1
|
Liporagi-Lopes LC, Chrissian C, Camacho E, Kacirani A, Stark RE, Casadevall A. Lomentospora prolificans synthesizes several types of melanin. mSphere 2025; 10:e0096324. [PMID: 40172218 PMCID: PMC12039236 DOI: 10.1128/msphere.00963-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Lomentospora prolificans is a filamentous fungus with a global distribution, exhibiting a particularly higher prevalence in human-impacted environments. Melanins are biological compounds with important functions that contribute to the virulence of many pathogenic fungi. Like many fungi, L. prolificans produces melanin, but little is known about its structure and composition. In the current study, we characterized L. prolificans-associated melanin using chemical, biological, biophysical, and structural techniques while also assessing the impact of inhibitors of distinct melanization pathways. Our results reveal that this pathogenic fungus produces multiple types of melanin pigments and suggest the possibility of a new type of melanin, which is synthesized together with a mixture of DHN-, DOPA-, and pyomelanin types.IMPORTANCEThis fungal species is associated with a wide spectrum of human infections, especially in immunosuppressed individuals, for whom it causes severe and debilitating illnesses with high morbidity and mortality that are compounded by its pan-resistant profile with respect to antifungal drugs. Melanin is a ubiquitous pigment among fungi with a broad range of actions that include promoting fungal virulence. Although melanin is one of the most studied virulence factors in pathogenic fungi, relatively little is known about the chemistry of this pigment in L. prolificans. These insights enhance our understanding of L. prolificans' virulence mechanisms, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Livia C. Liporagi-Lopes
- Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christine Chrissian
- Department of Chemistry and Biochemistry, The City College of New York, CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Emma Camacho
- Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arlind Kacirani
- Department of Chemistry and Biochemistry, The City College of New York, CUNY Institute for Macromolecular Assemblies, New York, New York, USA
- Department of Chemical Engineering, The City College of New York, New York, New York, USA
| | - Ruth E. Stark
- Department of Chemistry and Biochemistry, The City College of New York, CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Arturo Casadevall
- Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Graham CI, Gierys AJ, MacMartin TL, Penner TV, Beck JC, Prehna G, de Kievit TR, Brassinga AKC. Transcription factors DksA and PsrA are synergistic contributors to Legionella pneumophila virulence in Acanthamoeba castellanii protozoa. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40231716 DOI: 10.1099/mic.0.001551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The environmental bacterium Legionella pneumophila, an intracellular parasite of free-living freshwater protozoa as well as an opportunistic human pathogen, has a biphasic lifestyle. The switch from the vegetative replicative form to the environmentally resilient transmissive phase form is governed by a complex stringent response-based regulatory network that includes RNA polymerase co-factor DksA. Here, we report that, through a dysfunctional DksA mutation (DksA1), a synergistic interplay was discovered between DksA and transcription regulator PsrA using the Acanthamoeba castellanii protozoan infection model. Surprisingly, in trans expression of PsrA partially rescued the growth defect of a dksA1 strain. Whilst in trans expression of DksA expectantly could fully rescue the growth defect of the dksA1 strain, it could also surprisingly rescue the growth defect of a ΔpsrA strain. Conversely, the severe intracellular growth defect of a ΔdksA strain could be rescued by in trans expression of DksA and DksA1, but not PsrA. In vitro phenotypic assays show that either DksA or DksA1 was required for extended culturability of bacterial cells, but normal cell morphology and pigmentation required DksA only. Comparative structural modelling predicts that the DksA1 mutation affects the coordination of Mg2+ into the active site of RNAP, compromising transcription efficiency. Taken together, we propose that PsrA transcriptionally assists DksA in the expression of select transmissive phase traits. Additionally, in vitro evidence suggests that the long-chain fatty acid metabolic response is mediated by PsrA together with DksA, inferring a novel regulatory link to the stringent response pathway.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Andrew J Gierys
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Tiffany V Penner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jordan C Beck
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gerd Prehna
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
3
|
Leonildi A, Rosellini A, Gemignani G, Tiseo G, Falcone M, Giordano C, Barnini S. Phenotypic and Molecular Characterization of Pyomelanin-Producing Acinetobacter baumannii ST2 Pas;ST1816/ST195 Oxf Causing the First European Nosocomial Outbreak. Microorganisms 2025; 13:493. [PMID: 40142386 PMCID: PMC11945678 DOI: 10.3390/microorganisms13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Acinetobacter baumannii is one of the most successful and feared nosocomial pathogens. A. baumannii is considered a global threat in the healthcare setting, mainly owing to its ability to acquire multidrug resistance phenotypes. The A. baumannii pathogenesis is guided by its environmental persistence, as well as the production of numerous virulence factors. In several bacteria, the production of pigments, such as melanin, has indeed been linked with virulence and pathogenicity. Melanin is a brownish pigment, rarely observed in A. baumannii, that potentially reduces the susceptibility of the bacteria to host defense mechanisms and environmental insults. This study reports the first outbreak in Europe by pyomelanin-producing A. baumannii strains, in a tertiary-care university hospital in Pisa, Italy. Phenotypic and molecular analyses were performed.
Collapse
Affiliation(s)
- Alessandro Leonildi
- Microbiology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Alfredo Rosellini
- Microbiology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Giulia Gemignani
- Organization of Hospital Services Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Giusy Tiseo
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Cesira Giordano
- Microbiology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Simona Barnini
- Microbiology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| |
Collapse
|
4
|
Lopez AE, Mayoral J, Zheng H, Cianciotto NP. Legionella pneumophila IrsA, a novel, iron-regulated exoprotein that facilitates growth in low-iron conditions and modulates biofilm formation. Microbiol Spectr 2025; 13:e0231324. [PMID: 39612475 PMCID: PMC11705809 DOI: 10.1128/spectrum.02313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
To discover new factors that are involved in iron acquisition by Legionella pneumophila, we used RNA-Seq to identify the genes that are most highly induced when virulent strain 130b is cultured in a low-iron chemically defined medium. Among other things, this revealed 14915, a heretofore uncharacterized gene that is predicted to be transcriptionally regulated by Fur and to encode a novel, ~15 kDa protein. 14915 was present in all L. pneumophila strains examined and had homologs in a subset of the other Legionella species. Compatible with it containing a classic signal sequence, the 14915 protein was detected in bacterial culture supernatants in a manner dependent upon the L. pneumophila type II secretion system. Thus, we designated 14915 as IrsA for iron-regulated, secreted protein A. Based on mutant analysis, the irsA gene was not required for optimal growth of strain 130b in low-iron media. However, after discovering that the commonly used laboratory-derived strain Lp02 has a much greater requirement for iron, we uncovered a growth-enhancing role for IrsA after examining an Lp02 mutant that lacked both IrsA and the Fe2+-transporter FeoB. The irsA mutant of 130b, but not its complemented derivative, did, however, display increased biofilm formation on both plastic and agar surfaces, and compatible with this, the mutant hyper-aggregated. Thus, IrsA is a novel, iron-regulated exoprotein that modulates biofilm formation and, under some circumstances, promotes growth in low-iron conditions. For this study, we determined and deposited in the database a complete and fully assembled genome sequence for strain 130b.IMPORTANCEThe bacterium Legionella pneumophila is the principal cause of Legionnaires' disease, a potentially fatal form of pneumonia that is increasing in incidence. L. pneumophila exists in many natural and human-made water systems and can be transmitted to humans through inhalation of contaminated water droplets. L. pneumophila flourishes within its habitats by spreading planktonically, assembling into biofilms, and growing in larger host cells. Iron acquisition is a key determinant for L. pneumophila persistence in water and during infection. We previously demonstrated that L. pneumophila assimilates iron both by secreting a non-protein iron chelator (siderophore) and by importing iron through membrane transporters. In this study, we uncovered a novel, secreted protein that is highly iron-regulated, promotes L. pneumophila's growth in low-iron media, and impacts biofilm formation. We also identified uncharacterized, IrsA-related proteins in other important human and animal pathogens. Thus, our results have important implications for understanding iron assimilation, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Joshua Mayoral
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
5
|
Romanov KA, O'Connor TJ. Legionella pneumophila, a Rosetta stone to understanding bacterial pathogenesis. J Bacteriol 2024; 206:e0032424. [PMID: 39636264 PMCID: PMC11656745 DOI: 10.1128/jb.00324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Legionella pneumophila is an environmentally acquired pathogen that causes respiratory disease in humans. While the discovery of L. pneumophila is relatively recent compared to other bacterial pathogens, over the past 50 years, L. pneumophila has emerged as a powerhouse for studying host-pathogen interactions. In its natural habitat of fresh water, L. pneumophila interacts with a diverse array of protozoan hosts and readily evolve to expand their host range. This has led to the accumulation of the most extensive arsenal of secreted virulence factors described for a bacterial pathogen and their ability to infect humans. Within amoebae and human alveolar macrophages, the bacteria replicate within specialized membrane-bound compartments, establishing L. pneumophila as a model for studying intracellular vacuolar pathogens. In contrast, the virulence factors required for intracellular replication are specifically tailored to individual host cells types, allowing the pathogen to adapt to variation between disparate niches. The broad host range of this pathogen, combined with the extensive diversity and genome plasticity across the Legionella genus, has thus established this bacterium as an archetype to interrogate pathogen evolution, functional genomics, and ecology. In this review, we highlight the features of Legionella that establish them as a versatile model organism, new paradigms in bacteriology and bacterial pathogenesis resulting from the study of Legionella, as well as current and future questions that will undoubtedly expand our understanding of the complex and intricate biology of the microbial world.
