1
|
Abstract
Our understanding of free-living bacterial models like Escherichia coli far outpaces that of obligate intracellular bacteria, which cannot be cultured axenically. All obligate intracellular bacteria are host-associated, and many cause serious human diseases. Their constant exposure to the distinct biochemical niche of the host has driven the evolution of numerous specialized bacteriological and genetic adaptations, as well as innovative molecular mechanisms of infection. Here, we review the history and use of pathogenic Rickettsia species, which cause an array of vector-borne vascular illnesses, as model systems to probe microbial biology. Although many challenges remain in our studies of these organisms, the rich pathogenic and biological diversity of Rickettsia spp. constitutes a unique backdrop to investigate how microbes survive and thrive in host and vector cells. We take a bacterial-focused perspective and highlight emerging insights that relate to new host-pathogen interactions, bacterial physiology, and evolution. The transformation of Rickettsia spp. from pathogens to models demonstrates how recalcitrant microbes may be leveraged in the lab to tap unmined bacterial diversity for new discoveries. Rickettsia spp. hold great promise as model systems not only to understand other obligate intracellular pathogens but also to discover new biology across and beyond bacteria.
Collapse
Affiliation(s)
- Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Dahmani M, Zhu JC, Cook JH, Riley SP. Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation. Microbiol Spectr 2023; 11:e0253823. [PMID: 37855623 PMCID: PMC10714731 DOI: 10.1128/spectrum.02538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Rickettsia species are extremely dangerous bacteria that grow within the cytoplasm of host mammalian cells. In most cases, these bacteria are able to overpower the host cell and grow within the protected environment of the cytoplasm. However, a dramatic conflict occurs when Rickettsia encounter innate immune cells; the bacteria can "win" by taking over the host, or the bacteria can "lose" if the host cell efficiently fights the infection. This manuscript examines how the immune complement system is able to detect the presence of Rickettsia and alert nearby cells. Byproducts of complement activation called anaphylatoxins are signals that "activate" innate immune cells to mount an aggressive defensive strategy. This study enhances our collective understanding of the innate immune reaction to intracellular bacteria and will contribute to future efforts at controlling these dangerous infections.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jack H. Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
3
|
Nock AM, Aistleitner K, Clark TR, Sturdevant D, Ricklefs S, Virtaneva K, Zhang Y, Gulzar N, Redekar N, Roy A, Hackstadt T. Identification of an autotransporter peptidase of Rickettsia rickettsii responsible for maturation of surface exposed autotransporters. PLoS Pathog 2023; 19:e1011527. [PMID: 37523399 PMCID: PMC10414592 DOI: 10.1371/journal.ppat.1011527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/10/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
Members of the spotted fever group rickettsia express four large, surface-exposed autotransporters, at least one of which is a known virulence determinant. Autotransporter translocation to the bacterial outer surface, also known as type V secretion, involves formation of a β-barrel autotransporter domain in the periplasm that inserts into the outer membrane to form a pore through which the N-terminal passenger domain is passed and exposed on the outer surface. Two major surface antigens of Rickettsia rickettsii, are known to be surface exposed and the passenger domain cleaved from the autotransporter domain. A highly passaged strain of R. rickettsii, Iowa, fails to cleave these autotransporters and is avirulent. We have identified a putative peptidase, truncated in the Iowa strain, that when reconstituted into Iowa restores appropriate processing of the autotransporters as well as restoring a modest degree of virulence.
