1
|
Kroh HK, Chandrasekaran R, Zhang Z, Rosenthal K, Woods R, Jin X, Nyborg AC, Rainey GJ, Warrener P, Melnyk RA, Spiller BW, Lacy DB. A neutralizing antibody that blocks delivery of the enzymatic cargo of Clostridium difficile toxin TcdB into host cells. J Biol Chem 2017; 293:941-952. [PMID: 29180448 DOI: 10.1074/jbc.m117.813428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
Clostridium difficile infection is the leading cause of hospital-acquired diarrhea and is mediated by the actions of two toxins, TcdA and TcdB. The toxins perturb host cell function through a multistep process of receptor binding, endocytosis, low pH-induced pore formation, and the translocation and delivery of an N-terminal glucosyltransferase domain that inactivates host GTPases. Infection studies with isogenic strains having defined toxin deletions have established TcdB as an important target for therapeutic development. Monoclonal antibodies that neutralize TcdB function have been shown to protect against C. difficile infection in animal models and reduce recurrence in humans. Here, we report the mechanism of TcdB neutralization by PA41, a humanized monoclonal antibody capable of neutralizing TcdB from a diverse array of C. difficile strains. Through a combination of structural, biochemical, and cell functional studies, involving X-ray crystallography and EM, we show that PA41 recognizes a single, highly conserved epitope on the TcdB glucosyltransferase domain and blocks productive translocation and delivery of the enzymatic cargo into the host cell. Our study reveals a unique mechanism of C. difficile toxin neutralization by a monoclonal antibody, which involves targeting a process that is conserved across the large clostridial glucosylating toxins. The PA41 antibody described here provides a valuable tool for dissecting the mechanism of toxin pore formation and translocation across the endosomal membrane.
Collapse
Affiliation(s)
- Heather K Kroh
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | - Ramyavardhanee Chandrasekaran
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | - Zhifen Zhang
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | - Rob Woods
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | - Xiaofang Jin
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | | | | | | | - Roman A Melnyk
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Benjamin W Spiller
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, and
| | - D Borden Lacy
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, .,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212-2637
| |
Collapse
|
2
|
Rabideau AE, Pentelute BL. Delivery of Non-Native Cargo into Mammalian Cells Using Anthrax Lethal Toxin. ACS Chem Biol 2016; 11:1490-501. [PMID: 27055654 DOI: 10.1021/acschembio.6b00169] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intracellular delivery of peptide and protein therapeutics is a major challenge due to the plasma membrane, which acts as a barrier between the extracellular environment and the intracellular milieu. Over the past two decades, a nontoxic PA/LFN delivery platform derived from anthrax lethal toxin has been developed for the transport of non-native cargo into the cytosol of cells in order to understand the translocation process through a protective antigen (PA) pore and to probe intracellular biological functions. Enzyme-mediated ligation using sortase A and native chemical ligation are two facile methods used to synthesize these non-native conjugates, inaccessible by recombinant technology. Cargo molecules that translocate efficiently include enzymes from protein toxins, antibody mimic proteins, and peptides of varying lengths and non-natural amino acid compositions. The PA pore has been found to effectively convey over 30 known cargos other than native lethal factor (LF; i.e., non-native) with diverse sequences and functionalities on the LFN transporter protein. All together these studies demonstrated that non-native cargos must adopt an unfolded or extended conformation and contain a suitable charge composition in order to efficiently pass through the PA pore. This review provides insight into design parameters for the efficient delivery of new cargos using PA and LFN.
Collapse
Affiliation(s)
- Amy E. Rabideau
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley Lether Pentelute
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Vuyisich M, Sanders CK, Graves SW. Binding and cell intoxication studies of anthrax lethal toxin. Mol Biol Rep 2012; 39:5897-903. [PMID: 22219086 DOI: 10.1007/s11033-011-1401-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/17/2011] [Indexed: 11/25/2022]
Abstract
Anthrax lethal toxin (LT) is a major virulence factor of Bacillus anthracis. The vast majority of the anthrax toxin-related literature describes the assembly of LT as a cell-dependent process. However, some reports have provided evidence for the existence of a fully assembled LT, either in vitro or in the bloodstream of anthrax-infected animals. To follow up on this work, we present studies on fully-assembled LT. We first demonstrate facile and cell-free assembly and purification of LT. We then show that fully assembled LT binds an anthrax toxin receptor with almost 100-fold higher affinity than the protective antigen (PA) alone. Quantitative cell intoxication assays were used to determine the LD(50) (lethal dose 50) for LT. The cell-binding studies revealed that LT binds mammalian cells using a different mode from PA. Even when PA-specific receptors were blocked, fully assembled LT was able to bind the cell surface. Our studies support the existing evidence that LT fully assembles in the blood stream and can bind and intoxicate mammalian cells with very high affinity and efficacy. More importantly, the data presented here invoke the possibility that LT may bind cells in a receptor-independent fashion, or recognize receptors that do not interact with PA. Hence, blood borne LT may emerge as a novel therapeutic target for combating anthrax.
