1
|
Ambrogi M, Hernandez LL, Strand DW, Kumar S, Romero MF, Barasch J, Ridlon M, Keil Stietz KP, Vezina CM. A 5-HT-mediated urethral defense against urinary tract infections. Proc Natl Acad Sci U S A 2025; 122:e2409754122. [PMID: 40228121 PMCID: PMC12037003 DOI: 10.1073/pnas.2409754122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
The urethra is considered a passive conduit for urine. Here, we reveal a surprising multicellular signaling pathway guiding the urethra's dynamic response to an invading pathogen. Using a genetic approach in female mice, we deposited uropathogenic Escherichia coli into the distal urethra to establish a model of ascending urinary tract infection that progresses to the bladder within 4 h. We show that urethral neuroendocrine cells (UNECs), and the serotonin they synthesize, protect the bladder from bacterial colonization. We tested the hypothesis that serotonin initiates urethral contraction to expel ascending bacteria. We identified transient receptor potential cation channel subfamily A member 1, a noncanonical lipopolysaccharide receptor, in human and mouse UNECs and localized the serotonin receptors (HTR) 2B and 3, as well as the calcium-activated chloride channel anoctamin 1 (ANO1) to the pacemaker cells of the human and mouse urethra, the interstitial cells of Cajal (ICCs). HTR2B or ANO1 activation is sufficient for urethral contraction and is required for serotonin-induced mouse urethral contraction. Our results support the hypothesis that the urethra actively surveils its environment and responds to an ascending pathogen by evoking UNECs and ICC to induce urethral contraction and pathogen expulsion.
Collapse
Affiliation(s)
- Marcela Ambrogi
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI53706
| | - Douglas W. Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sathish Kumar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| | - Michael F. Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, Rochester, MN55905
| | - Jonathan Barasch
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY10032
| | - Monica Ridlon
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| | | | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
2
|
George I, Kalairaj MS, Zimmern PE, Ware TH, Subashchandrabose S. Competitive fitness of asymptomatic bacteriuria E. coli strain 83972 against uropathogens in human urine. Infect Immun 2024; 92:e0017324. [PMID: 38780216 PMCID: PMC11237815 DOI: 10.1128/iai.00173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections worldwide. The main causative agent of UTI is uropathogenic Escherichia coli (UPEC). There is an immediate need for novel prophylactic and treatment strategies against UTI because of the increasing incidence of antimicrobial resistance among uropathogens. ABU 83972, an asymptomatic bacteriuria-causing E. coli strain, prevents UTI by suppressing the colonization of UPEC. However, the nature of competition and growth repression of UPEC by ABU 83972 is unclear and is the subject of our investigation. Here, we characterized the growth kinetics of ABU 83972 and uropathogens in human urine and laboratory media. Next, we performed a series of competitive co-culture experiments where ABU 83972 and uropathogens were inoculated at a 1:1 ratio in human urine and in various media, and their relative abundance was determined. In human urine, ABU 83972 outcompeted UPEC and additional uropathogens, reaching up to 90% of the total population after 24 hours of incubation. In contrast, UPEC outcompeted ABU 83972 in LB and M9 minimal media and exhibited superior colonization than ABU 83972 in the mouse urinary bladder. Since engineered living materials (ELMs) can be used to retain an organism of interest in a particular location, we developed ABU 83972-containing ELMs that effectively outcompeted UPEC in human urine. In summary, our work establishes that ABU 83972 outcompetes UPEC in a milieu- and cell-density-dependent manner, highlighting the importance of the metabolites and nutrients found in the human urine as determinants of the competitive fitness of ABU 83972.
Collapse
Affiliation(s)
- Iris George
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Philippe E. Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Taylor H. Ware
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Chen EC, Shapiro RL, Pal A, Bartee D, DeLong K, Carter DM, Serrano-Diaz E, Rais R, Ensign LM, Freel Meyers CL. Investigating inhibitors of 1-deoxy-d-xylulose 5-phosphate synthase in a mouse model of UTI. Microbiol Spectr 2024; 12:e0389623. [PMID: 38376151 PMCID: PMC10986598 DOI: 10.1128/spectrum.03896-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.
Collapse
Affiliation(s)
- Eric C. Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel L. Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Bartee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Davell M. Carter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Serrano-Diaz
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rana Rais
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura M. Ensign
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Mejia ME, Mercado-Evans V, Zulk JJ, Ottinger S, Ruiz K, Ballard MB, Fowler SW, Britton RA, Patras KA. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. NPJ Biofilms Microbiomes 2023; 9:87. [PMID: 37985659 PMCID: PMC10661851 DOI: 10.1038/s41522-023-00454-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Vaginal microbial composition is associated with differential risk of urogenital infection. Although Lactobacillus spp. are thought to confer protection against infection, the lack of in vivo models resembling the human vaginal microbiota remains a prominent barrier to mechanistic discovery. Using 16S rRNA amplicon sequencing of C57BL/6J female mice, we found that vaginal microbial composition varies within and between colonies across three vivaria. Noting vaginal microbial plasticity in conventional mice, we assessed the vaginal microbiome of humanized microbiota mice (HMbmice). Like the community structure in conventional mice, HMbmice vaginal microbiota clustered into community state types but, uniquely, HMbmice communities were frequently dominated by Lactobacillus or Enterobacteriaceae. Compared to conventional mice, HMbmice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia. Although Escherichia and Lactobacillus both correlated with the absence of uterine GBS, vaginal pre-inoculation with exogenous HMbmouse-derived E. coli, but not Ligilactobacillus murinus, reduced vaginal GBS burden. Overall, HMbmice serve as a useful model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens.