Collapse
Affiliation(s)
- Adam M. Nock
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Karin Aistleitner
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Tina R. Clark
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Dan Sturdevant
- Genomics Research Section, Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Stacy Ricklefs
- Genomics Research Section, Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Genomics Research Section, Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Yixiang Zhang
- Protein Chemistry Unit, Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Naila Gulzar
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Neelam Redekar
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Amitiva Roy
- Bioinformatics and Computational Biology Branch, Office of Cyber Infrastructure and Computational Biology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| |
Collapse
|
4
|
Laukaitis HJ, Cooper TT, Suwanbongkot C, Verhoeve VI, Kurtti TJ, Munderloh UG, Macaluso KR. Transposon mutagenesis of Rickettsia felis sca1 confers a distinct phenotype during flea infection. PLoS Pathog 2022; 18:e1011045. [PMID: 36542675 DOI: 10.1371/journal.ppat.1011045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/05/2023] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Since its recognition in 1994 as the causative agent of human flea-borne spotted fever, Rickettsia felis, has been detected worldwide in over 40 different arthropod species. The cat flea, Ctenocephalides felis, is a well-described biological vector of R. felis. Unique to insect-borne rickettsiae, R. felis can employ multiple routes of infection including inoculation via salivary secretions and potentially infectious flea feces into the skin of vertebrate hosts. Yet, little is known of the molecular interactions governing flea infection and subsequent transmission of R. felis. While the obligate intracellular nature of rickettsiae has hampered the function of large-scale mutagenesis strategies, studies have shown the efficiency of mariner-based transposon systems in Rickettsiales. Thus, this study aimed to assess R. felis genetic mutants in a flea transmission model to elucidate genes involved in vector infection. A Himar1 transposase was used to generate R. felis transformants, in which subsequent genome sequencing revealed a transposon insertion near the 3' end of sca1. Alterations in sca1 expression resulted in unique infection phenotypes. While the R. felis sca1::tn mutant portrayed enhanced growth kinetics compared to R. felis wild-type during in vitro culture, rickettsial loads were significantly reduced during flea infection. As a consequence of decreased rickettsial loads within infected donor fleas, R. felis sca1::tn exhibited limited transmission potential. Thus, the use of a biologically relevant model provides evidence of a defective phenotype associated with R. felis sca1::tn during flea infection.
Collapse
Affiliation(s)
- Hanna J Laukaitis
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Triston T Cooper
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy J Kurtti
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ulrike G Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
5
|
Matos AL, Curto P, Simões I. Moonlighting in Rickettsiales: Expanding Virulence Landscape. Trop Med Infect Dis 2022; 7:32. [PMID: 35202227 PMCID: PMC8877226 DOI: 10.3390/tropicalmed7020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
The order Rickettsiales includes species that cause a range of human diseases such as human granulocytic anaplasmosis (Anaplasma phagocytophilum), human monocytic ehrlichiosis (Ehrlichia chaffeensis), scrub typhus (Orientia tsutsugamushi), epidemic typhus (Rickettsia prowazekii), murine typhus (R. typhi), Mediterranean spotted fever (R. conorii), or Rocky Mountain spotted fever (R. rickettsii). These diseases are gaining a new momentum given their resurgence patterns and geographical expansion due to the overall rise in temperature and other human-induced pressure, thereby remaining a major public health concern. As obligate intracellular bacteria, Rickettsiales are characterized by their small genome sizes due to reductive evolution. Many pathogens employ moonlighting/multitasking proteins as virulence factors to interfere with multiple cellular processes, in different compartments, at different times during infection, augmenting their virulence. The utilization of this multitasking phenomenon by Rickettsiales as a strategy to maximize the use of their reduced protein repertoire is an emerging theme. Here, we provide an overview of the role of various moonlighting proteins in the pathogenicity of these species. Despite the challenges that lie ahead to determine the multiple potential faces of every single protein in Rickettsiales, the available examples anticipate this multifunctionality as an essential and intrinsic feature of these obligates and should be integrated into available moonlighting repositories.
