1
|
Li W, Li YA, Wang S, Shi H. A universal live vaccine platform against multiple serotypes Streptococcus suis based on polyvalent antigen protein. Vaccine 2025; 47:126700. [PMID: 39778475 DOI: 10.1016/j.vaccine.2024.126700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Streptococcus suis (S. suis) is a major pathogen that poses a long-term threat to swine populations. Due to its foodborne transmission, this pathogen has recently emerged as a leading cause of meningitis in humans, presenting a significant public health challenge. Currently, no vaccine is available to combat this disease, particularly a universal vaccine capable of addressing multiple subtypes of S. suis. In this study, we developed a universal live vaccine candidate against multiple serotypes S. suis based on the polyvalent antigen protein SE6. A live Salmonella Choleraesuis (S. Choleraesuis) vector was employed for the production and in vivo delivery of the polyvalent antigen. The SE6 protein was efficiently expressed within the S. Choleraesuis vector and delivered to the host's lymphatic system. The antiserum of mice immunized with SE6-delivering S. Choleraesuis vector produced a broader and potent opsonophagocytic response against multiple serotypes of S. suis. Finally, the SE6-delivering S. Choleraesuis vector demonstrated high efficacy in providing protection against S. suis serotypes 2, 7, and 9 in vivo.
Collapse
Affiliation(s)
- Wenjing Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
2
|
Iwanowitsch A, Diessner J, Bergmann B, Rudel T. The JMU-SalVac-System: A Novel, Versatile Approach to Oral Live Vaccine Development. Vaccines (Basel) 2024; 12:687. [PMID: 38932416 PMCID: PMC11209359 DOI: 10.3390/vaccines12060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Salmonella enterica Serovar Typhi Ty21a (Ty21a) is the only licensed oral vaccine against typhoid fever. Due to its excellent safety profile, it has been used as a promising vector strain for the expression of heterologous antigens for mucosal immunization. As the efficacy of any bacterial live vector vaccine correlates with its ability to express and present sufficient antigen, the genes for antigen expression are traditionally located on plasmids with antibiotic resistance genes for stabilization. However, for use in humans, antibiotic selection of plasmids is not applicable, leading to segregational loss of the antigen-producing plasmid. Therefore, we developed an oral Ty21a-based vaccine platform technology, the JMU-SalVac-system (Julius-Maximilians-Universität Würzburg) in which the antigen delivery plasmids (pSalVac-plasmid-series) are stabilized by a ΔtyrS/tyrS+-based balanced-lethal system (BLS). The system is made up of the chromosomal knockout of the essential tyrosyl-tRNA-synthetase gene (tyrS) and the in trans complementation of tyrS on the pSalVac-plasmid. Further novel functional features of the pSalVac-plasmids are the presence of two different expression cassettes for the expression of protein antigens. In this study, we present the construction of vaccine strains with BLS plasmids for antigen expression. The expression of cytosolic and secreted mRFP and cholera toxin subunit B (CTB) proteins as model antigens is used to demonstrate the versatility of the approach. As proof of concept, we show the induction of previously described in vivo inducible promoters cloned into pSalVac-plasmids during infection of primary macrophages and demonstrate the expression of model vaccine antigens in these relevant human target cells. Therefore, antigen delivery strains developed with the JMU-SalVac technology are promising, safe and stable vaccine strains to be used against mucosal infections in humans.
Collapse
Affiliation(s)
| | - Joachim Diessner
- Department of Obstetrics and Gynecology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Birgit Bergmann
- Chair of Microbiology, University of Würzburg, 97074 Würzburg, Germany;
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg, 97074 Würzburg, Germany;
| |
Collapse
|
3
|
Li YA, Sun Y, Zhang Y, Wang X, Dieye Y, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector outperforms alum as an adjuvant, increasing a cross-protective immune response against Glaesserella parasuis. Vet Microbiol 2023; 287:109915. [PMID: 38000209 DOI: 10.1016/j.vetmic.2023.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
The adjuvant and/or vector significantly affect a vaccine's efficacy. Although traditional adjuvants such as alum have contributed to vaccine development, deficiencies in the induction of cellular and mucosal immunity have limited their further promotion. Salmonella vectors have unique advantages for establishing cellular and mucosal immunity due to mucosal pathways of invasion and intracellular parasitism. In addition, Salmonella vectors can activate multiple innate immune pathways, thereby promoting adaptive immune responses. In this work, the attenuated Salmonella enterica serovar Choleraesuis (S. Choleraesuis) vector rSC0016 was used to deliver the conserved protective antigen HPS_06257 of Glaesserella parasuis (G. parasuis), generating a novel recombinant strain rSC0016(pS-HPS_06257). The rSC0016(pS-HPS_06257) can express and deliver the HPS_06257 protein to the lymphatic system of the host. In comparison to HPS_06257 adjuvanted with alum, rSC0016(pS-HPS_06257) significantly increased TLR4 and TLR5 activation in mice as well as the levels of proinflammatory cytokines. In addition, rSC0016 promoted a greater degree of maturation in bone marrow-derived dendritic cells (BMDCs) than alum. The specific humoral, mucosal, and cellular immune responses against HPS_06257 in mice immunized with rSC0016(pS-HPS_06257) were significantly higher than those of HPS_06257 adjuvanted with alum. HPS_06257 delivered by the S. Choleraesuis vector induces a Th1-biased Th1/Th2 mixed immune response, while HPS adjuvanted with alum can only induce a Th2-biased immune response. HPS_06257 adjuvanted with alum only causes opsonophagocytic activity (OPA) responses against a homologous strain (G. parasuis serotype 5, GPS5), whereas rSC0016(pS-HPS_06257) could generate cross-OPA responses against a homologous strain and a heterologous strain (G. parasuis serotype 12, GPS12). Ultimately, HPS_06257 adjuvanted with alum protected mice against lethal doses of GPS5 challenge by 60 % but failed to protect mice against lethal doses of GPS12. In contrast, mice immunized with rSC0016(pS-HPS_06257) had 100 % or 80 % survival when challenged with lethal doses of GPS5 or GPS12, respectively. Altogether, the S. Choleraesuis vector rSC0016 could potentially generate an improved innate immune response and an improved adaptive immunological response compared to the traditional alum adjuvant, offering a novel concept for the development of a universal G. parasuis vaccine.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanni Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
4
|