Collapse
Affiliation(s)
- Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Moss CE, Roy CR. InSeq analysis of defined Legionella pneumophila libraries identifies a transporter-encoding gene cluster important for intracellular replication in mammalian hosts. mBio 2024; 15:e0195524. [PMID: 39365064 PMCID: PMC11559062 DOI: 10.1128/mbio.01955-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that replicates inside human alveolar macrophages to cause a severe pneumonia known as Legionnaires' disease. L. pneumophila requires the Dot/Icm Type IV secretion system to deliver hundreds of bacterial proteins to the host cytosol that manipulate cellular processes to establish a protected compartment for bacterial replication known as the Legionella-containing vacuole. To better understand mechanisms apart from the Dot/Icm system that support survival and replication in this vacuole, we used transposon insertion sequencing in combination with defined mutant sublibraries to identify L. pneumophila fitness determinants in primary mouse macrophages and the mouse lung. This approach validated that many previously identified genes important for intracellular replication were critical for infection of a mammalian host. Further, the screens uncovered additional genes contributing to L. pneumophila replication in mammalian infection models. This included a cluster of seven genes in which insertion mutations resulted in L. pneumophila fitness defects in mammalian hosts. Generation of isogenic deletion mutants and genetic complementation studies verified the importance of genes within this locus for infection of mammalian cells. Genes in this cluster are predicted to encode nucleotide-modifying enzymes, a protein of unknown function, and an atypical ATP-binding cassette (ABC) transporter with significant homology to multidrug efflux pumps that has been named Lit, for Legionella infectivity transporter. Overall, these data provide a comprehensive overview of the bacterial processes that support L. pneumophila replication in a mammalian host and offer insight into the unique challenges posed by the intravacuolar environment.IMPORTANCEIntracellular bacteria employ diverse mechanisms to survive and replicate inside the inhospitable environment of host cells. Legionella pneumophila is an opportunistic human pathogen and a model system for studying intracellular host-pathogen interactions. Transposon sequencing is an invaluable tool for identifying bacterial genes contributing to infection, but current animal models for L. pneumophila are suboptimal for conventional screens using saturated mutant libraries. This study employed a series of defined transposon mutant libraries to identify determinants of L. pneumophila fitness in mammalian hosts, which include a newly identified bacterial transporter called Lit. Understanding the requirements for survival and replication inside host cells informs us about the environment bacteria encounter during infection and the mechanisms they employ to make this environment habitable. Such knowledge will be key to addressing future challenges in treating infections caused by intracellular bacteria.
Collapse
Affiliation(s)
- Caitlin E. Moss
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Liporagi-Lopes LC, Chrissian C, Kacirani A, Camacho E, Stark RE, Casadevall A. New Insights Into The Melanin Structure Of Lomentospora prolificans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621558. [PMID: 39554014 PMCID: PMC11565999 DOI: 10.1101/2024.11.01.621558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Lomentospora prolificans is a filamentous fungus with a global distribution, manifesting particularly higher prevalence in human-impacted environments. This organism is associated with a wide spectrum of human infections, especially in immunosuppressed individuals, for whom it causes severe and debilitating illnesses with high morbidity and mortality that are compounded by its pan-resistant profile with respect to antifungal drugs. Melanin is a ubiquitous pigment among fungi with a broad range of actions that include promoting fungal virulence. Although melanin is one of the most studied virulence factors in pathogenic fungi, relatively little is known about the chemistry of this pigment in L. prolificans. In the current study we characterized L. prolificans-associated melanin using chemical, biological, biophysical and structural techniques, also assessing the impact of inhibitors of distinct melanization pathways. Our results reveal that this pathogenic fungus makes multiple types of melanin pigments and suggests the possibility of a new type of melanin, which is synthesized together with a mixture of DHN-, DOPA- and pyomelanin types. These insights enhance our understanding of L. prolificans' virulence mechanisms, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Livia C. Liporagi-Lopes
- Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Current Address: Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christine Chrissian
- Department of Chemistry and Biochemistry, The City College of New York and CUNY institute for Macromolecular Assemblies, New York, NY, USA
| | - Arlind Kacirani
- Department of Chemistry and Biochemistry, The City College of New York and CUNY institute for Macromolecular Assemblies, New York, NY, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, USA
- Current Address: Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, USA
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, CT, USA
| | - Emma Camacho
- Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ruth E. Stark
- Department of Chemistry and Biochemistry, The City College of New York and CUNY institute for Macromolecular Assemblies, New York, NY, USA
| | - Arturo Casadevall
- Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
9
|
Graham CI, MacMartin TL, de Kievit TR, Brassinga AKC. Molecular regulation of virulence in Legionella pneumophila. Mol Microbiol 2024; 121:167-195. [PMID: 37908155 DOI: 10.1111/mmi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023]
Abstract
Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
El-Zawawy NA, Kenawy ER, Ahmed S, El-Sapagh S. Bioproduction and optimization of newly characterized melanin pigment from Streptomyces djakartensis NSS-3 with its anticancer, antimicrobial, and radioprotective properties. Microb Cell Fact 2024; 23:23. [PMID: 38229042 PMCID: PMC10792909 DOI: 10.1186/s12934-023-02276-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Melanin is a natural pigment that is considered a promising biomaterial for numerous biotechnological applications across several industries. Melanin has biomedical applications as antimicrobial, anticancer, and antioxidant properties. Additionally, in the pharmaceutical and cosmetic industries, it is used in drug delivery and as a radioprotective agent. Also, melanin has environmental uses in the fields of bioremediation and the food industry. The biosynthesis of melanin pigment is an area of interest for researchers due to its multifunctionality, high compatibility, and biodegradability. Therefore, our present work is the first attempt to characterize and optimize the productivity of melanin pigment from Streptomyces djakartensis NSS-3 concerning its radioprotection and biological properties. RESULTS Forty isolates of soil actinobacteria were isolated from the Wadi Allaqui Biosphere Reserve, Egypt. Only one isolate, ACT3, produced a dark brown melanin pigment extracellularly. This isolate was identified according to phenotypic properties and molecular phylogenetic analysis as Streptomyces djakartensis NSS-3 with accession number OP912881. Plackett-Burman experimental design (PBD) and response surface methodology (RSM) using a Box-Behnken design (BBD) were performed for optimum medium and culturing conditions for maximum pigment production, resulting in a 4.19-fold improvement in melanin production (118.73 mg/10 mL). The extracted melanin pigment was purified and characterized as belonging to nitrogen-free pyomelanin based on ultraviolet-visible spectrophotometry (UV-VIS), Fourier transform infrared (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and NMR studies. Purified melanin demonstrated potent scavenging activity with IC50 values of 18.03 µg/mL and revealed high potency as sunscreens (in vitro SPF = 18.5). Moreover, it showed a nontoxic effect on a normal cell line (WI38), while it had a concentration-dependent anticancer effect on HCT116, HEPG, and MCF7 cell lines with IC50 = 108.9, 43.83, and 81.99 µg/mL, respectively. Also, purified melanin had a detrimental effect on the tested MDR bacterial strains, of which PA-09 and SA-04 were clearly more susceptible to melanin compared with other strains with MICs of 6.25 and 25 µg/mL, respectively. CONCLUSION Our results demonstrated that the newly characterized pyomelanin from Streptomyces djakartensis NSS-3 has valuable biological properties due to its potential photoprotective, antioxidant, anticancer, antimicrobial, and lack of cytotoxic activities, which open up new prospects for using this natural melanin pigment in various biotechnological applications and avoiding chemical-based drugs.
