1
|
Pinheiro FC, Bortolotto VC, Araujo SM, Dahleh MMM, Neto JSS, Zeni G, Zaha A, Prigol M. Antimicrobial Effect of Diphenyl Ditelluride (PhTe) 2 in a Model of Infection by Escherichia coli in Drosophila melanogaster. Indian J Microbiol 2024; 64:1619-1626. [PMID: 39678956 PMCID: PMC11645334 DOI: 10.1007/s12088-024-01196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/02/2024] [Indexed: 12/17/2024] Open
Abstract
Diphenyl ditelluride (PhTe)2, an organotelluric compound with pharmacological and toxicological attributes, has shown promise in microorganism studies. Drosophila melanogaster, an alternative animal model, is gaining popularity for novel antimicrobial research due to its cost-effectiveness, versatility, and similarity to vertebrate models. Given the rising antibiotic resistance, particularly in Escherichia coli (E. coli), the exploration of novel antimicrobials is of utmost importance. In (PhTe)2 safety validation, our findings indicate an 50% lethal concentration (LC50) of 41.74 µM for (PhTe)2 following a 48-h exposure period in Drosophila melanogaster. To assess potential motor and neurological deficits, we conducted behavioral analyses employing negative geotaxis and open field tests. Our outcomes reveal alterations in exploratory behavior at concentrations exceeding 50 µM (PhTe)2 in the flies. Consequently, we have established the optimal treatment concentration for Drosophila melanogaster as 10 µM (PhTe)2. Upon safety validation, we gauged the antimicrobial potential of (PhTe)2 through an oral infection model involving axenic flies. After exposing these flies to E. coli for 18-20 h, we treated them with 10 µM of (PhTe)2 for various time spans (0, 3, 6, 12, 24, and 48 h), followed by plating and colony counting. The logarithmic bacterial load curve demonstrated the antimicrobial impact of the compound, highlighting a significant reduction in bacterial load after 3 h of exposure to 10 µM (PhTe)2, with an enhancement of antimicrobial potential lasting up to 48 h. Given these results, we state that 10 µM (PhTe)2 was safe and presented antimicrobial potential, reducing the bacterial load in Drosophila melanogaster. Graphical Abstract
Collapse
Affiliation(s)
- Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| | - Stífani Machado Araujo
- Laboratório de BioSaúde Humana e Animal, Universidade Federal da Fronteira Sul, Realeza, PR 85770-000 Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| | | | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900 Brazil
| | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| |
Collapse
|
2
|
Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol 2021; 19:375-390. [PMID: 33564174 DOI: 10.1038/s41579-020-00507-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The Rickettsiales are a group of obligate intracellular vector-borne Gram-negative bacteria that include many organisms of clinical and agricultural importance, including Anaplasma spp., Ehrlichia chaffeensis, Wolbachia, Rickettsia spp. and Orientia tsutsugamushi. This Review provides an overview of the current state of knowledge of the biology of these bacteria and their interactions with host cells, with a focus on pathogenic species or those that are otherwise important for human health. This includes a description of rickettsial genomics, bacterial cell biology, the intracellular lifestyles of Rickettsiales and the mechanisms by which they induce and evade the innate immune response.
Collapse
Affiliation(s)
- Jeanne Salje
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Public Health Research Institute, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
3
|
Yang B, Li Y, Bogado Pascottini O, Xie J, Wei R, Opsomer G, Nauwynck H. Primary replication and invasion of the bovine gammaherpesvirus BoHV-4 in the genital mucosae. Vet Res 2017; 48:83. [PMID: 29183401 PMCID: PMC5706299 DOI: 10.1186/s13567-017-0489-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus that is widespread in cattle. Ex vivo models with bovine genital tract mucosa explants were set up to study molecular/cellular BoHV-4-host interactions. Bovine posterior vagina, cervix and uterus body were collected from cows at two stages of the reproductive cycle for making mucosa explants. The BoHV-4 replication kinetics and characteristics within the three different mucosae of animals in the follicular and luteal phase were assessed by virus titration. The number of plaques, plaque latitude and number of infected cells were determined by immunofluorescence. BoHV-4 replicated in a productive way in all genital mucosal tissues. It infected single individual cells in both epithelium and lamina propria of the genital mucosae at 24 hours post-inoculation (hpi). Later, small BoHV-4 epithelial plaques were formed that did not spread through the basement membrane. 50% of the number of BoHV-4 infected cells were identified as cytokeratin+ and CD172a+ cells in the three parts of the genital tract at 24 hpi. Upon a direct injection of genital explants with BoHV-4, fibrocytes became infected, indicating that the unidentified 50% of the infected cells are most probably fibrocytes. In this study, in vivo-related in vitro genital tract models were successfully established and the early stage of the pathogenesis of a genital infection was clarified: BoHV-4 starts with a productive infection of epithelial cells in the reproductive tract, forming small foci followed by a non-productive infection of surveilling monocytic cells which help BoHV-4 to invade into deeper tissues.