Li YA, Sun Y, Zhang Y, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vector delivering a virus-like particles induces a protective immune response against porcine circovirus type 2 in mice. Vaccine 2022; 40:4732-4741. [PMID: 35773121 DOI: 10.1016/j.vaccine.2022.06.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
The virus-like particles (VLPs) of porcine circovirus type 2 (PCV2) is an attractive vaccine candidate that retains the natural conformation of the virion but lacks the viral genome to replicate, thus balancing safety and immunogenicity. However, the assembly of VLPs requires cumbersome subsequent processes, hindering the development of related vaccines. In addition, as a subunit antigen, VLPs are defective in inducing cellular and mucosal immune responses. In this study, the capsid (Cap) protein of PCV2 was synthesized and self-assembled into VLPs in the recombinant attenuated S. Choleraesuis vector, rSC0016(pS-Cap). Furthermore, rSC0016(pS-Cap) induced a Cap-specific Th1-dominant immune response, mucosal immune responses, and neutralizing antibodies against PCV2. Finally, the virus genome copies in mice immunized with the rSC0016(pS-Cap) were significantly lower than those of the empty vector control group after challenge with PCV2. In conclusion, our study demonstrates the potential of using S. Choleraesuis vectors to delivery VLPs, providing new ideas for the development of PCV2 vaccines.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanni Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
5
|
Li YA, Sun Y, Fu Y, Zhang Y, Li Q, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector delivering a dual-antigen expression cassette provides mouse cross-protection against Streptococcus suis serotypes 2, 7, 9, and 1/2. Vet Res 2022; 53:46. [PMID: 35733156 PMCID: PMC9215036 DOI: 10.1186/s13567-022-01062-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
A universal vaccine protecting against multiple serotypes of Streptococcus suis is urgently needed to improve animal welfare and reduce the consumption of antibiotics. In this study, a dual antigen expression cassette consisting of SS2-SaoA and SS9-Eno was delivered by a recombinant Salmonella Choleraesuis vector to form the vaccine candidate rSC0016(pS-SE). SaoA and Eno were simultaneously synthesized in rSC0016(pS-SE) without affecting the colonization of the recombinant vector in the lymphatic system. In addition, the antiserum of mice immunized with rSC0016(pS-SE) produced a broader and potent opsonophagocytic response against multiple serotypes of S. suis. Finally, rSC0016(pS-SE) provided mice with a 100% protection against a lethal dose of parent S. suis serotype 2 and serotype 9, and provided 90% and 80% protection against heterologous S. suis serotype 7 or 1/2. These values were significantly higher than those obtained with rSC0016(pS-SaoA) or rSC0016(pS-Eno). Together, this study serves as a foundation for developing a universal vaccine against multiple serotypes of S. suis.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanni Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
6
|
Outer Membrane Vesicles Displaying a Heterologous PcrV-HitA Fusion Antigen Promote Protection against Pulmonary Pseudomonas aeruginosa Infection. mSphere 2021; 6:e0069921. [PMID: 34612675 PMCID: PMC8510544 DOI: 10.1128/msphere.00699-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Along with surging threats and antibiotic resistance of Pseudomonas aeruginosa in health care settings, it is imperative to develop effective vaccines against P. aeruginosa infection. In this study, we used an Asd (aspartate-semialdehyde dehydrogenase)-based balanced-lethal host-vector system of a recombinant Yersinia pseudotuberculosis mutant to produce self-adjuvanting outer membrane vesicles (OMVs). The OMVs were used as a carrier to deliver the heterologous PcrV-HitAT (PH) fusion antigen of P. aeruginosa for vaccine evaluation. Intramuscular vaccination with OMVs carrying the PH antigen (referred to rOMV-PH) afforded 73% protection against intranasal challenge with 5 × 106 (25 50% lethal doses) of the cytotoxic PA103 strain and complete protection against a noncytotoxic PAO1 strain. In contrast, vaccination with the PH-deficient OMVs or PH antigen alone failed to offer effective protection against the same challenge. Immune analysis showed that the rOMV-PH vaccination induced potent humoral and Th1/Th17 responses compared to the PH vaccination. The rOMV-PH vaccination rapidly cleared P. aeruginosa burdens with coordinated production of proinflammatory cytokines in mice. Moreover, antigen-specific CD4+ and CD8+ T cells and their producing cytokines (tumor necrosis factor alpha and interleukin-17A), rather than antibodies, were essential for protection against pneumonic P. aeruginosa infection. Our studies demonstrated that the recombinant Y. pseudotuberculosis OMVs delivering heterologous P. aeruginosa antigens could be a new promising vaccine candidate for preventing the spread of drug-resistant P. aeruginosa. IMPORTANCE Hospital- and community-acquired infections with Pseudomonas aeruginosa cause a high rate of morbidity and mortality in patients who have underlying medical conditions. The spread of multidrug-resistant P. aeruginosa strains is becoming a great challenge for treatment using antibiotics. Thus, a vaccine as one of the alternative strategies is urgently required to prevent P. aeruginosa infection.
Collapse
|
7
|
Recombinant Pseudomonas bio-nanoparticles induce protection against pneumonic Pseudomonas aeruginosa infection. Infect Immun 2021; 89:e0039621. [PMID: 34310892 DOI: 10.1128/iai.00396-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To develop an effective Pseudomonas aeruginosa (PA) outer-membrane-vesicles (OMVs) vaccine, we eliminated multiple virulence factors from a wild-type P. aeruginosa PA103 strain (PA103) to generate a recombinant strain, PA-m14. The PA-m14 strain was tailored with a pSMV83 plasmid encoding the pcrV-hitAT fusion gene to produce OMVs. The recombinant OMVs enclosed increased amounts of PcrV-HitAT bivalent antigen (PH) (termed OMV-PH) and exhibited reduced toxicity compared to the OMVs from PA103. Intramuscular vaccination with OMV-PH from PA-m14(pSMV83) afforded 70% protection against intranasal challenge with 6.5 × 106 CFU (∼30 LD50) of PA103, while immunization using OMVs without the PH antigen (termed OMV-NA) or the PH antigen alone failed to offer effective protection against the same challenge. Further immune analysis showed that the OMV-PH immunization significantly stimulated potent antigen-specific humoral and T-cell (Th1/Th17) responses in comparison to the PH or OMV-NA immunization in mice, which can effectively hinder PA infection. Undiluted anti-sera from OMV-PH-immunized mice displayed significant opsonophagocytic killing of WT PA103 compared to antisera from PH antigen- or OMV-NA-immunized mice. Moreover, the OMV-PH immunization afforded significant antibody-indentpednet cross-protection to mice against PAO1 and a clinical isolate AMC-PA10 strains. Collectively, the recombinant PA OMV delivering the PH bivalent antigen exhibits high immunogenicity and would be a promising next-generation vaccine candidate against PA infection.