Collapse
Affiliation(s)
- Ana Luísa Matos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Pedro Curto
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Isaura Simões
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
6
|
The Retropepsin-Type Protease APRc as a Novel Ig-Binding Protein and Moonlighting Immune Evasion Factor of Rickettsia. mBio 2021; 12:e0305921. [PMID: 34872352 PMCID: PMC8649778 DOI: 10.1128/mbio.03059-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Rickettsiae are obligate intracellular Gram-negative bacteria transmitted by arthropod vectors. Despite their reduced genomes, the function(s) of the majority of rickettsial proteins remains to be uncovered. APRc is a highly conserved retropepsin-type protease, suggested to act as a modulator of other rickettsial surface proteins with a role in adhesion/invasion. However, APRc’s function(s) in bacterial pathogenesis and virulence remains unknown. This study demonstrates that APRc targets host serum components, combining nonimmune immunoglobulin (Ig)-binding activity with resistance to complement-mediated killing. We confirmed nonimmune human IgG binding in extracts of different rickettsial species and intact bacteria. Our results revealed that the soluble domain of APRc is capable of binding to human (h), mouse, and rabbit IgG and different classes of human Ig (IgG, IgM, and IgA) in a concentration-dependent manner. APRc-hIgG interaction was confirmed with total hIgG and normal human serum. APRc-hIgG displayed a binding affinity in the micromolar range. We provided evidence of interaction preferentially through the Fab region and confirmed that binding is independent of catalytic activity. Mapping the APRc region responsible for binding revealed the segment between amino acids 157 and 166 as one of the interacting regions. Furthermore, we demonstrated that expression of the full-length protease in Escherichia coli is sufficient to promote resistance to complement-mediated killing and that interaction with IgG contributes to serum resistance. Our findings position APRc as a novel Ig-binding protein and a novel moonlighting immune evasion factor of Rickettsia, contributing to the arsenal of virulence factors utilized by these intracellular pathogens to aid in host colonization.
Collapse
|
7
|
Dahmani M, Cook JH, Zhu JC, Riley SP. Contribution of classical complement activation and IgM to the control of Rickettsia infection. Mol Microbiol 2021; 116:1476-1488. [PMID: 34725868 PMCID: PMC8955150 DOI: 10.1111/mmi.14839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Pathogenic Rickettsia are obligate intracellular bacteria and the etiologic agents of many life‐threatening infectious diseases. Due to the serious nature of these infections, it is imperative to both identify the responsive immune sensory pathways and understand the associated immune mechanisms that restrict Rickettsia proliferation. Previous studies have demonstrated that the mammalian complement system is both activated during Rickettsia infection and contributes to the immune response to infection. To further define this component of the mammalian anti‐Rickettsia immune response, we sought to identify the mechanism(s) of complement activation during Rickettsia infection. We have employed a series of in vitro and in vivo models of infection to investigate the role of the classical complement activation pathway during Rickettsia infection. Depletion or elimination of complement activity demonstrates that both C1q and pre‐existing IgM contribute to complement activation; thus implicating the classical complement system in Rickettsia‐mediated complement activation. Elimination of the classical complement pathway from mice increases susceptibility to R. australis infection with both increased bacterial loads in multiple tissues and decreased immune activation markers. This study highlights the role of the classical complement pathway in immunity against Rickettsia and implicates resident Rickettsia‐responsive IgM in the response to infection.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Jack H Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Jinyi C Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Sean P Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
8
|
Spernovasilis N, Markaki I, Papadakis M, Mazonakis N, Ierodiakonou D. Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Trop Med Infect Dis 2021; 6:172. [PMID: 34698275 PMCID: PMC8544691 DOI: 10.3390/tropicalmed6040172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mediterranean spotted fever (MSF) is an emerging tick-borne rickettsiosis of the spotted fever group (SFG), endemic in the Mediterranean basin. By virtue of technological innovations in molecular genetics, it has been determined that the causative agent of MSF is Rickettsia conorii subspecies conorii. The arthropod vector of this bacterium is the brown dog tick Rhipicephalus sanguineus. The true nature of the reservoir of R. conorii conorii has not been completely deciphered yet, although many authors theorize that the canine population, other mammals, and the ticks themselves could potentially contribute as reservoirs. Typical symptoms of MSF include fever, maculopapular rash, and a characteristic eschar ("tache noire"). Atypical clinical features and severe multi-organ complications may also be present. All of these manifestations arise from the disseminated infection of the endothelium by R. conorii conorii. Several methods exist for the diagnosis of MSF. Serological tests are widely used and molecular techniques have become increasingly available. Doxycycline remains the treatment of choice, while preventive measures are focused on modification of human behavior and vector control strategies. The purpose of this review is to summarize the current knowledge on the epidemiology, pathogenesis, clinical features, diagnosis, and treatment of MSF.