Collapse
Affiliation(s)
- Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt.
| | - El-Refaie Kenawy
- Chemistry Department, Polymer Research Unit, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Ahmed
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shimaa El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Lopez AE, Grigoryeva LS, Barajas A, Cianciotto NP. Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages. Infect Immun 2023; 91:e0007223. [PMID: 37428036 PMCID: PMC10429650 DOI: 10.1128/iai.00072-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene (lbtA) in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both lbtA and feoB. This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The lbtA feoB mutant, but not its lbtA-containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the lbtA feoB mutant, but not its complement containing lbtA, proved to be greatly impaired for growth in Acanthamoeba castellanii, Vermamoeba vermiformis, and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of Legionella. Outside of Legionella, the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Armando Barajas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
12
|
Styczynski M, Rogowska A, Nyabayo C, Decewicz P, Romaniuk F, Pączkowski C, Szakiel A, Suessmuth R, Dziewit L. Heterologous production and characterization of a pyomelanin of Antarctic Pseudomonas sp. ANT_H4: a metabolite protecting against UV and free radicals, interacting with iron from minerals and exhibiting priming properties toward plant hairy roots. Microb Cell Fact 2022; 21:261. [PMID: 36527127 PMCID: PMC9756463 DOI: 10.1186/s12934-022-01990-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antarctica has one of the most extreme environments in the world. This region is inhabited by specifically adapted microorganisms that produce various unique secondary metabolites (e.g. pigments) enabling their survival under the harsh environmental conditions. It was already shown that these natural, biologically active molecules may find application in various fields of biotechnology. RESULTS In this study, a cold-active brown-pigment-producing Pseudomonas sp. ANT_H4 strain was characterized. In-depth genomic analysis combined with the application of a fosmid expression system revealed two different pathways of melanin-like compounds biosynthesis by the ANT_H4 strain. The chromatographic behavior and Fourier-transform infrared spectroscopic analyses allowed for the identification of the extracted melanin-like compound as a pyomelanin. Furthermore, optimization of the production and thorough functional analyses of the pyomelanin were performed to test its usability in biotechnology. It was confirmed that ANT_H4-derived pyomelanin increases the sun protection factor, enables scavenging of free radicals, and interacts with the iron from minerals. Moreover, it was shown for the first time that pyomelanin exhibits priming properties toward Calendula officinalis hairy roots in in vitro cultures. CONCLUSIONS Results of the study indicate the significant biotechnological potential of ANT_H4-derived pyomelanin and open opportunities for future applications. Taking into account protective features of analyzed pyomelanin it may be potentially used in medical biotechnology and cosmetology. Especially interesting was showing that pyomelanin exhibits priming properties toward hairy roots, which creates a perspective for its usage for the development of novel and sustainable agrotechnical solutions.
Collapse
Affiliation(s)
- Michal Styczynski
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agata Rogowska
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Christine Nyabayo
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Przemyslaw Decewicz
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Filip Romaniuk
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cezary Pączkowski
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Szakiel
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Roderich Suessmuth
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Lukasz Dziewit
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
McAvoy AC, Threatt PH, Kapcia J, Garg N. Discovery of Homogentisic Acid as a Precursor in Trimethoprim Metabolism and Natural Product Biosynthesis. ACS Chem Biol 2022; 18:711-723. [PMID: 36215670 DOI: 10.1021/acschembio.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Opportunistic infections by Burkholderia cenocepacia are life threatening for patients suffering from cystic fibrosis and chronic granulomatous disease. These infections are often associated with variable clinical outcomes, prompting an interest in molecular investigations of phenotypes associated with disease severity. The production of the pyomelanin pigment is one such phenotype, which was recently linked to the ability of clinical strains to carry out biotransformation of the antibiotic trimethoprim. However, this biotransformation product was not identified, and differences in metabolite production associated with pyomelanin pigmentation are poorly understood. Here, we identify several key metabolites produced exclusively by the pyomelanin-producing strains. To provide insight into the structures and biosynthetic origin of these metabolites, we developed a mass spectrometry-based strategy coupling unsupervised in silico substructure prediction with stable isotope labeling referred to as MAS-SILAC (Metabolite Annotation assisted by Substructure discovery and Stable Isotope Labeling by Amino acids in Cell culture). This approach led to discovery of homogentisic acid as a precursor for biosynthesis of several natural products and for biotransformation of trimethoprim, representing a previously unknown mechanism of antibiotic tolerance. This work presents application of computational methods for analysis of untargeted metabolomic data to link the chemotype of pathogenic microorganisms with a specific phenotype. The observations made in this study provide insights into the clinical significance of the melanated phenotype.
Collapse
Affiliation(s)
- Andrew C McAvoy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Paxton H Threatt
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Joseph Kapcia
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, California 92697-2525, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Pleiotropic Effects of Hfq on the Cytochrome c Content and Pyomelanin Production in Shewanella oneidensis. Appl Environ Microbiol 2022; 88:e0128922. [PMID: 36073941 PMCID: PMC9499022 DOI: 10.1128/aem.01289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is the best understood model microorganism for the study of diverse cytochromes (cytos) c that support its unparallel respiratory versatility. Although RNA chaperone Hfq has been implicated in regulation of cyto c production, little is known about the biological pathways that it affects in this bacterium. In this study, from a spontaneous mutant that secretes pyomelanin and has a lowered cyto c content, we identified Hfq to be the regulator that critically associates with both phenotypes in S. oneidensis. We found that expression of the key genes in biosynthesis and degradation of heme is differentially affected by Hfq at under- and overproduced levels, and through modulating heme levels, Hfq influences the cyto c content. Although Hfq in excess results in overproduction of the enzymes responsible for both generation and removal of homogentisic acid (HGA), the precursor of pyomelanin, it is compromised activity of HmgA that leads to excretion and polymerization of HGA to form pyomelanin. We further show that Hfq mediates HmgA activity by lowering intracellular iron content because HmgA is an iron-dependent enzyme. Overall, our work highlights the significance of Hfq-mediated posttranscriptional regulation in the physiology of S. oneidensis, unraveling unexpected mechanisms by which Hfq affects cyto c biosynthesis and pyomelanin production. IMPORTANCE In bacteria, Hfq has been implicated in regulation of diverse biological processes posttranslationally. In S. oneidensis, Hfq affects the content of cytos c that serve as the basis of its respiratory versatility and potential application in bioenergy and bioremediation. In this study, we found that Hfq differentially regulates heme biosynthesis and degradation, leading to altered cyto c contents. Hfq in excess causes a synthetic effect on HmgA, an enzyme responsible for pyomelanin formation. Overall, the data presented manifest that the biological processes in a given bacterium regulated by Hfq are highly complex, amounting to required coordination among multiple physiological aspects to allow cells to respond to environmental changes promptly.
Collapse
|
15
|
Mathew D, G Bhat S. Pseudomonas Stutzeri as Biofactories for Melanin Nanoparticle Synthesis and Its Anti-Oxidative and Antibiofilm Potential Evaluation. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Pyomelanin produced by Streptomyces sp. ZL-24 and its protective effects against SH-SY5Y cells injury induced by hydrogen peroxide. Sci Rep 2021; 11:16649. [PMID: 34404820 PMCID: PMC8371117 DOI: 10.1038/s41598-021-94598-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
A soluble melanin pigment produced by Streptomyces sp. ZL-24 was purified and named StrSM. The elemental analysis of StrSM showed it consists of carbon, hydrogen, and oxygen. The spectrum analysis, including ultraviolet-visible absorption spectrum, Fourier-transform infrared spectrum, and pyrolysis-gas chromatography-mass spectrometry, indicated that StrSM might be pyomelanin. High performance liquid chromatography and liquid chromatography-mass spectra analysis of intermediate metabolite showed the presence of homogentisic acid (HGA). Moreover, the enzyme 4-hydroxyphenylpyruvate dioxygenase, involved in HGA biosynthesis, showed high activity during melanin production. Subsequently, a tyrosinase gene (melC2) and hydroxyphenylpyruvate dioxygenase gene double mutant demonstrated StrSM is pyomelanin. In vitro bioactivity assay showed that StrSM had excellent protective capability against SH-SY5Y cell oxidative injury. To our knowledge, the results firstly provide comprehensive data on Streptomyces pyomelanin identification and a promising candidate compound to treat oxidative injury of neurocytes.