Collapse
|
8
|
Wang Z, Zhao X, Wang Y, Sun C, Sun M, Gao X, Jia F, Shan C, Yang G, Wang J, Huang H, Shi C, Yang W, Qian A, Wang C, Jiang Y. In Vivo Production of HN Protein Increases the Protection Rates of a Minicircle DNA Vaccine against Genotype VII Newcastle Disease Virus. Vaccines (Basel) 2021; 9:vaccines9070723. [PMID: 34358140 PMCID: PMC8310180 DOI: 10.3390/vaccines9070723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 01/09/2023] Open
Abstract
The Cre-recombinase mediated in vivo minicircle DNA vaccine platform (CRIM) provided a novel option to replace a traditional DNA vaccine. To further improve the immune response of our CRIM vaccine, we designed a dual promoter expression plasmid named pYL87 which could synthesize short HN protein under a prokaryotic in vivo promoter PpagC and full length HN protein of genotype VII Newcastle disease virus (NDV) under the previous eukaryotic CMV promoter at the same time. Making use of the self-lysed Salmonella strain as a delivery vesicle, chickens immunized with the pYL87 construction showed an increased serum haemagglutination inhibition antibody response, as well as an increased cell proliferation level and cellular IL-4 and IL-18 cytokines, compared with the previous CRIM vector pYL47. After the virus challenge, the pYL87 vector could provide 80% protection compared to 50% protection against genotype VII NDV in pYL47 immunized chickens, indicating a promising dual promoter strategy used in vaccine design.
Collapse
|
9
|
Stojanov M, Besançon H, Snäkä T, Nardelli-Haefliger D, Curtiss R, Baud D. Differentially regulated promoters for antigen expression in Salmonella vaccine strains. Vaccine 2020; 38:4154-4161. [PMID: 32376109 DOI: 10.1016/j.vaccine.2020.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/14/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
In most attenuated Salmonella enterica vaccines, heterologous antigens are expressed under the control of strong inducible promoters to ensure a high level of synthesis. Although high expression levels of the antigen can improve the immunogenicity of the vaccine, they might be toxic to the Salmonella carrier. Expression problems could be avoided by the use of promoters with specific characteristics with respect to strength and timing of expression. To study the expression of ten selected promoters, translational promoter-green fluorescent protein (GFP) fusions were analyzed in three attenuated Salmonella strains, Ty21a, SL3261 and PhoPC. Promoter expression was evaluated both in vitro and in intracellular conditions using flow cytometry and confocal microscopy, with specific focus on the levels and timing of expression. We identified one major candidate promoter (Pasr) that could be used to express antigens specifically during in vivo conditions, without impairing bacterial growth during in vitro vaccine production.
Collapse
Affiliation(s)
- Miloš Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
| | - Hervé Besançon
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Tiia Snäkä
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, USA
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
10
|
A Novel Cre Recombinase-Mediated In Vivo Minicircle DNA (CRIM) Vaccine Provides Partial Protection against Newcastle Disease Virus. Appl Environ Microbiol 2019; 85:AEM.00407-19. [PMID: 31053588 DOI: 10.1128/aem.00407-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Minicircle DNA (mcDNA), which contains only the necessary components for eukaryotic expression and is thus smaller than traditional plasmids, has been designed for application in genetic manipulation. In this study, we constructed a novel plasmid containing both the Cre recombinase under the phosphoglycerate kinase (PGK) promoter and recombinant lox66 and lox71 sites located outside the cytomegalovirus (CMV) expression cassette. The strictly controlled synthesis of Cre recombinase in vivo maintained the complete form of the plasmid in vitro, whereas the in vivo production of Cre transformed the parental plasmid to mcDNA after transfection. The newly designed Cre recombinase-mediated in vivo mcDNA platform, named CRIM, significantly increased the nuclear entry of mcDNA, followed by increased production of mRNA and protein, using enhanced green fluorescent protein (EGFP) as a model. Similar results were also observed in chickens when the vaccine was delivered by the regulated-delayed-lysis Salmonella strain χ11218, where significantly increased production of EGFP was observed in chicken livers. Then, we used the HN gene of genotype VII Newcastle disease virus as an antigen model to construct the traditional plasmid pYL43 and the novel mcDNA plasmid pYL47. After immunization, our CRIM vaccine provided significantly increased protection against challenge compared with that of the traditional plasmid, providing us with a novel mcDNA vaccine platform.IMPORTANCE Minicircle DNA (mcDNA) has been considered an attractive alternative to DNA vaccines; however, the relatively high cost and complicated process of purifying mcDNA dramatically restricts the application of mcDNA in the veterinary field. We designed a novel in vivo mcDNA platform in which the complete plasmid could spontaneously transform into mcDNA in vivo In combination with the regulated-delayed-lysis Salmonella strain, the newly designed mcDNA vaccine provides us with an elegant platform for veterinary vaccine development.
Collapse
|
11
|
Su H, Liu Q, Wang S, Curtiss R, Kong Q. Regulated Delayed Shigella flexneri 2a O-antigen Synthesis in Live Recombinant Salmonella enterica Serovar Typhimurium Induces Comparable Levels of Protective Immune Responses with Constitutive Antigen Synthesis System. Am J Cancer Res 2019; 9:3565-3579. [PMID: 31281498 PMCID: PMC6587160 DOI: 10.7150/thno.33046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/21/2019] [Indexed: 12/02/2022] Open
Abstract
Shigella flexneri (S. flexneri), a leading cause of bacillary dysentery, is a major public health concern particularly affecting children in developing nations. We have constructed a novel attenuated Salmonella vaccine system based on the regulated delayed antigen synthesis (RDAS) and regulated delayed expression of attenuating phenotype (RDEAP) systems for delivering the S. flexneri 2a (Sf2a) O-antigen. Methods: The new Salmonella vaccine platform was constructed through chromosomal integration of the araC PBAD lacI and araC PBAD wbaP cassettes, resulting in a gradual depletion of WbaP enzyme. An expression vector, encoding Sf2a O-antigen biosynthesis under the control of the LacI-repressible Ptrc promoter, was maintained in the Salmonella vaccine strain through antibiotic-independent selection. Mice immunized with the vaccine candidates were evaluated for cell-mediate and humoral immune responses. Results: In the presence of exogenous arabinose, the Salmonella vaccine strain synthesized native Salmonella LPS as a consequence of WbaP expression. Moreover, arabinose supported LacI expression, thereby repressing Sf2a O-antigen production. In the absence of arabinose in vivo, native Salmonella LPS synthesis is repressed whilst the synthesis of the Sf2a O-antigen is induced. Murine immunization with the Salmonella vaccine strain elicited robust Sf2a-specific protective immune responses together with long term immunity. Conclusion: These findings demonstrate the protective efficacy of recombinant Sf2a O-antigen delivered by a Salmonella vaccine platform.