Collapse
Affiliation(s)
- Nikolaos Spernovasilis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Ioulia Markaki
- “Trifyllio” General Hospital of Kythira, 80200 Kythira, Greece;
| | - Michail Papadakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Nikolaos Mazonakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Despo Ierodiakonou
- Department of Social Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2417, Cyprus
| |
Collapse
|
9
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
10
|
Narra HP, Sahni A, Walker DH, Sahni SK. Recent research milestones in the pathogenesis of human rickettsioses and opportunities ahead. Future Microbiol 2020; 15:753-765. [PMID: 32691620 PMCID: PMC7787141 DOI: 10.2217/fmb-2019-0266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Infections caused by pathogenic Rickettsia species continue to scourge human health across the globe. From the point of entry at the site of transmission by arthropod vectors, hematogenous dissemination of rickettsiae occurs to diverse host tissues leading to 'rickettsial vasculitis' as the salient feature of pathogenesis. This perspective article accentuates recent breakthrough developments in the context of host-pathogen-vector interactions during rickettsial infections. The subtopics include potential exploitation of circulating macrophages for spread, identification of new entry mechanisms and regulators of actin-based motility, appreciation of metabolites acquired from and effectors delivered into the host, importance of the toxin-antitoxin module in host-cell interactions, effects of the vector microbiome on rickettsial transmission, and niche-specific riboregulation and adaptation. Further research on these aspects will advance our understanding of the biology of rickettsiae as intracellular pathogens and should enable design and development of new approaches to counter rickettsioses in humans and other hosts.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
11
|
Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nat Microbiol 2019; 4:2538-2551. [PMID: 31611642 PMCID: PMC6988571 DOI: 10.1038/s41564-019-0583-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/10/2019] [Indexed: 01/05/2023]
Abstract
Rickettsia are obligate intracellular bacteria that evade antimicrobial autophagy in the host cell cytosol by unknown mechanisms. Other cytosolic pathogens block different steps of autophagy targeting, including the initial step of polyubiquitin-coat formation. One mechanism of evasion is to mobilize actin to the bacterial surface. Here, we show that actin mobilization is insufficient to block autophagy recognition of the pathogen Rickettsia parkeri. Instead, R. parkeri employs outer membrane protein B (OmpB) to block ubiquitylation of the bacterial surface proteins, including OmpA, and subsequent recognition by autophagy receptors. OmpB is also required for the formation of a capsule-like layer. Although OmpB is dispensable for bacterial growth in endothelial cells, it is essential for R. parkeri to block autophagy in macrophages and to colonize mice because of its ability to promote autophagy evasion in immune cells. Our results indicate that OmpB acts as a protective shield to obstruct autophagy recognition, thereby revealing a distinctive bacterial mechanism to evade antimicrobial autophagy.