Collapse
Affiliation(s)
- Momchilo Vuyisich
- Los Alamos National Lab, MS M888, P.O. Box 1663, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|
4
|
Janowiak BE, Jennings-Antipov LD, Collier RJ. Cys-Cys cross-linking shows contact between the N-terminus of lethal factor and Phe427 of the anthrax toxin pore. Biochemistry 2011; 50:3512-6. [PMID: 21425869 PMCID: PMC3082969 DOI: 10.1021/bi1017446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/22/2011] [Indexed: 11/30/2022]
Abstract
Electrophysiological studies of wild-type and mutated forms of anthrax protective antigen (PA) suggest that the Phe clamp, a structure formed by the Phe427 residues within the lumen of the oligomeric PA pore, binds the unstructured N-terminus of the lethal factor and the edema factor during initiation of translocation. We now show by electrophysiological measurements and gel shift assays that a single Cys introduced into the Phe clamp can form a disulfide bond with a Cys placed at the N-terminus of the isolated N-terminal domain of LF. These results demonstrate direct contact of these Cys residues, supporting a model in which the interaction of the unstructured N-terminus of the translocated moieties with the Phe clamp initiates N- to C-terminal threading of these moieties through the pore.
Collapse
Affiliation(s)
| | | | - R. John Collier
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Chan J, Mably JD. Dissection of cardiovascular development and disease pathways in zebrafish. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:111-53. [PMID: 21377626 DOI: 10.1016/b978-0-12-384878-9.00004-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The use of animal models in medicine has contributed significantly to the development of drug treatments and surgical procedures for the last century, in particular for cardiovascular disease. In order to model human disease in an animal, an appreciation of the strengths and limitations of the system are required to interpret results and design the logical sequence of steps toward clinical translation. As the world's population ages, cardiovascular disease will become even more prominent and further progress will be essential to stave off what seems destined to become a massive public health issue. Future treatments will require the imaginative application of current models as well as the generation of new ones. In this review, we discuss the resources available for modeling cardiovascular disease in zebrafish and the varied attributes of this system. We then discuss current zebrafish disease models and their potential that has yet to be exploited.
Collapse
Affiliation(s)
- Joanne Chan
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Constitutive MEK1 activation rescues anthrax lethal toxin-induced vascular effects in vivo. Infect Immun 2010; 78:5043-53. [PMID: 20855511 DOI: 10.1128/iai.00604-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthrax lethal toxin (LT) increases vascular leakage in a number of mammalian models and in human anthrax disease. Using a zebrafish model, we determined that vascular delivery of LT increased permeability, which was phenocopied by treatment with a selective chemical inhibitor of MEK1 and MEK2 (also known as mitogen-activated protein kinase [MAPK] kinase, MEK, or MKK). Here we investigate further the role of MEK1/phospho-ERK (pERK) in the action of LT. Overexpression of wild-type zebrafish MEK1 at high levels did not induce detrimental effects. However, a constitutively activated version, MEK1(S219D,S223D) (MEK1DD), induced early defects in embryonic development that correlated with increased ERK/MAPK phosphorylation. To bypass these early developmental defects and to provide a genetic tool for examining the action of lethal factor (LF), we generated inducible transgenic zebrafish lines expressing either wild-type or activated MEK1 under the control of a heat shock promoter. Remarkably, induction of MEK1DD transgene expression prior to LT delivery prevented vascular damage, while the wild-type MEK1 line did not. In the presence of both LT and MEK1DD transgene expression, cardiovascular development and function proceeded normally in most embryos. The resistance to microsphere leakage in transgenic animals demonstrated a protective role against LT-induced vascular permeability. A consistent increase in ERK phosphorylation among LT-resistant MEK1DD transgenic animals provided additional confirmation of transgene activation. These findings provide a novel genetic approach to examine mechanism of action of LT in vivo through one of its known targets. This approach may be generally applied to investigate additional pathogen-host interactions and to provide mechanistic insights into host signaling pathways affected by pathogen entry.