Collapse
|
12
|
Adams LJ, Zeng X, Lin J. Development and Evaluation of Two Live Salmonella-Vectored Vaccines for Campylobacter Control in Broiler Chickens. Foodborne Pathog Dis 2019; 16:399-410. [PMID: 30864853 DOI: 10.1089/fpd.2018.2561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Campylobacter is the leading bacterial cause of human enteritis in developed countries. Human campylobacteriosis is commonly associated with the consumption of undercooked, contaminated chicken, a natural host of Campylobacter. Thus, the control of Campylobacter colonization in poultry at the farm level would reduce the risk of human exposure to this pathogen. Vaccination is an attractive intervention measure to mitigate Campylobacter in poultry. Our recent studies have demonstrated that the outer-membrane proteins CmeC (an essential component of CmeABC multidrug efflux pump) and CfrA (ferric enterobactin receptor) are feasible candidates for immune intervention against Campylobacter. By targeting these two promising vaccine candidates, live attenuated Salmonella-vectored vaccines were developed and evaluated in this study. Briefly, the cfrA and cmeC genes were cloned into expression vector pYA3493 and transferred into Salmonella enterica serovar Typhimurium χ8914, the USDA licensed live attenuated vaccine strain. The oral live Salmonella vaccines producing CfrA or CmeC (truncated or full length) were successfully constructed by using delicate molecular manipulation despite the challenge due to the potential toxic effect of the cloned gene product in the Escherichia coli host. Expression and membrane localization of the target protein in the vaccines were confirmed by immunoblotting. The efficacies of the two live vaccines that produce full-length CfrA or CmeC were evaluated by using broiler chickens. However, oral vaccination of chickens failed to trigger significant systemic and intestinal mucosal immune responses and, consequently, did not confer protection against Campylobacter jejuni colonization chickens. The vaccination regimens of the constructed live Salmonella-vectored vaccine need to be optimized in future studies.
Collapse
Affiliation(s)
- Lindsay Jones Adams
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
13
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
14
|
Clark-Curtiss JE, Curtiss R. Salmonella Vaccines: Conduits for Protective Antigens. THE JOURNAL OF IMMUNOLOGY 2018; 200:39-48. [PMID: 29255088 DOI: 10.4049/jimmunol.1600608] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Vaccines afford a better and more cost-effective approach to combatting infectious diseases than continued reliance on antibiotics or antiviral or antiparasite drugs in the current era of increasing incidences of diseases caused by drug-resistant pathogens. Recombinant attenuated Salmonella vaccines (RASVs) have been significantly improved to exhibit the same or better attributes than wild-type parental strains to colonize internal lymphoid tissues and persist there to serve as factories to continuously synthesize and deliver rAgs. Encoded by codon-optimized pathogen genes, Ags are selected to induce protective immunity to infection by that pathogen. After immunization through a mucosal surface, the RASV attributes maximize their abilities to elicit mucosal and systemic Ab responses and cell-mediated immune responses. This article summarizes many of the numerous innovative technologies and discoveries that have resulted in RASV platforms that will enable development of safe efficacious RASVs to protect animals and humans against a diversity of infectious disease agents.
Collapse
Affiliation(s)
- Josephine E Clark-Curtiss
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and .,Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
15
|
Maddux JT, Stromberg ZR, Curtiss Iii R, Mellata M. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli. Front Immunol 2017; 8:1280. [PMID: 29062318 PMCID: PMC5640888 DOI: 10.3389/fimmu.2017.01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023] Open
Abstract
Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC) strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP) is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV) strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428) containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337) was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428) synthesized the major pilin (EcpA) and tip pilus adhesin (EcpD) on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337) without ECP or χ9558(pYA4428) with ECP, produced anti-Salmonella LPS and anti-E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit an immune response to E. coli and Salmonella antigens in some mice, provide significant protection in some internal organs during ExPEC challenge, and thus this study is a promising initial step toward developing a vaccine for prevention of ExPEC infections. Future studies should optimize the ExPEC antigens displayed by the RASV strain for a more robust immune response and enhanced protection against ExPEC infection.
Collapse
Affiliation(s)
- Jacob T Maddux
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Roy Curtiss Iii
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Melha Mellata
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
16
|
Bridge DR, Whitmire JM, Makobongo MO, Merrell DS. Heterologous Pseudomonas aeruginosa O-antigen delivery using a Salmonella enterica serovar Typhimurium wecA mutant strain. Int J Med Microbiol 2016; 306:529-540. [PMID: 27476047 DOI: 10.1016/j.ijmm.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/30/2023] Open
Abstract
There is a broad interest in adapting live vaccine strains (LVS) for use as recombinant vaccines that can deliver heterologous antigens. The Salmonella enterica serovar Typhimurium SL1344 ΔwecA LVS contains a mutation in wecA that abrogates production of Enterobacterial common antigen. This ΔwecA strain is attenuated in vivo, persistently colonizes the host, and protects against both wild type and cross-Salmonella serovar lethal challenge in a murine model of salmonellosis. Given these characteristics, we hypothesized that the SL1344 ΔwecA strain could be used as a carrier for heterologous antigen expression. To test this hypothesis, SL1344 ΔwecA was engineered to express the Pseudomonas aeruginosa O11 O-antigen gene cluster. Intraperitoneal (IP) but not oral immunization of BALB/c mice with the heterologous expression strain protected against lethal P. aeruginosa intranasal (IN) challenge. Furthermore, IP immunization resulted in P. aeruginosa O11-specific Ig and IgG antibody production. Functional analysis of sera collected from the IP immunized mice showed antibody-mediated agglutination and opsonophagocytic activity against P. aeruginosa. En masse, these results indicate that the S. Typhimurium SL1344 ΔwecA strain expressing the P. aeruginosa O11 O-antigen gene cluster is able to induce a humoral immune response and to protect against lethal P. aeruginosa challenge. As such, the S. Typhimurium SL1344 ΔwecA LVS can likely serve as a vehicle for expression of a wide variety of heterologous antigens as a means to create recombinant vaccines.