Collapse
|
17
|
Lorquin F, Ziarelli F, Amouric A, Di Giorgio C, Robin M, Piccerelle P, Lorquin J. Production and properties of non-cytotoxic pyomelanin by laccase and comparison to bacterial and synthetic pigments. Sci Rep 2021; 11:8538. [PMID: 33879803 PMCID: PMC8058095 DOI: 10.1038/s41598-021-87328-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/15/2021] [Indexed: 11/09/2022] Open
Abstract
Pyomelanin is a polymer of homogentisic acid synthesized by microorganisms. This work aimed to develop a production process and evaluate the quality of the pigment. Three procedures have been elaborated and optimized, (1) an HGA-Mn2+ chemical autoxidation (PyoCHEM yield 0.317 g/g substrate), (2) an induced bacterial culture of Halomonas titanicae through the 4-hydroxyphenylacetic acid-1-hydroxylase route (PyoBACT, 0.55 g/L), and (3) a process using a recombinant laccase extract with the highest level produced (PyoENZ, 1.25 g/g substrate) and all the criteria for a large-scale prototype. The chemical structures had been investigated by 13C solid-state NMR (CP-MAS) and FTIR. Car-Car bindings predominated in the three polymers, Car-O-Car (ether) linkages being absent, proposing mainly C3-C6 (α-bindings) and C4-C6 (β-bindings) configurations. This work highlighted a biological decarboxylation by the laccase or bacterial oxidase(s), leading to the partly formation of gentisyl alcohol and gentisaldehyde that are integral parts of the polymer. By comparison, PyoENZ exhibited an Mw of 5,400 Da, was hyperthermostable, non-cytotoxic even after irradiation, scavenged ROS induced by keratinocytes, and had a highly DPPH-antioxidant and Fe3+-reducing activity. As a representative pigment of living cells and an available standard, PyoENZ might also be useful for applications in extreme conditions and skin protection.
Collapse
Affiliation(s)
- Faustine Lorquin
- Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, 163 avenue de Luminy, 13288, Marseille Cedex 9, France.,Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Fabio Ziarelli
- Fédération Sciences Chimiques de Marseille, Aix-Marseille Université, 52 Avenue Escadrille Normandie Niemen, 13397, Marseille, France
| | - Agnès Amouric
- Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, 163 avenue de Luminy, 13288, Marseille Cedex 9, France
| | - Carole Di Giorgio
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Philippe Piccerelle
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Jean Lorquin
- Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, 163 avenue de Luminy, 13288, Marseille Cedex 9, France.
| |
Collapse
|
18
|
Sun B, Xue Y, Du X, He X, Zou Z, Tian X, Hu Z, Liu H, Islam N, Hu Q. Identification of genetic determinants of hemolytic activity of Riemerella anatipestifer using random transposon mutagenesis. Vet Res 2021; 52:19. [PMID: 33579370 PMCID: PMC7881567 DOI: 10.1186/s13567-021-00900-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/16/2021] [Indexed: 11/18/2022] Open
Abstract
Riemerella anatipestifer causes epizootic infectious disease in poultry resulting in serious economic losses especially to the duck industry. In our previous study, R. anatipestifer was found to lyse duck erythrocytes in vitro. In the present study, a random Tn4351 mutagenesis library of hemolytic R. anatipestifer strain SX containing 4000 mutants was constructed to investigate the genetic basis of hemolytic activity. Thirty mutants with reduced hemolytic activity and one with increased hemolytic activity were screened and insertions in 24 genes were identified. Of these genes, four were predicted to encode outer membrane proteins, one encoded a cytoplasmic membrane protein, 11 encoded cytoplasmic proteins, and eight encoded proteins with unknown locations. Based on current annotations of the R. anatipestifer genomes, of the 24 genes, 7 (29.17%) were involved in iron utilization. The hemolytic activities of the complemented strains M2 (pRES-Riean_0790) and M18 (pRES-Riean_0653) were restored, indicating that both Riean_0653 and Riean_0790 are involved in the hemolytic activity of strain SX. However, the recombinant proteins rRiean_0317, rRiean_0790, rRiean_0653, rRiean_1027, rRiean_1143, and rRiean_1561 had no hemolytic activity, suggesting that none were hemolysins.
Collapse
Affiliation(s)
- Bingqing Sun
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China.,Shanghai Animal Disease Control Center, 30 Lane 855 Hongjing Road, Shanghai, 201103, China
| | - Yafei Xue
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Xiaoli Du
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Xiaohua He
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Zuocheng Zou
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Xiangqiang Tian
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Zhonghao Hu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Haoyang Liu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Nazrul Islam
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Qinghai Hu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
19
|
Fonseca É, Freitas F, Caldart R, Morgado S, Vicente AC. Pyomelanin biosynthetic pathway in pigment-producer strains from the pandemic Acinetobacter baumannii IC-5. Mem Inst Oswaldo Cruz 2020; 115:e200371. [PMID: 33174904 PMCID: PMC7646211 DOI: 10.1590/0074-02760200371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii outbreaks have been associated with pandemic International Clones (ICs), but the virulence factors involved with their pathogenicity are sparsely understood. Pigment production has been linked with bacterial pathogenicity, however, this phenotype is rarely observed in A. baumannii. OBJECTIVES This study aimed to characterise the reddish-brown pigment produced by A. baumannii strains, and to determine its biosynthetic pathway by genomic approaches. METHODS Pigment characterisation and antimicrobial susceptibility were conducted by phenotypic tests. The clonal relationship was obtained by pulsed field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The genome of an A. baumannii was obtained for characterisation of genes involved with pigment production. FINDINGS The pyomelanin was the pigment produced by A. baumannii. Strains were extensively drug resistant and belonged to the IC-5/ST79. The pyomelanin biosynthetic pathway was determined and presented a particular architecture concerning the peripheral (tyrB, phhB and hpd) and central (hmgB, hmgC and hmgR) metabolic pathway genes. The identification of a distant HmgA homologue, probably without dioxygenase activity, could explain pyomelanin production. Virulence determinants involved with adherence (csuA/BABCDE and a T5bSS-carrying genomic island), and iron uptake (basABCDEFGHIJ, bauABCDEF and barAB) were characterised. MAIN CONCLUSION There is a biosynthetic pathway compatible with the pyomelanin production observed in persistent A. baumannii IC-5 strains.
Collapse
Affiliation(s)
- Érica Fonseca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Fernanda Freitas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | | | - Sérgio Morgado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Vicente
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
20
|
Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, Portlock TJ, Dorgan B, Zanjani ZS, Fornili A, Cianciotto NP, Garnett JA. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog 2020; 16:e1008342. [PMID: 32365117 PMCID: PMC7224574 DOI: 10.1371/journal.ppat.1008342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Chitinases are important enzymes that contribute to the generation of carbon and nitrogen from chitin, a long chain polymer of N-acetylglucosamine that is abundant in insects, fungi, invertebrates and fish. Although mammals do not produce chitin, chitinases have been identified in bacteria that are key virulence factors in severe respiratory, gastrointestinal and urinary diseases. However, it is unclear how these enzymes are able to carry out this dual function. Legionella pneumophila is the causative agent of Legionnaires' disease, an often-fatal pneumonia and its chitinase ChiA is essential for the survival of L. pneumophila in the lung. Here we report the first atomic resolution insight into the pathogenic mechanism of a bacterial chitinase. We derive an experimental model of intact ChiA and show how its N-terminal region targets ChiA to the bacterial surface after its secretion. We provide the first evidence that L. pneumophila can bind mucins on its surface, but this is not dependent on ChiA. This demonstrates that additional peripheral mucin binding proteins are also expressed in L. pneumophila. We also show that the ChiA C-terminal chitinase domain has novel Zn2+-dependent peptidase activity against mammalian mucin-like proteins, namely MUC5AC and the C1-esterase inhibitor, and that ChiA promotes bacterial penetration of mucin gels. Our findings suggest that ChiA can facilitate passage of L. pneumophila through the alveolar mucosa, can modulate the host complement system and that ChiA may be a promising target for vaccine development.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Katherine H. Richardson
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paula Corsini
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard C. White
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rosie Shaw
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Theo J. Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Benjamin Dorgan
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Zeinab S. Zanjani
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Arianna Fornili
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
21
|
Seo D, Choi KY. Heterologous production of pyomelanin biopolymer using 4-hydroxyphenylpyruvate dioxygenase isolated from Ralstonia pickettii in Escherichia coli. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Smyrli M, Triga A, Dourala N, Varvarigos P, Pavlidis M, Quoc VH, Katharios P. Comparative Study on A Novel Pathogen of European Seabass. Diversity of Aeromonas veronii in the Aegean Sea. Microorganisms 2019; 7:microorganisms7110504. [PMID: 31671797 PMCID: PMC6921072 DOI: 10.3390/microorganisms7110504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Aeromonas veronii is an emerging pathogen causing severe pathology and mortalities in European seabass aquaculture in the Aegean Sea, Mediterranean. More than 50 strains of the pathogen were characterized biochemically and genetically in order to study the epidemiology of the disease, as well as the phylogeny and virulence of the bacterium. Based on the phenotypic characteristics, the isolates form three groups consisting of: (a) the West Aegean Sea, non-motile, non-pigment-producing strains, (b) the West Aegean Sea, motile, and pigment-producing strains and (c) the East Aegean Sea motile strains that produce minute amounts of pigment. All strains were highly similar at the genomic level; however, the pattern of West/East geographic origin was reflected in biochemical properties, in general genomic level comparison and in the putative virulent factors studied. Type VI secretion system was not detected in the western strains. The outer membrane protein (OMP) profile which contains proteins that are putative antigenic factors, was very similar between strains from the different areas. Although most of the OMPs were detected in all strains with great sequence similarity, diversification according to geographic origin was evident in known antigenic factors such as the maltoporin LamB. A systematic comparative analysis of the strains is presented and discussed in view of the emergence of A. veronii as a significant pathogen for the Mediterranean aquaculture.