Collapse
|
12
|
Immunity against the Obligate Intracellular Bacterial Pathogen Rickettsia australis Requires a Functional Complement System. Infect Immun 2018; 86:IAI.00139-18. [PMID: 29581196 PMCID: PMC5964522 DOI: 10.1128/iai.00139-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
The complement system has a well-defined role in deterring blood-borne infections. However, complement is not entirely efficacious, as several bacterial pathogens, including some obligate intracellular pathogens, have evolved mechanisms for resistance. It is presumed that obligate intracellular bacteria evade complement attack by residing within a host cell; however, recent studies have challenged this presumption. Here, we demonstrate that the complement system is activated during infection with the obligate intracellular bacterium Rickettsia australis and that genetic ablation of complement increases susceptibility to infection. Interaction of Rickettsia australis with serum-borne complement leads to activation of the complement cascade, producing three effector mechanisms that could negatively influence R. australis. The C9-dependent membrane attack complex can lead to deposition of a bacteriolytic membrane pore on the bacteria, but this system does not contribute to control of rickettsial infection. Similarly, complement receptor (CR1/2)-dependent opsonophagocytosis may lead to engulfment and killing of the bacteria, but this system is also dispensable for immunity. Nevertheless, intact complement is essential for naturally acquired and antibody-mediated immunity to Rickettsia infection. Comparison of infection in mice lacking the central complement protein C3 with infection in their wild-type counterparts demonstrated decreases in gamma interferon (IFN-γ) production, IgG secretion, and spleen hyperplasia in animals lacking complement. The correlation between loss of secondary immune functions and loss of complement indicates that the proinflammatory signaling components of the complement system, and not membrane attack complex or opsonophagocytosis, contribute to the immune response to this pathogen.
Collapse
|
13
|
Garza DA, Riley SP, Martinez JJ. Expression of Rickettsia Adr2 protein in E. coli is sufficient to promote resistance to complement-mediated killing, but not adherence to mammalian cells. PLoS One 2017; 12:e0179544. [PMID: 28662039 PMCID: PMC5491016 DOI: 10.1371/journal.pone.0179544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/31/2017] [Indexed: 01/20/2023] Open
Abstract
Bacteria exposed to host serum are subject to the antibacterial effects to the complement system. However, pathogenic microorganisms have evolved mechanisms of evading this immune attack. We have previously demonstrated that at least two R. conorii antigens, RC1281/Adr1 and OmpB β-peptide, contribute to the evasion of complement-mediated killing by binding the complement regulatory proteins vitronectin and factor H. RC1282/Adr2, a protein related to Adr1, is predicted to share similar structural features, suggesting that this protein may also contribute to evasion of complement-mediated killing. Interestingly, the R. prowazekii Adr1 and Adr2(RP828) proteins were originally found to interact with host cell surface proteins, suggesting their putative roles as adhesins in this pathogenic rickettsial species. In this study, we expressed both R. conorii and R. prowazekii Adr2 on the surface of a non-adherent, serum-sensitive strain of E. coli to examine the potential role of this protein to mediate evasion of complement-mediated killing and adherence to host cells. We demonstrate that, similar to R. conorii Adr1, R. conorii and R. prowazekii Adr2 are sufficient to mediate serum resistance and to promote interaction with the host complement regulator vitronectin. Furthermore, we demonstrate that expression of Adr2 in a non-adherent strain of E. coli is insufficient to mediate adherence to cultured mammalian endothelial cells. Together, our data demonstrate that the R. conorii and R. prowazekii Adr2 protein does not participate in the interactions with mammalian cells, but rather, participates in the evasion of killing by complement.
