1
|
Cometta S, Hutmacher DW, Chai L. In vitro models for studying implant-associated biofilms - A review from the perspective of bioengineering 3D microenvironments. Biomaterials 2024; 309:122578. [PMID: 38692146 DOI: 10.1016/j.biomaterials.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.
Collapse
Affiliation(s)
- Silvia Cometta
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Liraz Chai
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, 91904, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
2
|
Wang L, Zhang C, Zhao J, Zhu Z, Wang J, Fan W, Jia W. Biomimetic Targeting Nanoadjuvants for Sonodynamic and Chronological Multi-Immunotherapy against Holistic Biofilm-Related Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308110. [PMID: 38088059 DOI: 10.1002/adma.202308110] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Biofilm-related infections (BRIs) present significant challenges owing to drug resistance, adverse immune responses, and implant failure; however, current approaches inadequately cater to the diverse therapeutic requirements at different stages of infection. To address this issue, a multi-immunotherapy strategy in combination with sonodynamic therapy is proposed for the chronological treatment of BRIs. Macrophage membrane-decorated targeting sonosensitive nanoadjuvants are fabricated to load cytosine-phosphate-guanine oligodeoxynucleotide (CPG-ODN) or microRNA (miR)-21-5p. In the early stages of BRI (Stage I), CPG-ODN-loaded nanoadjuvants (CPG@HMPN@M) promote the formation of neutrophil extracellular traps to capture and neutralize detached microbes. During the late stage of infection (Stage II), CPG-ODNs redirect macrophage polarization into the M1 phase to combat infections via TLR9/Myd88/TRAF6 pathway. During these stages, CPG@HMPN@M generates singlet oxygen through sonodynamic processes, eradicating the biofilms under US irradiation. Once the BRIs are eliminated, miR-21-5p-loaded nanoadjuvants (miR@HMPN@M) are delivered to the lesions to suppress excessive inflammation and promote tissue integration by evoking macrophage M2 polarization during the repair phase (Stage III) through PTEN/PI3K/Akt pathway. This innovative approach aims to provide comprehensive treatment strategies for the chronological treatment of BRI by effectively eliminating infections, promoting tissue restoration, and implementing different immune regulations at different stages, thus demonstrating promising clinical value.
Collapse
Affiliation(s)
- Lingtian Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ziyang Zhu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China
| | - Weitao Jia
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai, Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
3
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Abeydeera N, Benin BM, Mudarmah K, Pant BD, Chen G, Shin WS, Kim MH, Huang SD. Harnessing the Dual Antimicrobial Mechanism of Action with Fe(8-Hydroxyquinoline) 3 to Develop a Topical Ointment for Mupirocin-Resistant MRSA Infections. Antibiotics (Basel) 2023; 12:antibiotics12050886. [PMID: 37237789 DOI: 10.3390/antibiotics12050886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
8-Hydroxyquinoline (8-hq) exhibits potent antimicrobial activity against Staphylococcus aureus (SA) bacteria with MIC = 16.0-32.0 µM owing to its ability to chelate metal ions such as Mn2+, Zn2+, and Cu2+ to disrupt metal homeostasis in bacterial cells. We demonstrate that Fe(8-hq)3, the 1:3 complex formed between Fe(III) and 8-hq, can readily transport Fe(III) across the bacterial cell membrane and deliver iron into the bacterial cell, thus, harnessing a dual antimicrobial mechanism of action that combines the bactericidal activity of iron with the metal chelating effect of 8-hq to kill bacteria. As a result, the antimicrobial potency of Fe(8-hq)3 is significantly enhanced in comparison with 8-hq. Resistance development by SA toward Fe(8-hq)3 is considerably delayed as compared with ciprofloxacin and 8-hq. Fe(8-hq)3 can also overcome the 8-hq and mupirocin resistance developed in the SA mutant and MRSA mutant bacteria, respectively. Fe(8-hq)3 can stimulate M1-like macrophage polarization of RAW 264.7 cells to kill the SA internalized in such macrophages. Fe(8-hq)3 exhibits a synergistic effect with both ciprofloxacin and imipenem, showing potential for combination therapies with topical and systemic antibiotics for more serious MRSA infections. The in vivo antimicrobial efficacy of a 2% Fe(8-hq)3 topical ointment is confirmed by the use of a murine model with skin wound infection by bioluminescent SA with a reduction of the bacterial burden by 99 ± 0.5%, indicating that this non-antibiotic iron complex has therapeutic potential for skin and soft tissue infections (SSTIs).
