesis. However, the refinement of approaches developed in C. trachomatis over the last 10 years, and adaptation of some of these approaches to other Chlamydia spp. in just the last few years, has opened exciting new possibilities for studying this ubiquitous group of important pathogens.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Zhong G. Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization. Trends Microbiol 2021; 29:1004-1012. [PMID: 33865675 DOI: 10.1016/j.tim.2021.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
Chlamydia trachomatis (CT) is frequently detected in the human gastrointestinal (GI) tract despite its leading role in sexually transmitted bacterial infections in the genital tract. Chlamydia muridarum (CM), a model pathogen for investigating CT pathogenesis in the genital tract, can also colonize the mouse GI tract for long periods. Genital-tract mutants of CM no longer colonize the GI tract. The mutants lacking plasmid functions are more defective in colonizing the upper GI tract while certain chromosomal gene-deficient mutants are more defective in the lower GI tract, suggesting that Chlamydia may use the plasmid for promoting its spread to the large intestine while using the chromosome-encoded factors for maintaining its colonization in the large intestine. The plasmid-encoded Pgp3 is critical for Chlamydia to resist the acid barrier in the stomach and to overcome a CD4+ T cell barrier in the small intestine. On reaching the large intestine, Pgp3 is no longer required. Instead, the chromosome-encoded open reading frames TC0237/TC0668 become essential for Chlamydia to evade the group 3-like innate lymphoid cell-secreted interferon (IFN)γ in the large intestine. These findings are important for exploring the medical significance of chlamydial colonization in the gut and for understanding the mechanisms of chlamydial pathogenicity in the genital tract.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
8
|
Adoptive Transfer of Group 3-Like Innate Lymphoid Cells Restores Mouse Colon Resistance to Colonization of a Gamma Interferon-Susceptible Chlamydia muridarum Mutant. Infect Immun 2021; 89:IAI.00533-20. [PMID: 33139384 DOI: 10.1128/iai.00533-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia muridarum can colonize the mouse colon for a long period, but a gamma interferon (IFN-γ)-susceptible mutant clone fails to do so. Nevertheless, the mutant's colonization is rescued in mice deficient in interleukin-7 receptor (IL-7R) (lacking both lymphocytes and innate lymphoid cells [ILCs]) or IFN-γ but not in mice lacking recombination-activated gene 1 (Rag1-/- mice) (lacking adaptive immunity lymphocytes), indicating a critical role of ILC-derived IFN-γ in regulating chlamydial colonization. In the current study, we have used an adoptive transfer approach for further characterizing the responsible ILCs. First, intestinal ILCs isolated from Rag1-/- mice were able to rescue IL-7R-deficient mice to restrict the colonization of the IFN-γ-susceptible Chlamydia muridarum mutant. Second, the responsible ILCs were localized to the intestinal lamina propria since ILCs from the lamina propria but not the intraepithelial compartment conferred the restriction. Third, lamina propria ILCs enriched for RORγt expression but not those negative for RORγt rescued the IL-7R-deficient mice to restrict mutant colonization, indicating a critical role of group 3-like ILCs (ILC3s) since RORγt is a signature transcriptional factor of ILC3s. Fourth, a portion of the ILC3s expressed IFN-γ, thus defined as ex-ILC3s, and the transfer of the ex-ILC3s conferred colon resistance to mutant Chlamydia muridarum colonization in IFN-γ-deficient mice. Finally, genetically labeled RORγt-positive (RORγt+) ILCs were able to inhibit mutant colonization. Thus, we have demonstrated that ILC3s are sufficient for regulating chlamydial colonization, laying a foundation for further revealing the mechanisms by which an obligate intracellular bacterium activates colonic ILC3s.
Collapse
|
9
|
A Genital Infection-Attenuated Chlamydia muridarum Mutant Infects the Gastrointestinal Tract and Protects against Genital Tract Challenge. mBio 2020; 11:mBio.02770-20. [PMID: 33144378 PMCID: PMC7642681 DOI: 10.1128/mbio.02770-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chlamydia spp. productively infect mucosal epithelial cells of multiple anatomical sites, including the conjunctiva, lungs, gastrointestinal (GI) tract, and urogenital tract. We, and others, previously established that chlamydial GI tropism is mediated by distinct chromosomal and plasmid factors. In this study, we describe a genital infection-attenuated Chlamydia muridarum mutant (GIAM-1) that is profoundly and specifically attenuated in the murine genital tract. GIAM-1 infected the murine GI tract similarly to wild-type (WT) Chlamydia muridarum but did not productively infect the lower genital tract of female mice, ascend to infect the upper genital tract, or cause hydrosalpinx. However, GI infection of mice with GIAM-1 elicited a transmucosal immune response that protected against subsequent genital challenge with WT Chlamydia muridarum Collectively, our results demonstrate that chlamydia mutants that are profoundly attenuated for specific organ tissues can be derived and demonstrate that live-attenuated vaccine strains that infect the GI tract, but do not elicit genital tract disease, could be used to protect against chlamydia genital tract infection and disease.IMPORTANCE Chlamydia is the most common sexually transmitted bacterial infection in the United States. Most chlamydia genital infections resolve without serious consequences; however, untreated infection in women can cause pelvic inflammatory disease and infertility. Antibiotics are very effective in treating chlamydia, but most genital infections in both men and women are asymptomatic and go undiagnosed. Therefore, there is a critical need for an effective vaccine. In this work, we show that a mutant chlamydia strain, having substantially reduced virulence for genital infection, colonizes the gastrointestinal tract and produces robust immunity to genital challenge with fully virulent wild-type chlamydia. These results are an important advance in understanding chlamydial virulence and provide compelling evidence that safe and effective live-attenuated chlamydia vaccines may be feasible.