Collapse
Affiliation(s)
- Daniel A. Garza
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Sean P. Riley
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Juan J. Martinez
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Fish AI, Riley SP, Singh B, Riesbeck K, Martinez JJ. The Rickettsia conorii Adr1 Interacts with the C-Terminus of Human Vitronectin in a Salt-Sensitive Manner. Front Cell Infect Microbiol 2017; 7:61. [PMID: 28299286 PMCID: PMC5331051 DOI: 10.3389/fcimb.2017.00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
Spotted fever group (SFG) Rickettsia species are inoculated into the mammalian bloodstream by hematophagous arthropods. Once in the bloodstream and during dissemination, the survival of these pathogens is dependent upon the ability of these bacteria to evade serum-borne host defenses until a proper cellular host is reached. Rickettsia conorii expresses an outer membrane protein, Adr1, which binds the complement inhibitory protein vitronectin to promote resistance to the anti-bacterial effects of the terminal complement complex. Adr1 is predicted to consist of 8 transmembrane beta sheets that form a membrane-spanning barrel with 4 peptide loops exposed to the extracellular environment. We previously demonstrated that Adr1 derivatives containing either loop 3 or 4 are sufficient to bind Vn and mediate resistance to serum killing when expressed at the outer-membrane of E. coli. By expressing R. conorii Adr1 on the surface of non-pathogenic E. coli, we demonstrate that the interaction between Adr1 and vitronectin is salt-sensitive and cannot be interrupted by addition of heparin. Additionally, we utilized vitroenctin-derived peptides to map the minimal Adr1/vitronectin interaction to the C-terminal region of vitronectin. Furthermore, we demonstrate that specific charged amino acid residues located within loops 3 and 4 of Adr1 are critical for mediating resistance to complement-mediated killing. Interestingly, Adr1 mutants that were no longer sufficient to mediate resistance to serum killing still retained the ability to bind to Vn, suggesting that Adr1-Vn interactions responsible for resistance to serum killing are more complex than originally hypothesized. In summary, elucidation of the mechanisms governing Adr1-Vn binding will be useful to specifically target this protein-protein interaction for therapeutic intervention.
Collapse
Affiliation(s)
- Abigail I Fish
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge, LA, USA
| | - Sean P Riley
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge, LA, USA
| | - Birendra Singh
- Clinical Microbiology, Department of Translational Medicine, Lund University Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University Malmö, Sweden
| | - Juan J Martinez
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge, LA, USA
| |
Collapse
|
15
|
Kousios A. Does complement Factor H-Related protein 5 Nephropathy (Troodos Nephropathy) protect from rickettsial infections? Med Hypotheses 2017; 98:76-80. [DOI: 10.1016/j.mehy.2016.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
|
16
|
Novel Rickettsia and emergent tick-borne pathogens: A molecular survey of ticks and tick-borne pathogens in Shimba Hills National Reserve, Kenya. Ticks Tick Borne Dis 2016; 8:208-218. [PMID: 28011185 DOI: 10.1016/j.ttbdis.2016.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 11/23/2022]
Abstract
Ticks are important vectors of emerging and re-emerging zoonoses, the majority of which originate from wildlife. In recent times, this has become a global public health concern that necessitates surveillance of both known and unknown tick-borne pathogens likely to be future disease threats, as well as their tick vectors. We carried out a survey of the diversity of ticks and tick-borne pathogens in Kenya's Shimba Hills National Reserve (SHNR), an area with intensified human-livestock-wildlife interactions, where we collected 4297 questing ticks (209 adult ticks, 586 nymphs and 3502 larvae). We identified four tick species of two genera (Amblyomma eburneum, Amblyomma tholloni, Rhipicephalus maculatus and a novel Rhipicephalus sp.) based on both morphological characteristics and molecular analysis of 16S rRNA, internal transcribed spacer 2 (ITS 2) and cytochrome oxidase subunit 1 (CO1) genes. We pooled the ticks (3-8 adults, 8-15 nymphs or 30 larvae) depending on species and life-cycle stages, and screened for bacterial, arboviral and protozoal pathogens using PCR with high-resolution melting analysis and sequencing of unique melt profiles. We report the first molecular detection of Anaplasma phagocytophilum, a novel Rickettsia-like and Ehrlichia-like species, in Rh. maculatus ticks. We also detected Ehrlichia chaffeensis, Coxiella sp., Rickettsia africae and Theileria velifera in Am. eburneum ticks for the first time. Our findings demonstrate previously unidentified tick-pathogen relationships and a unique tick diversity in the SHNR that may contribute to livestock, and possibly human, morbidity in the region. This study highlights the importance of routine surveillance in similar areas to elucidate disease transmission dynamics, as a critical component to inform the development of better tick-borne disease diagnosis, prevention and control measures.