Collapse
Affiliation(s)
- Maria Smyrli
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece.
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece.
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nancy Dourala
- Fish Pathology Department, Selonda Aquaculture, 15125 Athens, Greece.
| | | | - Michael Pavlidis
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Viet Ha Quoc
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece.
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece.
| |
Collapse
|
23
|
A Two-Component System That Modulates Cyclic di-GMP Metabolism Promotes Legionella pneumophila Differentiation and Viability in Low-Nutrient Conditions. J Bacteriol 2019; 201:JB.00253-19. [PMID: 31209078 DOI: 10.1128/jb.00253-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023] Open
Abstract
During its life cycle, the environmental pathogen Legionella pneumophila alternates between a replicative and transmissive cell type when cultured in broth, macrophages, or amoebae. Within a protozoan host, L. pneumophila further differentiates into the hardy cell type known as the mature infectious form (MIF). The second messenger cyclic di-GMP coordinates lifestyle changes in many bacterial species, but its role in the L. pneumophila life cycle is less understood. Using an in vitro broth culture model that approximates the intracellular transition from the replicative to the transmissive form, here we investigate the contribution to L. pneumophila differentiation of a two-component system (TCS) that regulates cyclic di-GMP metabolism. The TCS is encoded by lpg0278-lpg0277 and is cotranscribed with lpg0279, which encodes a protein upregulated in MIF cells. The promoter for this operon is RpoS dependent and induced in nutrient-limiting conditions that do not support replication, as demonstrated using a gfp reporter and quantitative PCR (qPCR). The response regulator of the TCS (Lpg0277) is a bifunctional enzyme that both synthesizes and degrades cyclic di-GMP. Using a panel of site-directed point mutants, we show that cyclic di-GMP synthesis mediated by a conserved GGDEF domain promotes growth arrest of replicative L. pneumophila, accumulation of pigment and poly-3-hydroxybutyrate storage granules, and viability in nutrient-limiting conditions. Genetic epistasis tests predict that the MIF protein Lpg0279 acts as a negative regulator of the TCS. Thus, L. pneumophila is equipped with a regulatory network in which cyclic di-GMP stimulates the switch from a replicative to a resilient state equipped to survive in low-nutrient environments.IMPORTANCE Although an intracellular pathogen, L. pneumophila has developed mechanisms to ensure long-term survival in low-nutrient aqueous conditions. Eradication of L. pneumophila from contaminated water supplies has proven challenging, as outbreaks have been traced to previously remediated systems. Understanding the genetic determinants that support L. pneumophila persistence in low-nutrient environments can inform design and assessment of remediation strategies. Here we characterize a genetic locus that encodes a two-component signaling system (lpg0278-lpg0277) and a putative regulator protein (lpg0279) that modulates the production of the messenger molecule cyclic di-GMP. We show that this locus promotes both L. pneumophila cell differentiation and survival in nutrient-limiting conditions, thus advancing the understanding of the mechanisms that contribute to L. pneumophila environmental resilience.
Collapse
|
24
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Levin TC, Goldspiel BP, Malik HS. Density-dependent resistance protects Legionella pneumophila from its own antimicrobial metabolite, HGA. eLife 2019; 8:46086. [PMID: 31134893 PMCID: PMC6598767 DOI: 10.7554/elife.46086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
To persist in microbial communities, the bacterial pathogen Legionella pneumophila must withstand competition from neighboring bacteria. Here, we find that L. pneumophila can antagonize the growth of other Legionella species using a secreted inhibitor: HGA (homogentisic acid). Unexpectedly, L. pneumophila can itself be inhibited by HGA secreted from neighboring, isogenic strains. Our genetic approaches further identify lpg1681 as a gene that modulates L. pneumophila susceptibility to HGA. We find that L. pneumophila sensitivity to HGA is density-dependent and cell intrinsic. Resistance is not mediated by the stringent response nor the previously described Legionella quorum-sensing pathway. Instead, L. pneumophila cells secrete HGA only when they are conditionally HGA-resistant, which allows these bacteria to produce a potentially self-toxic molecule while restricting the opportunity for self-harm. We propose that established Legionella communities may deploy molecules such as HGA as an unusual public good that can protect against invasion by low-density competitors. In the environment, bacteria frequently compete with each other for resources and space. These battles often involve the bacteria releasing toxins, antibiotics or other molecules that make it more difficult for their neighbors to grow. The bacteria also carry specific resistance genes that protect them from the effects of the molecules that they produce. Legionella pneumophila is a species of bacteria that infects people and causes a severe form of pneumonia known as Legionnaires’ disease. The bacteria spread in droplets of water from contaminated water systems such as sink faucets, cooling towers, water tanks, and other plumbing systems. In these water systems, L. pneumophila cells live within communities known as biofilms, which contain many different species of bacteria. These communities often include other species of Legionella that compete with L. pneumophila for similar nutrients. However, L. pneumophila was not known to produce any toxins or antibiotics, so it was not clear how it is able to survive in biofilms. Levin et al. used genetic approaches to investigate how L. pneumophila competes with other species of Legionella. The experiments found that this bacterium released a molecule called homogentisic acid (HGA) that reduced the growth of neighboring Legionella bacteria. Unexpectedly, L. pneumophila was not always resistant to HGA, despite secreting large quantities of this molecule. Instead, L. pneumophila cells were only resistant to HGA when the bacteria were living in crowded conditions. Previous studies have shown that HGA is widely produced by bacteria and other organisms – including humans – but this is the first time it has been shown that this molecule limits the ability of bacteria to grow. The work of Levin et al. suggests that HGA may help L. pneumophila bacteria to persist in biofilms, but more work needs to be done to test this idea. A possible next step is to test whether drugs that inhibit the production of HGA can eliminate Legionella bacteria from water systems. If so, similar treatments could potentially be used to stop and prevent outbreaks of Legionnaires’ disease in the future.
Collapse
Affiliation(s)
- Tera C Levin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Brian P Goldspiel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
26
|
Metal ions driven production, characterization and bioactivity of extracellular melanin from Streptomyces sp. ZL-24. Int J Biol Macromol 2019; 123:521-530. [DOI: 10.1016/j.ijbiomac.2018.11.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/17/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022]
|
27
|
Azman AS, Mawang CI, Abubakar S. Bacterial Pigments: The Bioactivities and as an Alternative for Therapeutic Applications. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthetic pigments have been widely used in various applications since the 1980s. However, the hyperallergenicity or carcinogenicity effects of synthetic dyes have led to the increased research on natural pigments. Among the natural resources, bacterial pigments are a good alternative to synthetic pigments because of their significant properties. Bacterial pigments are also one of the emerging fields of research since it offers promising opportunities for different applications. Besides its use as safe coloring agents in the cosmetic and food industry, bacterial pigments also possess biological properties such as antimicrobial, antiviral, antioxidant and anticancer activities. This review article highlights the various types of bacterial pigments, the latest studies on the discovery of bacterial pigments and the therapeutic insights of these bacterial pigments which hopefully provides useful information, guidance and improvement in future study.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Christina-Injan Mawang
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sazaly Abubakar
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Catauro M, Tranquillo E, Barrino F, Blanco I, Dal Poggetto F, Naviglio D. Drug Release of Hybrid Materials Containing Fe(II)Citrate Synthesized by Sol-Gel Technique. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2270. [PMID: 30441749 PMCID: PMC6266215 DOI: 10.3390/ma11112270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 12/17/2022]
Abstract
The use of oral iron integration is commonly recommended for the treatment of iron deficiency, nevertheless the diagnosis and treatment of this disease could clearly be improved. The aim of this work was the synthesis of therapeutic systems, iron (II) based, by sol-gel method. In an SiO₂ matrix, we embedded different weight percentages of polyethylene glycol (PEG6, 12, 24 wt%) and ferrous citrate (Fe(II)C5, 10, 15 wt%) for drug delivery applications. Fourier Transform Infrared (FTIR) spectroscopy was used to study the interactions among different components in the hybrid materials. Release kinetics in a simulated body fluid (SBF) were investigated and the amount of Fe2+ released was detected by Ultraviolet⁻Visible spectroscopy (UV-VIS) after reaction with ortho-phenantroline. Furthermore, the biological characterization was carried out. The bioactivity of the synthesized hybrid materials was evaluated by the formation of a layer of hydroxyapatite on the surface of samples soaked in SBF using FTIR spectroscopy. Finally, also, the potential antibacterial properties of the different materials against two different bacteria, E. coli and P. aeruginosa, were investigated.