Collapse
|
7
|
The major neutralizing antibody responses to recombinant anthrax lethal and edema factors are directed to non-cross-reactive epitopes. Infect Immun 2009; 77:4714-23. [PMID: 19720758 DOI: 10.1128/iai.00749-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthrax lethal and edema toxins (LeTx and EdTx, respectively) form by binding of lethal factor (LF) or edema factor (EF) to the pore-forming moiety protective antigen (PA). Immunity to LF and EF protects animals from anthrax spore challenge and neutralizes anthrax toxins. The goal of the present study is to identify linear B-cell epitopes of EF and to determine the relative contributions of cross-reactive antibodies of EF and LF to LeTx and EdTx neutralization. A/J mice were immunized with recombinant LF (rLF) or rEF. Pools of LF or EF immune sera were tested for reactivity to rLF or rEF by enzyme-linked immunosorbent assays, in vitro neutralization of LeTx and EdTx, and binding to solid-phase LF and EF decapeptides. Cross-reactive antibodies were isolated by column absorption of EF-binding antibodies from LF immune sera and by column absorption of LF-binding antibodies from EF immune sera. The resulting fractions were subjected to the same assays. Major cross-reactive epitopes were identified as EF amino acids (aa) 257 to 268 and LF aa 265 to 274. Whole LF and EF immune sera neutralized LeTx and EdTx, respectively. However, LF sera did not neutralize EdTx, nor did EF sera neutralize LeTx. Purified cross-reactive immunoglobulin G also failed to cross-neutralize. Cross-reactive B-cell epitopes in the PA-binding domains of whole rLF and rEF occur and have been identified; however, the major anthrax toxin-neutralizing humoral responses to these antigens are constituted by non-cross-reactive epitopes. This work increases understanding of the immunogenicity of EF and LF and offers perspective for the development of new strategies for vaccination against anthrax.
Collapse
|
8
|
Kong Y, Guo Q, Yu C, Dong D, Zhao J, Cai C, Hou L, Song X, Fu L, Xu J, Chen W. Fusion protein of Delta 27LFn and EFn has the potential as a novel anthrax toxin inhibitor. FEBS Lett 2009; 583:1257-60. [PMID: 19332063 DOI: 10.1016/j.febslet.2009.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
Abstract
PA-binding domain of LF (LFn) or PA-binding domain of EF (EFn) is the anthrax protective antigen (PA) binding domain of anthrax lethal factor (LF) or edema factor (EF). Here we show the development of a novel anthrax toxin inhibitor, fusion protein of N-terminal 27 amino acids deletion of LFn (Delta27LFn) and EFn. In a cell model of intoxication, fusion protein of Delta27LFn and EFn (Delta27LFn-EFn) was a 62-fold more potent toxin inhibitor than LFn or EFn, and this increased activity corresponded to a 39-fold higher PA-binding affinity by Biacore analysis. More importantly, Delta27LFn-EFn could protect the highly susceptible Fischer 344 rats from anthrax lethal toxin challenge. This work suggested that Delta27LFn-EFn has the potential as a candidate therapeutic agent against anthrax.
Collapse
Affiliation(s)
- Yirong Kong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Anthrax lethal toxin induces cell death-independent permeability in zebrafish vasculature. Proc Natl Acad Sci U S A 2008; 105:2439-44. [PMID: 18268319 DOI: 10.1073/pnas.0712195105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vascular dysfunction has been reported in human cases of anthrax, in mammalian models of Bacillus anthracis, and in animals injected with anthrax toxin proteins. To examine anthrax lethal toxin effects on intact blood vessels, we developed a zebrafish model that permits in vivo imaging and evaluation of vasculature and cardiovascular function. Vascular defects monitored in hundreds of embryos enabled us to define four stages of phenotypic progression leading to circulatory dysfunction. We demonstrated increased endothelial permeability as an early consequence of toxin action by tracking the extravasation of fluorescent microspheres in toxin-injected embryos. Lethal toxin did not induce a significant amount of cell death in embryonic tissues or blood vessels, as shown by staining with acridine orange, and endothelial cells in lethal toxin-injected embryos continued to divide at the normal rate. Vascular permeability is strongly affected by the VEGF/vascular permeability factor (VPF) signaling pathway, and we were able to attenuate anthrax lethal toxin effects with chemical inhibitors of VEGFR function. Our study demonstrates the importance of vascular permeability in anthrax lethal toxin action and the need for further investigation of the cardiovascular component of human anthrax disease.
Collapse
|