Collapse
Affiliation(s)
- Dacie R Bridge
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Jeannette M Whitmire
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Morris O Makobongo
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - D Scott Merrell
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| |
Collapse
|
17
|
Lin IYC, Van TTH, Smooker PM. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery. Vaccines (Basel) 2015; 3:940-72. [PMID: 26569321 PMCID: PMC4693226 DOI: 10.3390/vaccines3040940] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.
Collapse
Affiliation(s)
- Ivan Y C Lin
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| |
Collapse
|
18
|
Sun W, Sanapala S, Rahav H, Curtiss R. Oral administration of a recombinant attenuated Yersinia pseudotuberculosis strain elicits protective immunity against plague. Vaccine 2015; 33:6727-35. [PMID: 26514425 DOI: 10.1016/j.vaccine.2015.10.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 10/14/2015] [Indexed: 01/14/2023]
Abstract
A Yersinia pseudotuberculosis PB1+ (Yptb PB1+) mutant strain combined with chromosome insertion of the caf1R-caf1A-caf1M-caf1 operon and deletions of yopJ and yopK, χ10068 [pYV-ω2 (ΔyopJ315 ΔyopK108) ΔlacZ044::caf1R-caf1M-caf1A-caf1] was constructed. Results indicated that gene insertion and deletion did not affect the growth rate of χ10068 compared to wild-type Yptb cultured at 26 °C. In addition, the F1 antigen in χ10068 was synthesized and secreted on the surface of bacteria at 37 °C (mammalian body temperature), not at ambient culture temperature (26 °C). Immunization with χ10068 primed antibody responses and specific T-cell responses to F1 and YpL (Y. pestis whole cell lysate). Oral immunization with a single dose of χ10068 provided 70% protection against a subcutaneous (s.c.) challenge with ∼ 2.6 × 10(5) LD50 of Y. pestis KIM6+ (pCD1Ap) (KIM6+Ap) and 90% protection against an intranasal (i.n.) challenge with ∼ 500 LD50 of KIM6+Ap in mice. Our results suggest that χ10068 can be used as an effective precursor to make a safe vaccine to prevent plague in humans and to eliminate plague circulation among humans and animals.
Collapse
Affiliation(s)
- Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Shilpa Sanapala
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hannah Rahav
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Roy Curtiss
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
19
|
In Vivo Programmed Gene Expression Based on Artificial Quorum Networks. Appl Environ Microbiol 2015; 81:4984-92. [PMID: 25979894 DOI: 10.1128/aem.01113-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/11/2015] [Indexed: 01/01/2023] Open
Abstract
The quorum sensing (QS) system, as a well-functioning population-dependent gene switch, has been widely applied in many gene circuits in synthetic biology. In our work, an efficient cell density-controlled expression system (QS) was established via engineering of the Vibrio fischeri luxI-luxR quorum sensing system. In order to achieve in vivo programmed gene expression, a synthetic binary regulation circuit (araQS) was constructed by assembling multiple genetic components, including the quorum quenching protein AiiA and the arabinose promoter ParaBAD, into the QS system. In vitro expression assays verified that the araQS system was initiated only in the absence of arabinose in the medium at a high cell density. In vivo expression assays confirmed that the araQS system presented an in vivo-triggered and cell density-dependent expression pattern. Furthermore, the araQS system was demonstrated to function well in different bacteria, indicating a wide range of bacterial hosts for use. To explore its potential applications in vivo, the araQS system was used to control the production of a heterologous protective antigen in an attenuated Edwardsiella tarda strain, which successfully evoked efficient immune protection in a fish model. This work suggested that the araQS system could program bacterial expression in vivo and might have potential uses, including, but not limited to, bacterial vector vaccines.
Collapse
|
20
|
Chu T, Ni C, Zhang L, Wang Q, Xiao J, Zhang Y, Liu Q. A quorum sensing-based in vivo expression system and its application in multivalent bacterial vaccine. Microb Cell Fact 2015; 14:37. [PMID: 25888727 PMCID: PMC4372277 DOI: 10.1186/s12934-015-0213-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Delivery of antigens by live bacterial carriers can elicit effective humoral and cellular responses and may be an attractive strategy for live bacterial vaccine production through introduction of a vector that expresses an exogenous protective antigen. To overcome the instability and metabolic burden associated with plasmid introduction, alternative strategies, such as the use of in vivo-inducible promoters, have been proposed. However, screening an ideal in vivo-activated promoter with high efficiency and low leak expression in a particular strain poses great challenges to many researchers. RESULTS In this work, we constructed an in vivo antigen-expressing vector suitable for Edwardsiella tarda, an enteric Gram-negative invasive intracellular pathogen of both animals and humans. By combining quorum sensing genes from Vibrio fischeri with iron uptake regulons, a synthetic binary regulation system (ironQS) for E. tarda was designed. In vitro expression assay demonstrated that the ironQS system is only initiated in the absence of Fe2+ in the medium when the cell density reaches its threshold. The ironQS system was further confirmed in vivo to present an in vivo-triggered and cell density-dependent expression pattern in larvae and adult zebrafish. A recombinant E. tarda vector vaccine candidate WED(ironQS-G) was established by introducing gapA34, which encodes the protective antigen glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the fish pathogen Aeromonas hydrophila LSA34 into ironQS system, and the immune protection afforded by this vaccine was assessed in turbot (Scophtalmus maximus). Most of the vaccinated fish survived under the challenge with A. hydrophila LSA34 (RPS=67.0%) or E. tarda EIB202 (RPS=72.3%). CONCLUSIONS Quorum sensing system has been extensively used in various gene structures in synthetic biology as a well-functioning and population-dependent gene circuit. In this work, the in vivo expression system, ironQS, maintained the high expression efficiency of the quorum sensing circuit and achieved excellent expression regulation of the Fur box. The ironQS system has great potential in applications requiring in vivo protein expression, such as vector vaccines. Considering its high compatibility, ironQS system could function as a universal expression platform for a variety of bacterial hosts.