Collapse
|
10
|
Evasion of Innate Lymphoid Cell-Regulated Gamma Interferon Responses by Chlamydia muridarum To Achieve Long-Lasting Colonization in Mouse Colon. Infect Immun 2020; 88:IAI.00798-19. [PMID: 31818961 DOI: 10.1128/iai.00798-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Revealing the mechanisms by which bacteria establish long-lasting colonization in the gastrointestinal tract is an area of intensive investigation. The obligate intracellular bacterium Chlamydia is known to colonize mouse colon for long periods. A colonization-deficient mutant strain of this intracellular bacterium is able to regain long-lasting colonization in gamma interferon (IFN-γ) knockout mice following intracolon inoculation. We now report that mice deficient in conventional T lymphocytes or recombination-activating gene (Rag) failed to show rescue of mutant colonization. Nevertheless, antibody depletion of IFN-γ or genetic deletion of interleukin 2 (IL-2) receptor common gamma chain in Rag-deficient mice did rescue mutant colonization. These observations suggest that colonic IFN-γ, responsible for inhibiting the intracellular bacterial mutant, is produced by innate lymphoid cells (ILCs). Consistently, depletion of NK1.1+ cells in Rag-deficient mice both prevented IFN-γ production and rescued mutant colonization. Furthermore, mice deficient in transcriptional factor RORγt, but not chemokine receptor CCR6, showed full rescue of the long-lasting colonization of the mutant, indicating a role for group 3-like ILCs. However, the inhibitory function of the responsible group 3-like ILCs was not dependent on the natural killer cell receptor (NCR1), since NCR1-deficient mice still inhibited mutant colonization. Consistently, mice deficient in the transcriptional factor T-bet only delayed the clearance of the bacterial mutant without fully rescuing the long-lasting colonization of the mutant. Thus, we have demonstrated that the obligate intracellular bacterium Chlamydia maintains its long-lasting colonization in the colon by evading IFN-γ from group 3-like ILCs.
Collapse
|
11
|
The Plasmid-Encoded pGP3 Promotes Chlamydia Evasion of Acidic Barriers in Both Stomach and Vagina. Infect Immun 2019; 87:IAI.00844-18. [PMID: 30858342 DOI: 10.1128/iai.00844-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Although Chlamydia trachomatis is a human genital tract pathogen, chlamydial organisms have frequently been detected in both vaginal and rectal swab samples of animals and humans. The plasmid-encoded pGP3, a genital tract virulence factor, is essential for Chlamydia muridarum to colonize the mouse gastrointestinal tract. However, intracolon inoculation to bypass the gastric barrier rescued the colonization ability of a pGP3-deficient C. muridarum mutant, suggesting that pGP3 is required for C. muridarum to reach but not to colonize the large intestine. The pGP3-deficient mutant was rapidly cleared in the stomach and was 100-fold more susceptible to gastric killing. In mice genetically deficient in gastrin, a key regulator for gastric acid production, or pharmacologically treated with a proton pump inhibitor, the ability of pGP3-deficient C. muridarum to colonize the gastrointestinal tract was rescued. The pGP3-dependent resistance was further recapitulated in vitro with treatments with HCl, pepsin, or sarkosyl. In the genital tract, deficiency in pGP3 significantly reduced C. muridarum survival in the mouse vagina and increased C. muridarum susceptibility to vaginal killing by ∼8 times. The pGP3-deficient C. muridarum was more susceptible to lactic acid killing, and the pGP3 deficiency also significantly increased C. trachomatis susceptibility to lactic acid. The above-described observations together suggest that Chlamydia may have acquired the plasmid-encoded pGP3 to overcome the gastric barrier during its adaptation to the gastrointestinal tract and the pGP3-dependent resistance may enable chlamydial evasion of the female lower genital tract barrier during sexual transmission.
Collapse
|
12
|
Fischer A, Rudel T. Safe haven under constant attack-The Chlamydia-containing vacuole. Cell Microbiol 2018; 20:e12940. [PMID: 30101516 DOI: 10.1111/cmi.12940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
Abstract
Chlamydia belong to the group of obligate intracellular bacteria that reside in a membrane bound vacuole during the entire intracellular phase of their life cycle. This vacuole called inclusion shields the bacteria from adverse influences in the cytosol of the host cell like the destructive machinery of the cell-autonomous defence system. The inclusion thereby prevents the digestion and eradication in specialised compartments of the intact and viable cell called phagolysosomes or autophagolysosomes. It is becoming more and more evident that keeping the inclusion intact also prevents the onset of cell intrinsic cell death programmes that are activated upon damage of the inclusion and direct the cell to destruct itself and the pathogen inside. Chlamydia secrete numerous proteins into the inclusion membrane to protect and stabilise their unique niche inside the host cell. We will focus in this review on the diverse attack strategies of the host aiming at the destruction of the Chlamydia-containing inclusion and will summarise the current knowledge on the protection mechanisms elaborated by the bacteria to maintain the integrity of their replication niche.
Collapse
Affiliation(s)
- Annette Fischer
- Department of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| |
Collapse
|