Collapse
|
17
|
Li W, Wen L, Li C, Chen R, Ye Z, Zhao J, Pan J. Contribution of the outer membrane protein OmpW in Escherichia coli to complement resistance from binding to factor H. Microb Pathog 2016; 98:57-62. [PMID: 27364548 DOI: 10.1016/j.micpath.2016.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 01/20/2023]
Abstract
The serum complement system is essential for innate immune defense against invading pathogenic bacteria. Some of the 8-stranded β-barrel outer membrane proteins confer bacterial resistance to the innate host immunity. We have previously demonstrated that OmpW, also an 8-stranded β-barrel protein that was identified a decade ago, protects bacteria against host phagocytosis. In this study, we investigated the complement resistance of OmpW. Our results indicate that the upregulation of OmpW is associated with increased survival when bacteria are exposed to normal human sera (NHS). Mutant bacteria lacking OmpW in NHS exhibited significantly lower survival rates in comparison to wild-type and ompW complemented bacteria. Furthermore, the bacterial survival significantly decreased in NHS that was supplemented with EGTA-Mg(2+) compared to that in NHS supplemented with EDTA. These results suggest that OmpW confer resistance to alternative complement pathway-mediated killing. Moreover, the binding of OmpW to factor H, a major inhibitor of alternative pathway, was found, indicating that OmpW recruitment of factor H is a mechanism for bacterial evasion of complement attack.
Collapse
Affiliation(s)
- Weiyan Li
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liangyou Wen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuchu Li
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ran Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhicang Ye
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Zhao
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianyi Pan
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
18
|
Otterdal K, Portillo A, Astrup E, Ludviksen JK, Schjalm C, Raoult D, Olano JP, Halvorsen B, Oteo JA, Aukrust P, Mollnes TE, Nilsson PH. Rickettsia conorii is a potent complement activator in vivo and combined inhibition of complement and CD14 is required for attenuation of the cytokine response ex vivo. Clin Microbiol Infect 2016; 22:734.e1-6. [PMID: 27217049 DOI: 10.1016/j.cmi.2016.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/03/2016] [Accepted: 05/10/2016] [Indexed: 11/19/2022]
Abstract
Mediterranean spotted fever caused by Rickettsia conorii is a potentially lethal disease characterized by vascular inflammation affecting multiple organs. Studies of R. conorii so far have focused on activation of inflammatory cells and their release of inflammatory cytokines, but complement activation has not been investigated in R. conorii-infected patients. Here, we performed a comprehensive analysis of complement activation markers and the soluble cross-talking co-receptor CD14 (sCD14) in plasma from R. conorii-infected patients. The clinical data were supplemented with ex vivo experiments where the cytokine response was characterized in human whole blood stimulated with R. conorii. Complement activation markers at the level of C3 (C3bc, C3bBbP) and terminal pathway activation (sC5b-9), as well as sCD14, were markedly elevated (p <0.01 for all), and closely correlated (p <0.05 for all), in patients at admission compared with healthy matched controls. All tested markers were significantly reduced to baseline values at time of follow up. Rickettsia conorii incubated in human whole blood was shown to trigger complement activation accompanied by release of the inflammatory cytokines interleukin-1β (IL-1β), IL-6, IL-8 and tumour necrosis factor. Whereas inhibition of either C3 or CD14 had only a minor effect on released cytokines, combined inhibition of C3 and CD14 resulted in significant reduction, virtually to baseline levels, of the four cytokines (p <0.05 for all). Our data show that complement is markedly activated upon R. conorii infection and complement activation is, together with CD14, responsible for a major part of the cytokine response induced by R. conorii in human whole blood.