Collapse
Affiliation(s)
- Teng Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chunshan Ni
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lingzhi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, China.
| |
Collapse
|
21
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
22
|
LcrV delivered via type III secretion system of live attenuated Yersinia pseudotuberculosis enhances immunogenicity against pneumonic plague. Infect Immun 2014; 82:4390-404. [PMID: 25114109 DOI: 10.1128/iai.02173-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we constructed a Yersinia pseudotuberculosis mutant strain with arabinose-dependent regulated and delayed shutoff of crp expression (araC P(BAD) crp) and replacement of the msbB gene with the Escherichia coli msbB gene to attenuate it. Then, we inserted the asd mutation into this construction to form χ10057 [Δasd-206 ΔmsbB868::P(msbB) msbB(EC) ΔP(crp21)::TT araC P(BAD) crp] for use with a balanced-lethal Asd-positive (Asd(+)) plasmid to facilitate antigen synthesis. A hybrid protein composed of YopE (amino acids [aa]1 to 138) fused with full-length LcrV (YopE(Nt138)-LcrV) was synthesized in χ10057 harboring an Asd(+) plasmid (pYA5199, yopE(Nt138)-lcrV) and could be secreted through a type III secretion system (T3SS) in vitro and in vivo. Animal studies indicated that mice orally immunized with χ10057(pYA5199) developed titers of IgG response to whole-cell lysates of Y. pestis (YpL) and subunit LcrV similar to those seen with χ10057(pYA3332) (χ10057 plus an empty plasmid). However, only immunization of mice with χ10057(pYA5199) resulted in a significant secretory IgA response to LcrV. χ10057(pYA5199) induced a higher level of protection (80% survival) against intranasal (i.n.) challenge with ~240 median lethal doses (LD50) (2.4 × 10(4) CFU) of Y. pestis KIM6+(pCD1Ap) than χ10057(pYA3332) (40% survival). Splenocytes from mice vaccinated with χ10057(pYA5199) produced significant levels of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-17 (IL-17) after restimulation with LcrV and YpL antigens. Our results suggest that it is possible to use an attenuated Y. pseudotuberculosis strain delivering the LcrV antigen via the T3SS as a potential vaccine candidate against pneumonic plague.
Collapse
|
23
|
Abstract
Attenuated Salmonella vaccines can be administered orally to deliver recombinant antigens to mucosal surfaces inducing a protective immune response against a variety of targeted pathogens. A number of exciting new approaches and technologies for attenuated Salmonella vaccines have been developed recently. However, a disconnect remains between results obtained with mice in preclinical studies and results obtained in human clinical trials. This is due to an incomplete understanding of Salmonella Typhi interactions with human hosts and inadequate animal models available for study. In this review, the authors describe recent progress in identifying important differences underlying S. Typhi-host interactions, the development of novel approaches to vaccine design and six recent clinical trials evaluating Salmonella-vectored vaccines.
Collapse
Affiliation(s)
- Kenneth L Roland
- The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287-5401, USA
| | | |
Collapse
|
24
|
Abstract
Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines.
Collapse
|
25
|
Pei Y, Parreira VR, Roland KL, Curtiss R, Prescott JF. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2014; 78:23-30. [PMID: 24396177 PMCID: PMC3878005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/15/2013] [Indexed: 06/03/2023]
Abstract
Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors.
Collapse
Affiliation(s)
| | | | | | | | - John F. Prescott
- Address all correspondence to Dr. John F. Prescott; telephone: (519) 824-4120 ext. 54716; fax: (519) 824-5930; e-mail:
| |
Collapse
|
26
|
Kong W, Clark-Curtiss J, Curtiss R. Utilizing Salmonella for antigen delivery: the aims and benefits of bacterial delivered vaccination. Expert Rev Vaccines 2013; 12:345-7. [PMID: 23560914 DOI: 10.1586/erv.13.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Brenneman KE, Willingham C, Kong W, Curtiss R, Roland KL. Low-pH rescue of acid-sensitive Salmonella enterica Serovar Typhi Strains by a Rhamnose-regulated arginine decarboxylase system. J Bacteriol 2013; 195:3062-72. [PMID: 23645603 PMCID: PMC3697538 DOI: 10.1128/jb.00104-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/29/2013] [Indexed: 12/17/2022] Open
Abstract
For Salmonella, transient exposure to gastric pH prepares invading bacteria for the stresses of host-cell interactions. To resist the effects of low pH, wild-type Salmonella enterica uses the acid tolerance response and the arginine decarboxylase acid resistance system. However, arginine decarboxylase is typically repressed under routine culture conditions, and for many live attenuated Salmonella vaccine strains, the acid tolerance response is unable to provide the necessary protection. The objective of this study was to enhance survival of Salmonella enterica serovar Typhi vaccine strains at pHs 3.0 and 2.5 to compensate for the defects in the acid tolerance response imposed by mutations in rpoS, phoPQ, and fur. We placed the arginine decarboxylase system (adiA and adiC) under the control of the ParaBAD or PrhaBAD promoter to provide inducible acid resistance when cells are grown under routine culture conditions. The rhamnose-regulated promoter PrhaBAD was less sensitive to the presence of its cognate sugar than the arabinose-regulated promoter ParaBAD and provided tighter control over adiA expression. Increased survival at low pH was only observed when adiA and adiC were coregulated by rhamnose and depended on the presence of rhamnose in the culture medium and arginine in the challenge medium. Rhamnose-regulated acid resistance significantly improved the survival of ΔaroD and ΔphoPQ mutants at pHs 3 and 2.5 but only modestly improved the survival of a fur mutant. The construction of the rhamnose-regulated arginine decarboxylase system allowed us to render S. Typhi acid resistant (to pH 2.5) on demand, with survival levels approximately equivalent to that of the native arginine decarboxylase system.
Collapse
Affiliation(s)
| | | | - Wei Kong
- The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Roy Curtiss
- The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kenneth L. Roland
- The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
28
|
A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccine strains. Infect Immun 2013; 81:3148-62. [PMID: 23774599 DOI: 10.1128/iai.00097-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene mutants and evaluated the immune responses induced by these mutants. One of these mutations, Δ(wza-wcaM)8, which deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine strain with the deletion mutation Δ(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the Δ(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better gamma interferon (IFN-γ) responses than the strain without this deletion at doses of 10(8) and 10(9) CFU. Thus, the mutation Δ(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial pathogens.