Collapse
Affiliation(s)
- Marlyd E Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Samantha Ottinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Korinna Ruiz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mallory B Ballard
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie W Fowler
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Mejia ME, Mercado-Evans V, Zulk JJ, Ottinger S, Ruiz K, Ballard MB, Britton RA, Patras KA. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527909. [PMID: 36798217 PMCID: PMC9934685 DOI: 10.1101/2023.02.09.527909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Vaginal microbiota composition is associated with differential risk of urogenital infection. Although vaginal Lactobacillus spp. are thought to confer protection through acidification, bacteriocin production, and immunomodulation, lack of an in vivo model system that closely resembles the human vaginal microbiota remains a prominent barrier to mechanistic discovery. We performed 16S rRNA amplicon sequencing of wildtype C57BL/6J mice, commonly used to study pathogen colonization, and found that the vaginal microbiome composition varies highly both within and between colonies from three distinct vivaria. Because of the strong influence of environmental exposure on vaginal microbiome composition, we assessed whether a humanized microbiota mouse ( HMb mice) would model a more human-like vaginal microbiota. Similar to humans and conventional mice, HMb mice vaginal microbiota clustered into five community state types ( h mCST). Uniquely, HMb mice vaginal communities were frequently dominated by Lactobacilli or Enterobacteriaceae . Compared to genetically-matched conventional mice, HMb mice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia , but no differences were observed with uropathogenic E. coli . Specifically, vaginal Enterobacteriaceae and Lactobacillus were associated with the absence of uterine GBS. Anti-GBS activity of HMb mice vaginal E. coli and L. murinus isolates, representing Enterobacteriaceae and Lactobacillus respectively, were characterized in vitro and in vivo . Although L. murinus reduced GBS growth in vitro , vaginal pre-inoculation with HMb mouse-derived E. coli , but not L. murinus , conferred protection against vaginal GBS burden. Overall, the HMb mice are an improved model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens. IMPORTANCE An altered vaginal microbiota, typically with little to no levels of Lactobacillus , is associated with increased susceptibility to urogenital infections, although mechanisms driving this vulnerability are not fully understood. Despite known inhibitory properties of Lactobacillus against urogenital pathogens, clinical studies with Lactobacillus probiotics have shown mixed success. In this study, we characterize the impact of the vaginal microbiota on urogenital pathogen colonization using a humanized microbiota mouse model that more closely mimics the human vaginal microbiota. We found several vaginal bacterial taxa that correlated with reduced pathogen levels but showed discordant effects in pathogen inhibition between in vitro and in vivo assays. We propose that this humanized microbiota mouse platform is an improved model to describe the role of the vaginal microbiota in protection against urogenital pathogens. Furthermore, this model will be useful in testing efficacy of new probiotic strategies in the complex vaginal environment.
Collapse
|
6
|
Ligon MM, Joshi CS, Fashemi BE, Salazar AM, Mysorekar IU. Effects of aging on urinary tract epithelial homeostasis and immunity. Dev Biol 2023; 493:29-39. [PMID: 36368522 PMCID: PMC11463731 DOI: 10.1016/j.ydbio.2022.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
A global increase in older individuals creates an increasing demand to understand numerous healthcare challenges related to aging. This population is subject to changes in tissue physiology and the immune response network. Older individuals are particularly susceptible to infectious diseases, with one of the most common being urinary tract infections (UTIs). Postmenopausal and older women have the highest risk of recurrent UTIs (rUTIs); however, why rUTIs become more frequent after menopause and during old age is incompletely understood. This increased susceptibility and severity among older individuals may involve functional changes to the immune system with age. Aging also has substantial effects on the epithelium and the immune system that led to impaired protection against pathogens, yet heightened and prolonged inflammation. How the immune system and its responses to infection changes within the bladder mucosa during aging has largely remained poorly understood. In this review, we highlight our understanding of bladder innate and adaptive immunity and the impact of aging and hormones and hormone therapy on bladder epithelial homeostasis and immunity. In particular, we elaborate on how the cellular and molecular immune landscape within the bladder can be altered during aging as aged mice develop bladder tertiary lymphoid tissues (bTLT), which are absent in young mice leading to profound age-associated change to the immune landscape in bladders that might drive the significant increase in UTI susceptibility. Knowledge of host factors that prevent or promote infection can lead to targeted treatment and prevention regimens. This review also identifies unique host factors to consider in the older, female host for improving rUTI treatment and prevention by dissecting the age-associated alteration of the bladder mucosal immune system.
Collapse
Affiliation(s)
- Marianne M Ligon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chetanchandra S Joshi
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bisiayo E Fashemi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Arnold M Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Microbiology and Virology, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|