Collapse
Affiliation(s)
- Bo Yang
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.,Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Yewei Li
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Jiexiong Xie
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Ruifang Wei
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Hans Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
4
|
Seong CS, Varela-Ramirez A, Tang X, Anchondo B, Magallanes D, Aguilera RJ. Cloning and characterization of a novel Drosophila stress induced DNase. PLoS One 2014; 9:e103564. [PMID: 25083901 PMCID: PMC4118900 DOI: 10.1371/journal.pone.0103564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 07/04/2014] [Indexed: 01/04/2023] Open
Abstract
Drosophila melanogaster flies mount an impressive immune response to a variety of pathogens with an efficient system comprised of both humoral and cellular responses. The fat body is the main producer of the anti-microbial peptides (AMPs) with anti-pathogen activity. During bacterial infection, an array of secreted peptidases, proteases and other enzymes are involved in the dissolution of debris generated by pathogen clearance. Although pathogen destruction should result in the release a large amount of nucleic acids, the mechanisms for its removal are still not known. In this report, we present the characterization of a nuclease gene that is induced not only by bacterial infection but also by oxidative stress. Expression of the identified protein has revealed that it encodes a potent nuclease that has been named Stress Induced DNase (SID). SID belongs to a family of evolutionarily conserved cation-dependent nucleases that degrade both single and double-stranded nucleic acids. Down-regulation of sid expression via RNA interference leads to significant reduction of fly viability after bacterial infection and oxidative stress. Our results indicate that SID protects flies from the toxic effects of excess DNA/RNA released by pathogen destruction and from oxidative damage.
Collapse
Affiliation(s)
- Chang-Soo Seong
- Border Biomedical Research Center and Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Armando Varela-Ramirez
- Border Biomedical Research Center and Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Xiaolei Tang
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Brenda Anchondo
- Border Biomedical Research Center and Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Diego Magallanes
- Border Biomedical Research Center and Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Renato J. Aguilera
- Border Biomedical Research Center and Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Drosophila melanogaster model for Mycobacterium abscessus infection. Microbes Infect 2013; 15:788-95. [PMID: 23831804 DOI: 10.1016/j.micinf.2013.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 01/25/2023]
Abstract
Mycobacterium abscessus is a human pathogen that is responsible for a broad spectrum of tissue infections and disseminated infections in immunodeficient patients. This pathogen is one of the most resistant organisms to chemotherapeutic agents. Therefore, we tested the hypothesis that the fruit fly, Drosophila melanogaster, is a genetically tractable model host for M. abscessus. In this context, we infected D. melanogaster with M. abscessus. This M. abscessus infection results in dissemination in the fly body, followed by death, which is accompanied by severe indirect flight muscle and brain damage. Our data show that M. abscessus can grow and replicate in D. melanogaster w(1118) and that it elicited a humoral immune response, especially of the Toll antimicrobial peptide pathway. To the best of our knowledge, this is the first report that mycobacteria induce the production of antimicrobial peptides in D. melanogaster.
Collapse
|
6
|
Moreno-García M, Córdoba-Aguilar A, Condé R, Lanz-Mendoza H. Current immunity markers in insect ecological immunology: assumed trade-offs and methodological issues. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:127-139. [PMID: 22929006 DOI: 10.1017/s000748531200048x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The field of ecological immunology currently relies on using a number of immune effectors or markers. These markers are usually used to infer ecological trade-offs (via conflicts in resource allocation), though physiological nature of these markers remains elusive. Here, we review markers frequently used in insect evolutionary ecology research: cuticle darkening, haemocyte density, nodule/capsule formation, phagocytosis and encapsulation/melanization via use of nylon filaments and beads, phenoloxidase activity, nitric oxide production, lysozyme and antimicrobial peptide production. We also provide physiologically based information that may shed light on the probable trade-offs inferred when these markers are used. In addition, we provide a number of methodological suggestions to improve immune marker assessment.
Collapse
Affiliation(s)
- M Moreno-García
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | | | | | | |
Collapse
|
7
|
Drolia R, Von Ohlen T, Chapes SK. Ehrlichia chaffeensis replication sites in adult Drosophila melanogaster. Int J Med Microbiol 2013; 303:40-9. [PMID: 23306065 DOI: 10.1016/j.ijmm.2012.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/22/2012] [Accepted: 12/02/2012] [Indexed: 10/27/2022] Open
Abstract
Ehrlichia chaffeensis is a Gram-negative, obligate intracellular bacterium which causes the tick-borne disease human monocytic ehrlichiosis. In vertebrates, E. chaffeensis replicates in monocytes and macrophages. However, no clear cell or tissue tropism has been defined in arthropods. Our group identified two host genes that control E. chaffeensis replication and infection in vivo in Drosophila, Uridine cytidine kinase and separation anxiety. Using the UAS-GAL4 RNAi system, we generated F1 flies (UAS-gene of interestRNAi x tissue-GAL4 flies) that have Uck2 or san silenced in ubiquitous or tissue-specific fashion. When Uck2 or san were suppressed in the hemocytes or in the fat body, E. chaffeensis replicated poorly and caused significantly less severe infections. Silencing of these genes in the eyes, wings, or the salivary glands did not impact fly susceptibility or bacterial replication. Our data suggest that in Drosophila, E. chaffeensis replicates within the hemocytes, the insect homolog of mammalian macrophages, and in the fat body, the liver homolog of mammals.