Collapse
Affiliation(s)
- Nalin Abeydeera
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Bogdan M Benin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Khalil Mudarmah
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
- Department of Chemistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Bishnu D Pant
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Guanyu Chen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
5
|
Li M, Yu J, Guo G, Shen H. Interactions between Macrophages and Biofilm during Staphylococcus aureus-Associated Implant Infection: Difficulties and Solutions. J Innate Immun 2023; 15:499-515. [PMID: 37011602 PMCID: PMC10315156 DOI: 10.1159/000530385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) biofilm is the major cause of failure of implant infection treatment that results in heavy social and economic burden on individuals, families, and communities. Planktonic S. aureus attaches to medical implant surfaces where it proliferates and is wrapped by extracellular polymeric substances, forming a solid and complex biofilm. This provides a stable environment for bacterial growth, infection maintenance, and diffusion and protects the bacteria from antimicrobial agents and the immune system of the host. Macrophages are an important component of the innate immune system and resist pathogen invasion and infection through phagocytosis, antigen presentation, and cytokine secretion. The persistence, spread, or clearance of infection is determined by interplay between macrophages and S. aureus in the implant infection microenvironment. In this review, we discuss the interactions between S. aureus biofilm and macrophages, including the effects of biofilm-related bacteria on the macrophage immune response, roles of myeloid-derived suppressor cells during biofilm infection, regulation of immune cell metabolic patterns by the biofilm environment, and immune evasion strategies adopted by the biofilm against macrophages. Finally, we summarize the current methods that support macrophage-mediated removal of biofilms and emphasize the importance of considering multi-dimensions and factors related to implant-associated infection such as immunity, metabolism, the host, and the pathogen when developing new treatments.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Murashkin NN, Epishev RV, Ivanov RA, Materikin AI, Opryatin LA, Savelova AA, Nezhvedilova RY, Ambarchian ET, Fedorov DV, Rusakova LL. Innovations in Therapeutic Improvement of the Cutaneous Microbiome in Children with Atopic Dermatitis. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i5.2449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biofilm is the dominant form of skin microbiota organization that provides adhesion and preservation of microorganisms in the skin micro-environment. It is necessary to ensure epidermal barrier function and local immunomodulation. Staphylococcus aureus becomes the major colonizer of skin lesions in case of atopic dermatitis exacerbation, and it also can form the biofilms. S. aureus growth and biofilm formation due to other microbial commensals on the skin of patients with atopic dermatitis leads to chronic output of pro-inflammatory cytokines and later to abnormalities in healthy skin microbiome. The role of microbial biofilm in human’s health makes the skin microbiota an attractive target for therapeutic intervention in various skin diseases.