Collapse
Affiliation(s)
- Michelina Catauro
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, I-81031 Aversa, Italy.
| | - Elisabetta Tranquillo
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, I-81031 Aversa, Italy.
| | - Federico Barrino
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, I-81031 Aversa, Italy.
| | - Ignazio Blanco
- Department of Civil Engineering and Architecture and UdR-Catania Consorzio INSTM, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
29
|
Singh D, Kumar J, Kumar A. Isolation of pyomelanin from bacteria and evidences showing its synthesis by 4-hydroxyphenylpyruvate dioxygenase enzyme encoded by hppD gene. Int J Biol Macromol 2018; 119:864-873. [DOI: 10.1016/j.ijbiomac.2018.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 11/27/2022]
|
30
|
Liang W, Zhang W, Shao Y, Zhao X, Li C. Dual functions of a 4-hydroxyphenylpyruvate dioxygenase for Vibrio splendidus survival and infection. Microb Pathog 2018; 120:47-54. [DOI: 10.1016/j.micpath.2018.04.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
|
31
|
Zha H, Jeffs A, Dong Y, Lewis G. Potential virulence factors of bacteria associated with tail fan necrosis in the spiny lobster, Jasus edwardsii. JOURNAL OF FISH DISEASES 2018; 41:817-828. [PMID: 29473647 DOI: 10.1111/jfd.12791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
Tail fan necrosis (TFN) is a common condition found in commercially exploited spiny lobsters that greatly diminishes their commercial value. Bacteria possessing proteolytic, chitinolytic and lipolytic capabilities were associated with TFN in spiny lobsters, Jasus edwardsii. In this study, 69 bacterial isolates exhibiting all the three enzymatic capabilities from the haemolymph and tail fans of J. edwardsii with and without TFN were further characterized and compared, including morphology, biofilm formation, antimicrobial activity, antimicrobial resistance, and production of siderophores, melanin and ammonia. The genomic patterns of the most common Vibrio crassostreae isolates were also compared between TFN-affected and unaffected lobsters. Biofilm formation was stronger in bacterial isolates from both haemolymph and tail fans of TFN-affected lobsters compared to those from the unaffected lobsters, while melanin production and siderophore production were stronger in the isolates from tail fans of lobsters with TFN. By contrast, the other characteristics of isolates were similar in lobsters with and without TFN. The Vib. crassostreae isolates from the affected lobsters had similar genomic patterns. Overall, the results indicate that in addition to proteolytic, chitinolytic and lipolytic activities, the bacteria associated with TFN commonly have enhanced activity of important virulence factors, including biofilm formation, melanin production and siderophore production.
Collapse
Affiliation(s)
- H Zha
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - A Jeffs
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Y Dong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - G Lewis
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Mendis N, McBride P, Saoud J, Mani T, Faucher SP. The LetA/S two-component system regulates transcriptomic changes that are essential for the culturability of Legionella pneumophila in water. Sci Rep 2018; 8:6764. [PMID: 29712912 PMCID: PMC5928044 DOI: 10.1038/s41598-018-24263-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/07/2018] [Indexed: 11/13/2022] Open
Abstract
Surviving the nutrient-poor aquatic environment for extended periods of time is important for the transmission of various water-borne pathogens, including Legionella pneumophila (Lp). Previous work concluded that the stringent response and the sigma factor RpoS are essential for the survival of Lp in water. In the present study, we investigated the role of the LetA/S two-component signal transduction system in the successful survival of Lp in water. In addition to cell size reduction in the post-exponential phase, LetS also contributes to cell size reduction when Lp is exposed to water. Importantly, absence of the sensor kinase results in a significantly lower survival as measured by CFUs in water at various temperatures and an increased sensitivity to heat shock. According to the transcriptomic analysis, LetA/S orchestrates a general transcriptomic downshift of major metabolic pathways upon exposure to water leading to better culturability, and likely survival, suggesting a potential link with the stringent response. However, the expression of the LetA/S regulated small regulatory RNAs, RsmY and RsmZ, is not changed in a relAspoT mutant, which indicates that the stringent response and the LetA/S response are two distinct regulatory systems contributing to the survival of Lp in water.
Collapse
Affiliation(s)
- Nilmini Mendis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Peter McBride
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Joseph Saoud
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Thangadurai Mani
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
33
|
Peterson CP, Sauer C, Chatfield CH. The Extracellular Polymeric Substances of Legionella pneumophila Biofilms Contain Amyloid Structures. Curr Microbiol 2018; 75:736-744. [PMID: 29468303 DOI: 10.1007/s00284-018-1440-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 12/25/2022]
Abstract
Human infection by bacteria of the genus Legionella most often result in the pneumonia known as Legionnaires Disease. Legionella is found as a resident of adherent biofilms in man-made water systems. Disinfection efforts to prevent Legionella infections require a better understanding of the structures that promote Legionella surface attachment and biofilm colonization. Various enzymatic treatments, including multiple carbohydrate-targeting mixtures, failed to disrupt Legionella biofilms, despite the presence of carbohydrates in the biofilms as shown by biochemical methods and concanavalin-A lectin staining. Moreover, Legionella biofilms contained amyloids as detected by three microscopic staining methods (congo red, thioflavin T, and the amyloid-specific antibody WO2). Amyloid structures were seen in biofilms of both L. pneumophila and L. longbeachae, the two Legionella species most associated with human infection. Inhibition of amyloid assembly by congo red and thioflavin T limited both self-aggregation and surface attachment of L. pneumophila, indicating that functional amyloid structures have a key role in initial biofilm formation by these pathogenic bacteria.
Collapse
Affiliation(s)
- Casey P Peterson
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Cassidy Sauer
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | | |
Collapse
|
34
|
SawR a new regulator controlling pyomelanin synthesis in Pseudomonas aeruginosa. Microbiol Res 2018; 206:91-98. [DOI: 10.1016/j.micres.2017.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/26/2017] [Accepted: 10/08/2017] [Indexed: 02/02/2023]
|
35
|
Chai B, Qiao Y, Wang H, Zhang X, Wang J, Wang C, Zhou P, Chen X. Identification of YfiH and the Catalase CatA As Polyphenol Oxidases of Aeromonas media and CatA as a Regulator of Pigmentation by Its Peroxyl Radical Scavenging Capacity. Front Microbiol 2017; 8:1939. [PMID: 29051758 PMCID: PMC5633740 DOI: 10.3389/fmicb.2017.01939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 11/21/2022] Open
Abstract
Pyomelanin is the major constituent of pigment in melanogenic Aeromonas strains of bacteria. However, eumelanin, synthesized from tyrosine via L-DOPA and polyphenol oxidases (PPOs), may also be present in this genus since L-DOPA is frequently detected in culture fluids of several species. To address this question, we used a deletion mutant of Aeromonas media strain WS, in which pyomelanin synthesis is completely blocked under normal culture conditions. When tyrosine was supplied to the medium, we observed residual melanin accumulation, which we interpret as evidence for existence of the DOPA-melanin pathway. We traced enzymatic activity in this bacterium using native-polyacrylamide gel electrophoresis. Two PPOs: YfiH, a laccase-like protein, and CatA, a catalase, were identified. However, neither protein was critical for the residual pigmentation in pyomelanin-deficient mutant. We speculate that eumelanin synthesis may require other unknown enzymes. Deletion of yfiH did not affect pigmentation in A. media strain WS, while deletion of the CatA-encoding gene katE resulted in a reduction of melanin accumulation, but it started 9 h earlier than in the wild-type. Since catalases regulate reactive oxygen species levels during melanogenesis, we speculated that CatA affects pigmentation through its peroxyl radical scavenging capacity. Consistent with this, expression of the catalases Hpi or Hpii from Escherichia coli in the katE deletion strain of A. media strain WS restored pigmentation to the wild-type level. Hpi and Hpii also exhibited PPO activity, suggesting that catalase may represent a new class of PPOs.