Collapse
|
29
|
Yan Y, Mu W, Zhang L, Guan L, Liu Q, Zhang Y. Asd-based balanced-lethal system in attenuated Edwardsiella tarda to express a heterologous antigen for a multivalent bacterial vaccine. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1188-1194. [PMID: 23454428 DOI: 10.1016/j.fsi.2013.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 12/31/2012] [Accepted: 01/28/2013] [Indexed: 06/01/2023]
Abstract
Edwardsiella tarda is an enteric Gram-negative invasive intracellular pathogen, which causes enteric septicemia in fish. It could be potentially used to develop a recombinant attenuated E. tarda vaccine for the aquaculture industry. Because live vaccine strains can potentially be released into the environment upon vaccination, medical and environmental safety issues must be considered. Deletion of the asdB gene in E. tarda resulted in a diaminopimelic acid (DAP)-dependent mutant. The wild type asdB gene was inserted in place of the antibiotic-resistance gene in the plasmid, and the resultant non-antibiotic resistant vector was transformed into the attenuated and DAP-dependent E. tarda vaccine strain (WEDΔasdB) to obtain a balanced-lethal system for heterologous antigen expression. The balanced-lethal expression system was further optimized by comparing plasmid replicons with different Shine-Dalgarno sequences and start codons for the asdB gene. Utilizing the optimized balanced-lethal expression system, the protective antigen gene gapA34 from the fish pathogen Aeromonas hydrophila LSA34 was expressed in the attenuated E. tarda to generate the multivalent vaccine candidate WEDΔasdB/pUTta4DGap. This vaccine was shown to evoke an effective immune response against both E. tarda and A. hydrophila LSA34 by vaccinating turbot via a simple immersion route. This multivalent E. tarda vector vaccine has great potential for broad applications in aquaculture.
Collapse
Affiliation(s)
- Yijian Yan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Evaluation of regulated delayed attenuation strategies for Salmonella enterica serovar Typhi vaccine vectors in neonatal and infant mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:931-44. [PMID: 23616408 DOI: 10.1128/cvi.00003-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed regulated delayed attenuation strategies for Salmonella vaccine vectors. In this study, we evaluated the combination of these strategies in recombinant attenuated Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium vaccine vectors with similar genetic backgrounds in vitro and in vivo. Our goal is to develop a vaccine to prevent Streptococcus pneumoniae infection in newborns; thus, all strains delivered a pneumococcal antigen PspA and the impact of maternal antibodies was evaluated. The results showed that all strains with the regulated delayed attenuated phenotype (RDAP) displayed an invasive ability stronger than that of the S. Typhi vaccine strain, Ty21a, but weaker than that of their corresponding wild-type parental strains. The survival curves of different RDAP vaccine vectors in vitro and in vivo exhibited diverse regulated delayed attenuation kinetics, which was different from S. Typhi Ty21a and the wild-type parental strains. Under the influence of maternal antibody, the persistence of the S. Typhimurium RDAP strain displayed a regulated delayed attenuation trend in nasal lymphoid tissue (NALT), lung, and Peyer's patches, while the persistence of S. Typhi RDAP strains followed the curve only in NALT. The bacterial loads of S. Typhi RDAP strains were lower in NALT, lung, and Peyer's patches in mice born to immune mothers than in those born to naive mothers. In accordance with these results, RDAP vaccine strains induced high titers of IgG antibodies against PspA and against Salmonella lipopolysaccharides. Immunization of mothers with S. Typhi RDAP strains enhanced the level of vaginal mucosal IgA, gamma interferon (IFN-γ), and interleukin 4 (IL-4) and resulted in a higher level of protection against S. pneumoniae challenge.
Collapse
|
31
|
Guan L, Liu Q, Li C, Zhang Y. Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis. BMC Biotechnol 2013; 13:25. [PMID: 23510048 PMCID: PMC3621691 DOI: 10.1186/1472-6750-13-25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 03/08/2013] [Indexed: 01/26/2023] Open
Abstract
Background There is a continuous demanding for tightly regulated prokaryotic expression systems, which allow functional synthesis of toxic proteins in Escherichia coli for bioscience or biotechnology application. However, most of the current promoter options either are tightly repressed only with low protein production levels, or produce substantial protein but lacking of the necessary repression to avoid mutations initiated by leaky expression in the absence of inducer. The aim of this study was to develop a tightly regulated, relatively high-efficient expression vector in E. coli based on the principle of iron uptake system. Results By using GFP as reporter, PfhuA with the highest relative fluorescence units, but leaky expression, was screened from 23 iron-regulated promoter candidates. PfhuA was repressed by ferric uptake regulator (Fur)-Fe2+ complex binding to Fur box locating at the promoter sequence. Otherwise, PfhuA was activated without Fur-Fe2+ binding in the absence of iron. In order to improve the tightness of PfhuA regulation for toxic gene expression, Fur box in promoter sequence and fur expression were refined through five different approaches. Eventually, through substituting E. coli consensus Fur box for original one of PfhuA, the induction ratio of modified PfhuA (named PfhuA1) was improved from 3 to 101. Under the control of PfhuA1, strong toxic gene E was successfully expressed in high, middle, low copy-number vectors, and other two toxic proteins, Gef and MazF were functionally synthesized without E. coli death before induction. Conclusions The features of easy control, tight regulation and relatively high efficiency were combined in the newly engineered PfhuA1. Under this promoter, the toxic genes E, gef and mazF were functionally expressed in E. coli induced by iron chelator in a tightly controllable way. This study provides a tightly regulated expression system that might enable the stable cloning, and functional synthesis of toxic proteins for their function study, bacterial programmed cell death in biological containment system and bacterial vector vaccine development.