Collapse
Affiliation(s)
- Rishi Drolia
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
8
|
Von Ohlen T, Luce-Fedrow A, Ortega MT, Ganta RR, Chapes SK. Identification of critical host mitochondrion-associated genes during Ehrlichia chaffeensis infections. Infect Immun 2012; 80:3576-86. [PMID: 22851751 PMCID: PMC3457586 DOI: 10.1128/iai.00670-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium that causes human monocytic ehrlichiosis (HME). To determine what host components are important for bacterial replication, we performed microarray analysis on Drosophila melanogaster S2 cells by comparing host gene transcript levels between permissive and nonpermissive conditions for E. chaffeensis growth. Five-hundred twenty-seven genes had increased transcript levels unique to permissive growth conditions 24 h postinfection. We screened adult flies that were mutants for several of the "permissive" genes for the ability to support Ehrlichia replication. Three additional D. melanogaster fly lines with putative mutations in pyrimidine metabolism were also tested. Ten fly lines carrying mutations in the genes CG6479, separation anxiety, chitinase 11, CG6364 (Uck2), CG6543 (Echs1), withered (whd), CG15881 (Ccdc58), CG14806 (Apop1), CG11875 (Nup37), and dumpy (dp) had increased resistance to infection with Ehrlichia. Analysis of RNA by quantitative real-time reverse transcription-PCR (qRT-PCR) confirmed that the bacterial load was decreased in these mutant flies compared to wild-type infected control flies. Seven of these genes (san, Cht11, Uck2, Echs1, whd, Ccdc58, and Apop1) encoded proteins that had mitochondrial functions or could be associated with proteins with mitochondrial functions. Treatment of THP-1 cells with double-stranded RNA to silence the human UCK2 gene indicates that the disruption of the uridine-cytidine kinase affects E. chaffeensis replication in human macrophages. Experiments with cyclopentenyl cytosine (CPEC), a CTP synthetase inhibitor and cytosine, suggest that the nucleotide salvage pathway is essential for E. chaffeensis replication and that it may be important for the provision of CTP, uridine, and cytidine nucleotides.
Collapse
Affiliation(s)
- Tonia Von Ohlen
- Kansas State University, Division of Biology, Manhattan, Kansas, USA
- Kansas State University, Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| | | | - M. Teresa Ortega
- Kansas State University, Division of Biology, Manhattan, Kansas, USA
| | - Roman R. Ganta
- Kansas State University, Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| | - Stephen K. Chapes
- Kansas State University, Division of Biology, Manhattan, Kansas, USA
| |
Collapse
|
9
|
Abstract
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.
Collapse
Affiliation(s)
- Christina O Igboin
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
10
|
Galac MR, Lazzaro BP. Comparative pathology of bacteria in the genus Providencia to a natural host, Drosophila melanogaster. Microbes Infect 2011; 13:673-83. [PMID: 21354324 PMCID: PMC3109104 DOI: 10.1016/j.micinf.2011.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 12/20/2022]
Abstract
Bacteria in the genus Providencia are pathogens of many organisms, including humans and insects. We and colleagues have isolated five different strains belonging to four distinct Providencia species as natural infections of Drosophila melanogaster captured in the wild. We found that these isolates vary considerably in pathology to infected D. melanogaster, differing in the level of mortality they cause, their ability to replicate within the host and the level that the fly's immune response is elicited. One interesting bacterium was Providencia sneebia, which causes nearly complete mortality and reaches large numbers in the fly but does not elicit a comparably strong immune response. Through coinfection experiments, we determined that P. sneebia avoids recognition by the immune system. We tested for biofilm formation and replication within D. melanogaster cells as possible mechanisms for P. sneebia escape from host immunity, but did not find evidence for either. D. melanogaster and Providencia provide a powerful system for studying general host-pathogen interactions, and for understanding how the well-studied immune model host D. melanogaster interacts with its natural bacterial pathogens.
Collapse
Affiliation(s)
- Madeline R Galac
- Field of Genetics and Development, 3125 Comstock Hall, Cornell University, Ithaca, NY 14850, USA.
| | | |
Collapse
|