Collapse
Affiliation(s)
- N. N. Murashkin
- National Medical Research Center of Children’s Health; Sechenov First Moscow State Medical University; Central State Medical Academy of Department of Presidential Affairs
| | - R. V. Epishev
- National Medical Research Center of Children’s Health
| | - R. A. Ivanov
- National Medical Research Center of Children’s Health
| | | | | | | | | | - E. T. Ambarchian
- Pediatrics and Child Health Research Institute in Petrovsky National Research Centre of Surgery
| | - D. V. Fedorov
- National Medical Research Center of Children’s Health
| | | |
Collapse
|
7
|
Mirzaei R, Ranjbar R. Hijacking host components for bacterial biofilm formation: An advanced mechanism. Int Immunopharmacol 2022; 103:108471. [PMID: 34952466 DOI: 10.1016/j.intimp.2021.108471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Biofilm is a community of bacteria embedded in the extracellular matrix that accounts for 80% of bacterial infections. Biofilm enables bacterial cells to provide particular conditions and produce virulence determinants in response to the unavailability of micronutrients and local oxygen, resulting in their resistance to various antibacterial agents. Besides, the human immune reactions are not completely competent in the elimination of biofilm. Most importantly, the growing body of evidence shows that some bacterial spp. use a variety of mechanisms by which hijack the host components to form biofilm. In this regard, host components, such as DNA, hyaluronan, collagen, fibronectin, mucin, oligosaccharide moieties, filamentous polymers (F-actin), plasma, platelets, keratin, sialic acid, laminin, vitronectin, C3- and C4- binding proteins, antibody, proteases, factor I, factor H, and acidic proline-rich proteins have been reviewed. Hence, the characterization of interactions between bacterial biofilm and the host would be critical to effectively address biofilm-associated infections. In this paper, we review the latest information on the hijacking of host factors by bacteria to form biofilm.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med 2022; 28:10. [PMID: 35093033 PMCID: PMC8800364 DOI: 10.1186/s10020-022-00435-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Niloofar Sabokroo
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Rosman CWK, van Dijl JM, Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol 2021; 48:624-640. [PMID: 34879216 DOI: 10.1080/1040841x.2021.2011132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of Staphylococcus aureus bacteria involved in BAIs. To this end, we first describe three categories of bacterial mechanisms to counter the host immune system around foreign bodies: direct interaction with host cells, modulation of intercellular communication, and evasion of the immune system. These mechanisms take place in a time frame that differentiates sterile foreign body reactions, BAIs, and soft tissue infections. In addition, we identify experimental interventions in S. aureus BAI that may impact infectious mechanisms. Most experimental treatments modulate the host response to infection or alter the course of BAI through implant surface modulation. In conclusion, the first week after implantation and infection is crucial for the establishment of an S. aureus biofilm that resists the local immune reaction and antibiotic treatment. Although established and chronic S. aureus BAI is still treatable and manageable, the focus of interventions should lie on this first period.
Collapse
Affiliation(s)
- Colin W K Rosman
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Host-pathogen interaction between macrophage co-cultures with Staphylococcus aureus biofilms. Eur J Clin Microbiol Infect Dis 2021; 40:2563-2574. [PMID: 34312744 DOI: 10.1007/s10096-021-04306-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
The ability of Staphylococcus aureus to form biofilms is an important virulence factor. During the infectious process, the interaction between biofilms and immune cells is determinant; however, the properties that make biofilms resistant to the immune system are not well characterized. In order to better understand this, we evaluated the in vitro interaction of macrophages during the early stages of S. aureus biofilm formation. Biofilm formation was evaluated by crystal violet staining, light microscopy, and confocal scanning laser microscopy. Furthermore, different activation on L-arginine pathways such as nitric oxide (NO•) release and the arginase, the production of reactive oxygen species (ROS), the total oxidative stress response (OSR), and levels of cytokine liberation, were determined. Our findings show that the interaction between biofilms and macrophages results in stimuli for catabolism of L-arginine via arginase, but not for NO•, an increase of ROS production, and activation of the non-enzymatic OSR. We also observed the production of IL-6, but not of TNFα o IL-10 in these co-cultures. These results contribute to a better understanding of host-pathogen interactions and suggest that biofilms increase resistance against immune cell mechanisms, a phenomenon that could contribute to the ability of S. aureus biofilms to establish mature biofilms.