Collapse
Affiliation(s)
- K Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - A Portillo
- Centre of Rickettsioses and Arthropod-Borne Diseases, Department of Infectious Diseases, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), Logroño, Spain
| | - E Astrup
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - J K Ludviksen
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - C Schjalm
- Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - D Raoult
- Unité des Rickettsies, Université de la Mediterranée, Marseille, France
| | - J P Olano
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - B Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - J A Oteo
- Centre of Rickettsioses and Arthropod-Borne Diseases, Department of Infectious Diseases, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), Logroño, Spain
| | - P Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - T E Mollnes
- Faculty of Medicine, University of Oslo, Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway; Faculty of Health Sciences, K.G Jebsen TREC, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - P H Nilsson
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway.
| |
Collapse
|
19
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Riley SP, Patterson JL, Nava S, Martinez JJ. Pathogenic Rickettsia species acquire vitronectin from human serum to promote resistance to complement-mediated killing. Cell Microbiol 2013; 16:849-61. [PMID: 24286496 DOI: 10.1111/cmi.12243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/30/2013] [Accepted: 11/15/2013] [Indexed: 01/01/2023]
Abstract
Bacteria of the genus Rickettsia are transmitted from arthropod vectors and primarily infect cells of the mammalian endothelial system. Throughout this infectious cycle, the bacteria are exposed to the deleterious effects of serum complement. Using Rickettsia conorii, the etiologic agent of Mediterranean spotted fever (MSF), as a model rickettsial species, we have previously demonstrated that this class of pathogen interacts with human factor H to mediate partial survival in human serum. Herein, we demonstrate that R. conorii also interacts with the terminal complement complex inhibitor vitronectin (Vn). We further demonstrate that an evolutionarily conserved rickettsial antigen, Adr1/RC1281, interacts with human vitronectin and is sufficient to mediate resistance to serum killing when expressed at the outer-membrane of serum sensitive Escherichia coli. Adr1 is an integral outer-membrane protein whose structure is predicted to contain eight membrane-embedded β-strands and four 'loop' regions that are exposed to extracellular milieu. Site-directed mutagenesis of Adr1 revealed that at least two predicted 'loop' regions are required to mediate resistance to complement-mediatedkilling and vitronectin acquisition. These results demonstrate that rickettsial species have evolved multiple mechanisms to evade complement deposition and that evasion of killing in serum is an evolutionarily conserved virulence attribute for this genus of obligate intracellular pathogens.
Collapse
Affiliation(s)
- Sean P Riley
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA; Howard T. Ricketts Laboratory, Argonne, IL, 60439, USA; Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| | | | | | | |
Collapse
|
21
|
Exchange protein directly activated by cAMP plays a critical role in bacterial invasion during fatal rickettsioses. Proc Natl Acad Sci U S A 2013; 110:19615-20. [PMID: 24218580 DOI: 10.1073/pnas.1314400110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host-pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.
Collapse
|
22
|
|
23
|
Grijpstra J, Arenas J, Rutten L, Tommassen J. Autotransporter secretion: varying on a theme. Res Microbiol 2013; 164:562-82. [PMID: 23567321 DOI: 10.1016/j.resmic.2013.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Autotransporters are widely distributed among Gram-negative bacteria. They can have a large variety of functions and many of them have a role in virulence. They are synthesized as large precursors with an N-terminal signal sequence that mediates transport across the inner membrane via the Sec machinery and a translocator domain that mediates the transport of the connected passenger domain across the outer membrane to the bacterial cell surface. Like integral outer membrane proteins, the translocator domain folds in a β-barrel structure and requires the Bam machinery for its insertion into the outer membrane. After transport across the outer membrane, the passenger may stay connected via the translocator domain to the bacterial cell surface or it is proteolytically released into the extracellular milieu. Based on the size of the translocator domain and its position relative to the passenger in the precursor, autotransporters are divided into four sub-categories. We review here the current knowledge of the biogenesis, structure and function of various autotransporters.
Collapse
Affiliation(s)
- Jan Grijpstra
- Section Molecular Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|