Collapse
Affiliation(s)
- Baozhong Chai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yunqian Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - He Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoming Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Choushi Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ping Zhou
- Analytical and Testing Center, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,China Center for Type Culture Collection, Wuhan, China
| |
Collapse
|
36
|
Jacob PJ, Masarudin MJ, Hussein MZ, Rahim RA. Facile aerobic construction of iron based ferromagnetic nanostructures by a novel microbial nanofactory isolated from tropical freshwater wetlands. Microb Cell Fact 2017; 16:175. [PMID: 29020992 PMCID: PMC5637262 DOI: 10.1186/s12934-017-0789-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iron based ferromagnetic nanoparticles (IONP) have found a wide range of application in microelectronics, chemotherapeutic cell targeting, and as contrast enhancers in MRI. As such, the design of well-defined monodisperse IONPs is crucial to ensure effectiveness in these applications. Although these nanostructures are currently manufactured using chemical and physical processes, these methods are not environmentally conducive and weigh heavily on energy and outlays. Certain microorganisms have the innate ability to reduce metallic ions in aqueous solution and generate nano-sized IONP's with narrow size distribution. Harnessing this potential is a way forward in constructing microbial nanofactories, capable of churning out high yields of well-defined IONP's with physico-chemical characteristics on par with the synthetically produced ones. RESULTS In this work, we report the molecular characterization of an actinomycetes, isolated from tropical freshwater wetlands sediments, that demonstrated rapid aerobic extracellular reduction of ferric ions to generate iron based nanoparticles. Characterization of these nanoparticles was carried out using Field Emission Scanning Electron Microscope with energy dispersive X-ray spectroscopy (FESEM-EDX), Field Emission Transmission Electron Microscope (FETEM), Ultraviolet-Visible (UV-Vis) Spectrophotometer, dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). This process was carried out at room temperature and humidity and under aerobic conditions and could be developed as an environmental friendly, cost effective bioprocess for the production of IONP's. CONCLUSION While it is undeniable that iron reducing microorganisms confer a largely untapped resource as potent nanofactories, these bioprocesses are largely anaerobic and hampered by the low reaction rates, highly stringent microbial cultural conditions and polydispersed nanostructures. In this work, the novel isolate demonstrated rapid, aerobic reduction of ferric ions in its extracellular matrix, resulting in IONPs of relatively narrow size distribution which are easily extracted and purified without the need for convoluted procedures. It is therefore hoped that this isolate could be potentially developed as an effective nanofactory in the future.
Collapse
Affiliation(s)
- Patricia Jayshree Jacob
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mohd Zobir Hussein
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
37
|
Zeng Z, Cai X, Wang P, Guo Y, Liu X, Li B, Wang X. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913. Front Microbiol 2017; 8:1822. [PMID: 28983293 PMCID: PMC5613676 DOI: 10.3389/fmicb.2017.01822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023] Open
Abstract
Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913), an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid–liquid interface and pellicles at the liquid–air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA). The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
38
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
39
|
Zeng Z, Guo XP, Cai X, Wang P, Li B, Yang JL, Wang X. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling. Microb Biotechnol 2017; 10:1718-1731. [PMID: 28834245 PMCID: PMC5658579 DOI: 10.1111/1751-7915.12773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 01/11/2023] Open
Abstract
Members of the marine bacterial genus Pseudoalteromonas are efficient producers of antifouling agents that exert inhibitory effects on the settlement of invertebrate larvae. The production of pigmented secondary metabolites by Pseudoalteromonas has been suggested to play a role in surface colonization. However, the physiological characteristics of the pigments produced by Pseudoalteromonas remain largely unknown. In this study, we identified and characterized a genetic variant that hyperproduces a dark‐brown pigment and was generated during Pseudoalteromonas lipolytica biofilm formation. Through whole‐genome resequencing combined with targeted gene deletion and complementation, we found that a point mutation within the hmgA gene, which encodes homogentisate 1,2‐dioxygenase, is solely responsible for the overproduction of the dark‐brown pigment pyomelanin. In P. lipolytica, inactivation of the hmgA gene led to the formation of extracellular pyomelanin and greatly reduced larval settlement and metamorphosis of the mussel Mytilus coruscus. Additionally, the extracted pyomelanin from the hmgA deletion mutant and the in vitro‐synthesized pyomelanin also reduced larval settlement and metamorphosis of M. coruscus, suggesting that extracellular pyomelanin released from marine Pseudoalteromonas biofilm can inhibit the settlement of fouling organisms.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xing-Pan Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, International Research Center for Marine Biosciences, Shanghai Ocean University, Shanghai, China
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jin-Long Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, International Research Center for Marine Biosciences, Shanghai Ocean University, Shanghai, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
40
|
Abstract
Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.
Collapse
|
41
|
Comparative EPR studies of free radicals in melanin synthesized by Bacillus weihenstephanensis soil strains. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Ketelboeter LM, Bardy SL. Characterization of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione resistance in pyomelanogenic Pseudomonas aeruginosa DKN343. PLoS One 2017; 12:e0178084. [PMID: 28570601 PMCID: PMC5453437 DOI: 10.1371/journal.pone.0178084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 05/07/2017] [Indexed: 01/11/2023] Open
Abstract
Pyomelanin is a reddish-brown pigment that provides bacteria and fungi protection from oxidative stress, and is reported to contribute to infection persistence. Production of this pigment can be inhibited by the anti-virulence agent 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC). The Pseudomonas aeruginosa clinical isolate DKN343 exhibited high levels of resistance to NTBC, and the mechanism of pyomelanin production in this strain was uncharacterized. We determined that pyomelanin production in the clinical Pseudomonas aeruginosa isolate DKN343 was due to a loss of function in homogentisate 1,2-dioxygenase (HmgA). Several potential resistance mechanisms were investigated, and the MexAB-OprM efflux pump is required for resistance to NTBC. DKN343 has a frameshift mutation in NalC, which is a known indirect repressor of the mexAB-oprM operon. This frameshift mutation may contribute to the increased resistance of DKN343 to NTBC. Additional studies investigating the prevalence of resistance in pyomelanogenic microbes are necessary to determine the future applications of NTBC as an anti-virulence therapy.
Collapse
Affiliation(s)
- Laura M. Ketelboeter
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Sonia L. Bardy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
43
|
Abstract
Abstract
Pterins are widely conserved biomolecules that play essential roles in diverse organisms. First described as enzymatic cofactors in eukaryotic systems, bacterial pterins were discovered in cyanobacteria soon after. Several pterin structures unique to bacteria have been described, with conjugation to glycosides and nucleotides commonly observed. Despite this significant structural diversity, relatively few biological functions have been elucidated. Molybdopterin, the best studied bacterial pterin, plays an essential role in the function of the Moco cofactor. Moco is an essential component of molybdoenzymes such as sulfite oxidase, nitrate reductase, and dimethyl sulfoxide reductase, all of which play important roles in bacterial metabolism and global nutrient cycles. Outside of the molybdoenzymes, pterin cofactors play important roles in bacterial cyanide utilization and aromatic amino acid metabolism. Less is known about the roles of pterins in nonenzymatic processes. Cyanobacterial pterins have been implicated in phenotypes related to UV protection and phototaxis. Research describing the pterin-mediated control of cyclic nucleotide metabolism, and their influence on virulence and attachment, points to a possible role for pterins in regulation of bacterial behavior. In this review, we describe the variety of pterin functions in bacteria, compare and contrast structural and mechanistic differences, and illuminate promising avenues of future research.