Collapse
|
11
|
Rowe SE, Beam JE, Conlon BP. Recalcitrant Staphylococcus aureus Infections: Obstacles and Solutions. Infect Immun 2021; 89:e00694-20. [PMID: 33526569 PMCID: PMC8090968 DOI: 10.1128/iai.00694-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antibiotic treatment failure of Staphylococcus aureus infections is very common. In addition to genetically encoded mechanisms of antibiotic resistance, numerous additional factors limit the efficacy of antibiotics in vivo Identifying and removing the barriers to antibiotic efficacy are of major importance, as even if new antibiotics become available, they will likely face the same barriers to efficacy as their predecessors. One major obstacle to antibiotic efficacy is the proficiency of S. aureus to enter a physiological state that is incompatible with antibiotic killing. Multiple pathways leading to antibiotic tolerance and the formation of tolerant subpopulations called persister cells have been described for S. aureus Additionally, S. aureus is a versatile pathogen that can infect numerous tissues and invade a variety of cell types, of which some are poorly penetrable to antibiotics. It is therefore unlikely that there will be a single solution to the problem of recalcitrant S. aureus infection. Instead, specific approaches may be required for targeting tolerant cells within different niches, be it through direct targeting of persister cells, sensitization of persisters to conventional antibiotics, improved penetration of antibiotics to particular niches, or any combination thereof. Here, we examine two well-described reservoirs of antibiotic-tolerant S. aureus, the biofilm and the macrophage, the barriers these environments present to antibiotic efficacy, and potential solutions to the problem.
Collapse
Affiliation(s)
- Sarah E Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jenna E Beam
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Dostert M, Trimble MJ, Hancock REW. Antibiofilm peptides: overcoming biofilm-related treatment failure. RSC Adv 2021; 11:2718-2728. [PMID: 35424252 PMCID: PMC8694000 DOI: 10.1039/d0ra09739j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Health leaders and scientists worldwide consider antibiotic resistance among the world's most dangerous pathogens as one of the biggest threats to global health. Antibiotic resistance has largely been attributed to genetic changes, but the role and recalcitrance of biofilms, largely due to growth state dependent adaptive resistance, is becoming increasingly appreciated. Biofilms are mono- and multi-species microbial communities embedded in an extracellular, protective matrix. In this growth state, bacteria are transcriptionally primed to survive extracellular stresses. Adaptations, affecting metabolism, regulation, surface charge, immune recognition and clearance, allow bacteria to thrive in the human body and withstand antibiotics and the host immune system. Biofilms resist clearance by multiple antibiotics and have a major role in chronic infections, causing more than 65% of all infections. No specific antibiofilm agents have been developed. Thus, there is a pressing need for alternatives to traditional antibiotics that directly inhibit and/or eradicate biofilms. Host defence peptides (HDPs) are small cationic peptides that are part of the innate immune system to both directly kill microbes but also function to modulate the immune response. Specific HDPs and their derivatives demonstrate broad-spectrum activity against biofilms. In vivo biofilm assays show efficacy in abscess, respiratory, in-dwelling device, contact lens and skin infection models. Further progress has been made through the study of ex vivo organoid and air-liquid interface models to better understand human infections and treatment while relieving the burden and complex nature of animal models. These avenues pave the way for a better understanding and treatment of the underlying cause of chronic infections that challenge the healthcare system.