Collapse
Affiliation(s)
- Lingyu Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | | | | | | |
Collapse
|
32
|
Wang JY, Harley RH, Galen JE. Novel methods for expression of foreign antigens in live vector vaccines. Hum Vaccin Immunother 2013; 9:1558-64. [PMID: 23406777 PMCID: PMC3890216 DOI: 10.4161/hv.23248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial live vector vaccines represent a vaccine development strategy that offers exceptional flexibility. In this approach, genes encoding protective antigens of unrelated bacterial, viral or parasitic pathogens are expressed in an attenuated bacterial vaccine strain that delivers these foreign antigens to the immune system, thereby eliciting relevant immune responses. Rather than expressing these antigens using low copy expression plasmids, here we pursue expression of foreign proteins from the live vector chromosome. Our strategy is designed to compensate for the inherent disadvantage of loss of gene dosage (vs. plasmid-based expression) by integrating antigen-encoding gene cassettes into multiple chromosomal sites already inactivated in an attenuated Salmonella enterica serovar Typhi vaccine candidate. We tested expression of a cassette encoding the green fluorescent protein (GFPuv) integrated separately into native guaBA, htrA or clyA chromosomal loci. Using single integrations, we show that expression levels of GFPuv are significantly affected by the site of integration, regardless of the inclusion of additional strong promoters within the incoming cassette. Using cassettes integrated into both guaBA and htrA, we observe cumulative synthesis levels from two integration sites superior to single integrations. Most importantly, we observe that GFPuv expression increases in a growth phase-dependent manner, suggesting that foreign antigen synthesis may be “tuned” to the physiology of the live vaccine. We expect this novel platform expression technology to prove invaluable in the development of a wide variety of multivalent live vector vaccines, capable of expressing multiple antigens from both chromosomal and plasmid-based expression systems within a single strain.
Collapse
Affiliation(s)
- Jin Yuan Wang
- Center for Vaccine Development; Division of Geographic Medicine; Baltimore, MD USA; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | | | | |
Collapse
|
33
|
New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog 2012; 58:17-28. [PMID: 23142647 DOI: 10.1016/j.micpath.2012.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/01/2023]
Abstract
Recombinant attenuated Salmonella vaccine (RASV) vectors producing recombinant gene-encoded protective antigens should have special traits. These features ensure that the vaccines survive stresses encountered in the gastrointestinal tract following oral vaccination to colonize lymphoid tissues without causing disease symptoms and to result in induction of long-lasting protective immune responses. We recently described ways to achieve these goals by using regulated delayed in vivo attenuation and regulated delayed in vivo antigen synthesis, enabling RASVs to efficiently colonize effector lymphoid tissues and to serve as factories to synthesize protective antigens that induce higher protective immune responses. We also developed some additional new strategies to increase vaccine safety and efficiency. Modification of lipid A can reduce the inflammatory responses without compromising the vaccine efficiency. Outer membrane vesicles (OMVs) from Salmonella-containing heterologous protective antigens can be used to increase vaccine efficiency. A dual-plasmid system, possessing Asd+ and DadB+ selection markers, each specifying a different protective antigen, can be used to develop multivalent live vaccines. These new technologies have been adopted to develop a novel, low-cost RASV synthesizing multiple protective pneumococcal protein antigens that could be safe for newborns/infants and induce protective immunity to diverse Streptococcus pneumoniae serotypes after oral immunization.
Collapse
|
34
|
Zheng SY, Yu B, Zhang K, Chen M, Hua YH, Yuan S, Watt RM, Zheng BJ, Yuen KY, Huang JD. Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines. BMC Immunol 2012; 13:54. [PMID: 23013063 PMCID: PMC3503649 DOI: 10.1186/1471-2172-13-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. Result To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. Conclusion Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus insoluble forms of the protein antigens. If an antigen, such as EGFP, is soluble and expressed at high levels, a low-copy plasmid-cytoplasmic expression strategy is recommended; since it provokes the highest B cell responses and also induces good T cell responses. If a T cell response is preferred, a eukaryotic expression plasmid or a chromosome-based, cytoplasmic-expression strategy is more effective. For insoluble antigens such as HA, an outer membrane expression strategy is recommended.
Collapse
Affiliation(s)
- Song-yue Zheng
- Department of Biochemistry, the University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mu W, Guan L, Yan Y, Liu Q, Zhang Y. A novel in vivo inducible expression system in Edwardsiella tarda for potential application in bacterial polyvalence vaccine. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1097-1105. [PMID: 21964456 DOI: 10.1016/j.fsi.2011.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/20/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Abstract
Recombinant bacterial vector vaccine is an attractive vaccination strategy to induce the immune response to a carried protective antigen, and the main concern of bacterial vector vaccine is to establish a stable antigen expression system in vector bacteria. Edwardsiella tarda is an important facultative intracellular pathogen of both animals and humans, and its attenuated derivates are excellent bacterial vectors for use in recombinant vaccine design. In this study, we design an in vivo inducible expression system in E. tarda and establish potential recombinant E. tarda vector vaccines. With wild type strain E. tarda EIB202 as a vector, 53 different bacteria-originated promoters were examined for iron-responsive transcription in vitro, and the promoters P(dps) and P(yncE) showed high transcription activity. The transcription profiles in vivo of two promoters were further assayed, and P(dps) revealed an enhanced in vivo inducible transcription in macrophage, larvae and adult zebra fish. The gapA34 gene, encoding the protective antigen GAPDH from the fish pathogen Aeromonas hydrophila LSA34, was introduced into the P(dps)-based protein expression system, and transformed into attenuated E. tarda strains. The resultant recombinant vector vaccine WED/pUTDgap was evaluated in turbot (Scophtalmus maximus). Over 60% of the vaccinated fish survived under the challenge with A. hydrophila LSA34 and E. tarda EIB202, suggesting that the P(dps)-based antigen delivery system had great potential in bacterial vector vaccine application.
Collapse
Affiliation(s)
- Wei Mu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|
36
|
Moffitt KL, Malley R. Next generation pneumococcal vaccines. Curr Opin Immunol 2011; 23:407-13. [PMID: 21514128 DOI: 10.1016/j.coi.2011.04.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 11/15/2022]
Abstract
Currently licensed pneumococcal vaccines are based on the generation of antibodies to the pneumococcal polysaccharide, of which there are more than 90 different types. While these vaccines are highly effective against the serotypes included, their high cost and limited serotype coverage limit their usefulness worldwide, particularly in low resource areas. Thus alternative or adjunctive options are being actively pursued. This review will present these various approaches, including variations of the polysaccharide-protein conjugate strategy, protein-based strategies, and whole cell pneumococcal vaccines. The immunological basis for these different approaches is discussed as well.
Collapse
Affiliation(s)
- Kristin L Moffitt
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|