Collapse
Affiliation(s)
- Nathan Feirer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
44
|
El-Naggar NEA, El-Ewasy SM. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci Rep 2017; 7:42129. [PMID: 28195138 PMCID: PMC5307326 DOI: 10.1038/srep42129] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/06/2017] [Indexed: 11/09/2022] Open
Abstract
In this present study, a newly isolated strain, Streptomyces sp. NEAE-H, capable of producing high amount of black extracellular melanin pigment on peptone-yeast extract iron agar and identified as Streptomyces glaucescens NEAE-H. Plackett-Burman statistical design was conducted for initial screening of 17 independent (assigned) variables for their significances on melanin pigment production by Streptomyces glaucescens NEAE-H. The most significant factors affecting melanin production are incubation period, protease-peptone and ferric ammonium citrate. The levels of these significant variables and their interaction effects were optimized by using face-centered central composite design. The maximum melanin production (31.650 μg/0.1 ml) and tyrosinase activity (6089.10 U/ml) were achieved in the central point runs under the conditions of incubation period (6 days), protease-peptone (5 g/L) and ferric ammonium citrate (0.5 g/L). Melanin pigment was recovered by acid-treatment. Higher absorption of the purified melanin pigment was observed in the UV region at 250 nm. It appeared to have defined small spheres by scanning electron microscopy imaging. The maximum melanin yield was 350 mg dry wt/L of production medium. In vitro anticancer activity of melanin pigment was assayed against skin cancer cell line using MTT assay. The IC50 value was 16.34 ± 1.31 μg/ml for melanin and 8.8 ± 0.5 μg/ml for standard 5-fluorouracil.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, Alexandria, Egypt
| | - Sara M El-Ewasy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
45
|
Ahmad S, Lee SY, Kong HG, Jo EJ, Choi HK, Khan R, Lee SW. Genetic Determinants for Pyomelanin Production and Its Protective Effect against Oxidative Stress in Ralstonia solanacearum. PLoS One 2016; 11:e0160845. [PMID: 27513990 PMCID: PMC4981395 DOI: 10.1371/journal.pone.0160845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022] Open
Abstract
Ralstonia solanacearum is a soil-borne plant pathogen that infects more than 200 plant species. Its broad host range and long-term survival under different environmental stress conditions suggest that it uses a variety of mechanisms to protect itself against various types of biotic and abiotic stress. R. solanacearum produces a melanin-like brown pigment in the stationary phase when grown in minimal medium containing tyrosine. To gain deeper insight into the genetic determinants involved in melanin production, transposon-inserted mutants of R. solanacearum strain SL341 were screened for strains with defective melanin-producing capability. In addition to one mutant already known to be involved in pyomelanin production (viz., strain SL341D, with disruption of the hydroxphenylpyruvate dioxygenase gene), we identified three other mutants with disruption in the regulatory genes rpoS, hrpG, and oxyR, respectively. Wild-type SL341 produced pyomelanin in minimal medium containing tyrosine whereas the mutant strains did not. Likewise, homogentisate, a major precursor of pyomelanin, was detected in the culture filtrate of the wild-type strain but not in those of the mutant strains. A gene encoding hydroxyphenylpyruvate dioxygenase exhibited a significant high expression in wild type SL341 compared to other mutant strains, suggesting that pyomelanin production is regulated by three different regulatory proteins. However, analysis of the gene encoding homogentisate dioxygenase revealed no significant difference in its relative expression over time in the wild-type SL341 and mutant strains, except for SL341D, at 72 h incubation. The pigmented SL341 strain also exhibited a high tolerance to hydrogen peroxide stress compared with the non-pigmented SL341D strain. Our study suggests that pyomelanin production is controlled by several regulatory factors in R. solanacearum to confer protection under oxidative stress.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Seung Yeup Lee
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Hyun Gi Kong
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Eun Jeong Jo
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Hye Kyung Choi
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Raees Khan
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Seon-Woo Lee
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| |
Collapse
|
46
|
Cianciotto NP. An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction. Future Microbiol 2016; 10:841-51. [PMID: 26000653 DOI: 10.2217/fmb.15.21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron acquisition is critical for the growth and pathogenesis of Legionella pneumophila, the causative agent of Legionnaires' disease. L. pneumophila utilizes two main modes of iron assimilation, namely ferrous iron uptake via the FeoB system and ferric iron acquisition through the action of the siderophore legiobactin. This review highlights recent studies concerning the mechanism of legiobactin assimilation, the impact of c-type cytochromes on siderophore production, the importance of legiobactin in lung infection and a newfound role for a bacterial pyomelanin in iron acquisition. These data demonstrate that key aspects of L. pneumophila iron acquisition are significantly distinct from those of long-studied, 'model' organisms. Indeed, L. pneumophila may represent a new paradigm for a variety of other intracellular parasites, pathogens and under-studied bacteria.
Collapse
|
47
|
Aubi O, Flydal MI, Zheng H, Skjærven L, Rekand I, Leiros HKS, Haug BE, Cianciotto NP, Martinez A, Underhaug J. Discovery of a Specific Inhibitor of Pyomelanin Synthesis in Legionella pneumophila. J Med Chem 2015; 58:8402-12. [DOI: 10.1021/acs.jmedchem.5b01589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oscar Aubi
- Department
of Biomedicine, University of Bergen, Bergen, Norway
| | - Marte I. Flydal
- Department
of Biomedicine, University of Bergen, Bergen, Norway
| | - Huaixin Zheng
- Department
of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, United States
| | - Lars Skjærven
- Department
of Biomedicine, University of Bergen, Bergen, Norway
| | - Illimar Rekand
- Department
of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Hanna-Kirsti S. Leiros
- The
Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bengt Erik Haug
- Department
of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Nicholas P. Cianciotto
- Department
of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, United States
| | - Aurora Martinez
- Department
of Biomedicine, University of Bergen, Bergen, Norway
| | - Jarl Underhaug
- Department
of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
48
|
Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I. Melanin-Like Pigment Synthesis by Soil Bacillus weihenstephanensis Isolates from Northeastern Poland. PLoS One 2015; 10:e0125428. [PMID: 25909751 PMCID: PMC4409349 DOI: 10.1371/journal.pone.0125428] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/18/2015] [Indexed: 11/22/2022] Open
Abstract
Although melanin is known for protecting living organisms from harmful physical and chemical factors, its synthesis is rarely observed among endospore-forming Bacillus cereus sensu lato. Here, for the first time, we reported that psychrotolerant Bacillus weihenstephanensis from Northeastern Poland can produce melanin-like pigment. We assessed physicochemical properties of the pigment and the mechanism of its synthesis in relation to B. weihenstephanensis genotypic and phenotypic characteristics. Electron paramagnetic resonance (EPR) spectroscopy displayed a stable free radical signal of the pigment from environmental isolates which are consistent with the commercial melanin. Fourier transform infrared spectroscopy (FT-IR) and physicochemical tests indicated the phenolic character of the pigment. Several biochemical tests showed that melanin-like pigment synthesis by B. weihenstephanensis was associated with laccase activity. The presence of the gene encoding laccase was confirmed by the next generation whole genome sequencing of one B. weihenstephanensis strain. Biochemical (API 20E and 50CHB tests) and genetic (Multi-locus Sequence Typing, 16S rRNA sequencing, and Pulsed-Field Gel Electrophoresis) characterization of the isolates revealed their close relation to the psychrotrophic B. weihenstephanensis DSMZ 11821 reference strain. The ability to synthesize melanin-like pigment by soil B. weihenstephanensis isolates and their psychrotrophic character seemed to be a local adaptation to a specific niche. Detailed genetic and biochemical analyses of melanin-positive environmental B. weihenstephanensis strains shed some light on the evolution and ecological adaptation of these bacteria. Moreover, our study raised new biotechnological possibilities for the use of water-soluble melanin-like pigment naturally produced by B. weihenstephanensis as an alternative to commercial non-soluble pigment.
Collapse
Affiliation(s)
- Justyna M. Drewnowska
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Monika Zambrzycka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Beata Kalska-Szostko
- Department of Physicochemical Analysis, Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
- * E-mail:
| |
Collapse
|
49
|
Identification and molecular characterization of the homogentisate pathway responsible for pyomelanin production, the major melanin constituents in Aeromonas media WS. PLoS One 2015; 10:e0120923. [PMID: 25793756 PMCID: PMC4368426 DOI: 10.1371/journal.pone.0120923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/27/2015] [Indexed: 11/19/2022] Open
Abstract
The pigmentation of many Aeromonas species has been thought to be due to the production of a L-DOPA (L-3,4-dihydroxyphenylalanine) based melanin. However, in this study we found that although L-DOPA synthesis occurs in the high-melanin-yielding Aeromonas media strain WS, it plays a minor, if any, role in pigmentation. Instead, the pigmentation of A. media strain WS is due to the production of pyomelanin through HGA (homogentisate). Gene products of phhA (encodes phenylalanine hydroxylase), tyrB and aspC (both encode aromatic amino acid aminotransferase), and hppD (encodes 4-hydroxyphenylpyruvate dioxygenase) constitute a linear pathway of converting phenylalanine to HGA and disruption of any one of these genes impairs or blocks pigmentation of A. media strain WS. This HGA biosynthesis pathway is widely distributed in Aeromonas, but HGA is only detectable in the cultures of pigmented Aeromonas species. Heterologous expression of HppD from both pigmented and non-pigmented Aeromonas species in E. coli leads to the production of pyomelanin and thus pigmentation, suggesting that most Aeromonas species have the critical enzymes to produce pyomelanin through HGA. Taken together, we have identified a widely conserved biosynthesis pathway of HGA based pyomelanin in Aeromonas that may be responsible for pigmentation of many Aeromonas species.
Collapse
|
50
|
Isolation and identification of a gene encoding 4-hydroxyphenylpyruvate dioxygenase from the red-brown pigment-producing bacterium Alteromonas stellipolaris LMG 21856. Folia Microbiol (Praha) 2015; 60:309-16. [DOI: 10.1007/s12223-015-0386-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 03/08/2015] [Indexed: 01/26/2023]
|