Collapse
Affiliation(s)
- Melanie Dostert
- Department of Microbiology and Immunology, University of British Columbia Vancouver British Columbia Canada
| | - Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia Vancouver British Columbia Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
13
|
Santibañez N, Vega M, Pérez T, Yáñez A, González-Stegmaier R, Figueroa J, Enríquez R, Oliver C, Romero A. Biofilm Produced In Vitro by Piscirickettsia salmonis Generates Differential Cytotoxicity Levels and Expression Patterns of Immune Genes in the Atlantic Salmon Cell Line SHK-1. Microorganisms 2020; 8:E1609. [PMID: 33092013 PMCID: PMC7594049 DOI: 10.3390/microorganisms8101609] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 11/17/2022] Open
Abstract
Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, an infectious disease with a high economic impact on the Chilean salmonid aquaculture industry. This bacterium produces biofilm as a potential resistance and persistence strategy against stressful environmental stimuli. However, the in vitro culture conditions that modulate biofilm formation as well as the effect of sessile bacteria on virulence and immune gene expression in host cells have not been described for P. salmonis. Therefore, this study aimed to analyze the biofilm formation by P. salmonis isolates under several NaCl and iron concentrations and to evaluate the virulence of planktonic and sessile bacteria, together with the immune gene expression induced by these bacterial conditions in an Atlantic salmon macrophage cell line. Our results showed that NaCl and Fe significantly increased biofilm production in the LF-89 type strain and EM-90-like isolates. Additionally, the planktonic EM-90 isolate and sessile LF-89 generated the highest virulence levels, associated with differential expression of il-1β, il-8, nf-κb, and iκb-α genes in SHK-1 cells. These results suggest that there is no single virulence pattern or gene expression profile induced by the planktonic or sessile condition of P. salmonis, which are dependent on each strain and bacterial condition used.
Collapse
Affiliation(s)
- Natacha Santibañez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; (N.S.); (M.V.); (T.P.); (R.G.-S.); (R.E.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4070386, Chile; (A.Y.); (J.F.)
| | - Matías Vega
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; (N.S.); (M.V.); (T.P.); (R.G.-S.); (R.E.)
| | - Tatiana Pérez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; (N.S.); (M.V.); (T.P.); (R.G.-S.); (R.E.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4070386, Chile; (A.Y.); (J.F.)
| | - Alejandro Yáñez
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4070386, Chile; (A.Y.); (J.F.)
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Roxana González-Stegmaier
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; (N.S.); (M.V.); (T.P.); (R.G.-S.); (R.E.)
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4070386, Chile; (A.Y.); (J.F.)
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ricardo Enríquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; (N.S.); (M.V.); (T.P.); (R.G.-S.); (R.E.)
| | - Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; (N.S.); (M.V.); (T.P.); (R.G.-S.); (R.E.)
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; (N.S.); (M.V.); (T.P.); (R.G.-S.); (R.E.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4070386, Chile; (A.Y.); (J.F.)
| |
Collapse
|
14
|
Alumutairi L, Yu B, Filka M, Nayfach J, Kim MH. Mild magnetic nanoparticle hyperthermia enhances the susceptibility of Staphylococcus aureus biofilm to antibiotics. Int J Hyperthermia 2020; 37:66-75. [PMID: 31964196 PMCID: PMC7730973 DOI: 10.1080/02656736.2019.1707886] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: A critical challenge in the treatment of biofilm infection is the capacity of biofilm-grown bacteria to develop resistance to traditional antimicrobial therapies. The objective of this study was to validate the therapeutic potential of magnetic nanoparticle/alternating magnetic field (MNP/AMF) hyperthermia in combination with conventional antibiotics against biofilm infection. Materials and methods: The impact of MNP/AMF hyperthermia on the viability of S. aureus biofilm in the absence and presence of antibiotics as well as on the bactericidal activity of macrophages were evaluated at varying conditions of MNPs concentration and AMF intensity using in vitro cell culture models. Results: The application of MNP/AMF alone at a CEM43 thermal dose below the threshold for skin tissue exhibited a modest efficacy in the eradication of Staphylococcus aureus (S. aureus) biofilm (<1-log reduction). The treatment of antibiotics (ciprofloxacin, vancomycin) alone at a bactericidal concentration for planktonic S. aureus had no significant effect on the eradication of biofilm phase of S. aureus. However, when the biofilm was pre-exposed to mild MNP/AMF hyperthermia, the treatment of antibiotics could exhibit bactericidal effects against S. aureus biofilm, which was associated with increased uptake of antibiotics to the bacterial cells. Importantly, the application of MNP/AMF could promote the bactericidal activity of macrophages against intracellular bacteria via MNP-dependent generation of reactive oxygen species (ROS). Conclusion: Our results validate that the application of mild MNP/AMF hyperthermia within a safe thermal dose threshold is synergistic with conventional antibiotics as well as aids host innate immune response of macrophages for the clearance of intracellular bacteria.
Collapse
Affiliation(s)
- Layla Alumutairi
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biology, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Mitchell Filka
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | | | - Min-Ho Kim
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
15
|
Leseigneur C, Lê-Bury P, Pizarro-Cerdá J, Dussurget O. Emerging Evasion Mechanisms of Macrophage Defenses by Pathogenic Bacteria. Front Cell Infect Microbiol 2020; 10:577559. [PMID: 33102257 PMCID: PMC7545029 DOI: 10.3389/fcimb.2020.577559] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Macrophages participate to the first line of defense against infectious agents. Microbial pathogens evolved sophisticated mechanisms to escape macrophage killing. Here, we review recent discoveries and emerging concepts on bacterial molecular strategies to subvert macrophage immune responses. We focus on the expanding number of fascinating subversive tools developed by Listeria monocytogenes, Staphylococcus aureus, and pathogenic Yersinia spp., illustrating diversity and commonality in mechanisms used by microorganisms with different pathogenic lifestyles.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Pierre Lê-Bury
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Javier Pizarro-Cerdá
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France.,National Reference Laboratory Plague & Other Yersiniosis, Institut Pasteur, Paris, France.,WHO Collaborative Research & Reference Centre for Yersinia, Institut Pasteur, Paris, France
| | - Olivier Dussurget
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
16
|
Yu B, Wang Z, Almutairi L, Huang S, Kim MH. Harnessing iron-oxide nanoparticles towards the improved bactericidal activity of macrophage against Staphylococcus aureus. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102158. [PMID: 31982615 DOI: 10.1016/j.nano.2020.102158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/20/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022]
Abstract
Iron oxide nanoparticles (IONPs) have been increasingly used in various biomedical applications in preclinical and clinical settings. Although the interactions of IONPs with macrophages have been well-reported in the context of nanoparticle toxicity, harnessing the capacity of IONPs in reprograming macrophages towards bactericidal activity has not been explored. Here, using an in vitro culture model of macrophages and an in vivo mouse model of skin wound infection by Staphylococcus aureus (S. aureus), we demonstrated that IONPs in combination with a strategy to trigger the Fenton reaction could significantly enhance bactericidal effects of macrophages against intracellular S. aureus by inducing a M1 macrophage polarization that stimulates the production of reactive oxygen species. Our study supports that harnessing the characteristic of IONPs to tune macrophage polarization to exhibit a bactericidal activity may provide a new strategy for treating infectious diseases.
Collapse
Affiliation(s)
- Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zhongxia Wang
- Department of Chemistry, Kent State University, Kent, OH, USA
| | - Layla Almutairi
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Songping Huang
- Department of Chemistry, Kent State University, Kent, OH, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
17
|
Campoccia D, Mirzaei R, Montanaro L, Arciola CR. Hijacking of immune defences by biofilms: a multifront strategy. BIOFOULING 2019; 35:1055-1074. [PMID: 31762334 DOI: 10.1080/08927014.2019.1689964] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Biofilm formation by pathogens and opportunistic bacteria is the basis of persistent or recurrent infections. Up to 80% of bacterial infections in humans are associated with biofilms. Despite the efficiency of the evolved and complex human defence system against planktonic bacteria, biofilms are capable of subverting host defences. The immune system is not completely effective in opposing bacteria and preventing infection. Increasing attention is being focussed on the mechanisms enabling bacterial biofilms to skew the coordinate action of humoral and cell mediated responses. Knowledge of the interactions between biofilm bacteria and the immune system is critical to effectively address biofilm infections, which have multiplied over the years with the spread of biomaterials in medicine. In this article, the latest information on the interactions between bacterial biofilms and immune cells is examined and the areas where of information is still lacking are explored.
Collapse
Affiliation(s)
- Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rasoul Mirzaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lucio Montanaro
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Di Domenico EG, Cavallo I, Capitanio B, Ascenzioni F, Pimpinelli F, Morrone A, Ensoli F. Staphylococcus aureus and the Cutaneous Microbiota Biofilms in the Pathogenesis of Atopic Dermatitis. Microorganisms 2019; 7:E301. [PMID: 31470558 PMCID: PMC6780378 DOI: 10.3390/microorganisms7090301] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Biofilm is the dominant mode of growth of the skin microbiota, which promotes adhesion and persistence in the cutaneous microenvironment, thus contributing to the epidermal barrier function and local immune modulation. In turn, the local immune microenvironment plays a part in shaping the skin microbiota composition. Atopic dermatitis (AD) is an immune disorder characterized by a marked dysbiosis, with a sharp decline of microbial diversity. During AD flares biofilm-growing Staphylococcus aureus emerges as the major colonizer in the skin lesions, in strict association with disease severity. The chronic production of inflammatory cytokines in the skin of AD individuals concurs at supporting S. aureus biofilm overgrowth at the expense of other microbial commensals, subverting the composition of the healthy skin microbiome. The close relationship between the host and microbial biofilm resident in the skin has profound implications on human health, making skin microbiota an attractive target for the therapeutic management of different skin disorders.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy.
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Bruno Capitanio
- Division of Dermatology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, University of Rome Sapienza, 00161 Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Aldo Morrone
- Scientific Director San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
19
|
Josse J, Valour F, Maali Y, Diot A, Batailler C, Ferry T, Laurent F. Interaction Between Staphylococcal Biofilm and Bone: How Does the Presence of Biofilm Promote Prosthesis Loosening? Front Microbiol 2019; 10:1602. [PMID: 31379772 PMCID: PMC6653651 DOI: 10.3389/fmicb.2019.01602] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
With the aging of population, the number of indications for total joint replacement is continuously increasing. However, prosthesis loosening can happen and is related to two major mechanisms: (1) aseptic loosening due to prosthesis micromotion and/or corrosion and release of wear particles from the different components of the implanted material and (2) septic loosening due to chronic prosthetic joint infection (PJI). The “aseptic” character of prosthesis loosening has been challenged over the years, especially considering that bacteria can persist in biofilms and be overlooked during diagnosis. Histological studies on periprosthetic tissue samples reported that macrophages are the principle cells associated with aseptic loosening due to wear debris. They produce cytokines and favor an inflammatory environment that induces formation and activation of osteoclasts, leading to bone resorption and periprosthetic osteolysis. In PJIs, the presence of infiltrates of polymorphonuclear neutrophils is a major criterion for histological diagnosis. Neutrophils are colocalized with osteoclasts and zones of osteolysis. A similar inflammatory environment also develops, leading to bone resorption through osteoclasts. Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus lugdunensis are the main staphylococci observed in PJIs. They share the common feature to form biofilm. For S. aureus and S. epidermidis, the interaction between biofilm and immunes cells (macrophages and polymorphonuclear neutrophils) differs regarding the species. Indeed, the composition of extracellular matrix of biofilm seems to impact the interaction with immune cells. Recent papers also reported the major role of myeloid-derived suppressor cells in biofilm-associated PJIs with S. aureus. These cells prevent lymphocyte infiltration and facilitate biofilm persistence. Moreover, the role of T lymphocytes is still unclear and potentially underestimates. In this review, after introducing the cellular mechanism of aseptic and septic loosening, we will focus on the interrelationships between staphylococcal biofilm, immune cells, and bone cells.
Collapse
Affiliation(s)
- Jérôme Josse
- CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Florent Valour
- CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Yousef Maali
- CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Alan Diot
- CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Cécile Batailler
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Tristan Ferry
- CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Laboratoire de Bactériologie, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|