1
|
Ma J, Wu H, Ma Z, Wu Z. Bacterial and host factors involved in zoonotic Streptococcal meningitis. Microbes Infect 2025; 27:105335. [PMID: 38582147 DOI: 10.1016/j.micinf.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou 511400, China.
| |
Collapse
|
2
|
Yang Z, Chen J, Zhang C, Peng H. Pathological mechanisms of glial cell activation and neurodegenerative and neuropsychiatric disorders caused by Toxoplasma gondii infection. Front Microbiol 2024; 15:1512233. [PMID: 39723133 PMCID: PMC11668811 DOI: 10.3389/fmicb.2024.1512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Toxoplasma gondii is an intracellular opportunistic parasite that exists in a latent form within the human central nervous system (CNS), even in immune-competent hosts. During acute infection, T. gondii traverses the blood-brain barrier (BBB). In the subsequent chronic infection phase, the infiltration of immune cells into the brain, driven by T. gondii infection and the formation of parasitic cysts, leads to persistent activation and proliferation of astrocytes and microglia. This process results in neuronal damages that are fatal in some cases. Through inducing systemic immune responses, T. gondii infection can dramatically alter the behavior of rodents and increase the risk of various neuropsychiatric disorders in humans. In this review, we explore some recent research progress on the major events involved in BBB disruption, glial cell activation and neuronal damage following T. gondii infection in hosts. It further discusses potential pathological mechanisms and the feasible treatment approaches for the neurodegenerative and neuropsychiatric disorders caused by T. gondii infection to extend our understanding for pathogenesis and preventive control of toxoplasmosis in humans.
Collapse
Affiliation(s)
| | | | | | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Qi K, Yi X, Wang M, Wang J, Sun H, Liang P, Xu J, Zheng H. Streptococcus parasuis, an Emerging Zoonotic Pathogen, Possesses the Capacity to Induce Cerebral Inflammatory Responses. Pathogens 2023; 12:pathogens12040600. [PMID: 37111486 PMCID: PMC10141694 DOI: 10.3390/pathogens12040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
To date, three Streptococcus parasuis strains, BS26, BS27, and NN1, have been isolated from the blood cultures of patients with peritonitis, pneumonia, and arthritis, indicating that S. parasuis is an emerging threat to susceptible people. There is thus an urgent need to further evaluate the pathogenesis of S. parasuis clinical strains in order to design efficient anti-inflammatory strategies. Our previous study demonstrated the capacity of S. parasuis clinical strains to enter the central nervous system (CNS) of infected mice. However, the characteristics and inflammatory mechanism of CNS infections caused by S. parasuis are still non-available. In the present study, we investigated the proportion and time of two clinical S. parasuis strains NN1 and BS26 infected mice that developed neurological symptoms. The characteristics of histopathological changes and the cerebral immune response in mice with neurological symptoms were analyzed. Furthermore, we evaluated the roles of microglia and astrocytes in the S. parasuis clinical strain-induced cerebral inflammation. Our data indicated that S. parasuis clinical strains possess a high potential to induce cerebral inflammation in susceptible people at the early phase of infection. Our study contributes to increasing the understanding of the pathogenicity of S. parasuis and the inflammatory mechanisms of the brain against infection caused by S. parasuis.
Collapse
Affiliation(s)
- Kexin Qi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueli Yi
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Mingliu Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, China
| | - Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Pujun Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
4
|
Wang J, Liang P, Sun H, Wu Z, Gottschalk M, Qi K, Zheng H. Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of Streptococcus suis epidemic strains. Virulence 2022; 13:1455-1470. [PMID: 36031944 PMCID: PMC9423846 DOI: 10.1080/21505594.2022.2116160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus suis epidemic strains were responsible for two outbreaks in China and possessed increased pathogenicity which was featured prominently by inducing an excessive inflammatory response at the early phase of infection. To discover the critical genes responsible for the pathogenicity increase of S. suis epidemic strains, the genome-wide transcriptional profiles of epidemic strain SC84 were investigated at the early phase of interaction with BV2 cells. The overall low expression levels of 89K pathogenicity island (PAI) and 129 known virulence genes in the SC84 interaction groups indicated that its pathogenicity increase should be attributed to novel mechanisms. Using highly pathogenic strain P1/7 and intermediately pathogenic strain 89–1591 as controls, 11 pathogenicity increase crucial genes (PICGs) and 38 pathogenicity increase-related genes (PIRGs) were identified in the SC84 incubation groups. The PICGs encoded proteins related to the methionine biosynthesis/uptake pathway and played critical roles in the pathogenicity increase of epidemic strains. A high proportion of PIRGs encoded surface proteins related to host cell adherence and immune escape, which may be conducive to the pathogenicity increase of epidemic strains by rapidly initiating infection. The fact that none of PICGs and PIRGs belonged to epidemic strain-specific gene indicated that the pathogenicity increase of epidemic strain may be determined by the expression level of genes, rather than the presence of them. Our results deepened the understanding on the mechanism of the pathogenicity increase of S. suis epidemic strains and provided novel approaches to control the life-threatening infections of S. suis epidemic strains.
Collapse
Affiliation(s)
- Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Pujun Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- OIE Reference Lab for Swine Streptococcosis, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zongfu Wu
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Department of Clinical Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Kexin Qi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
5
|
Maguire E, Connor-Robson N, Shaw B, O’Donoghue R, Stöberl N, Hall-Roberts H. Assaying Microglia Functions In Vitro. Cells 2022; 11:3414. [PMID: 36359810 PMCID: PMC9654693 DOI: 10.3390/cells11213414] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Microglia, the main immune modulators of the central nervous system, have key roles in both the developing and adult brain. These functions include shaping healthy neuronal networks, carrying out immune surveillance, mediating inflammatory responses, and disposing of unwanted material. A wide variety of pathological conditions present with microglia dysregulation, highlighting the importance of these cells in both normal brain function and disease. Studies into microglial function in the context of both health and disease thus have the potential to provide tremendous insight across a broad range of research areas. In vitro culture of microglia, using primary cells, cell lines, or induced pluripotent stem cell derived microglia, allows researchers to generate reproducible, robust, and quantifiable data regarding microglia function. A broad range of assays have been successfully developed and optimised for characterizing microglial morphology, mediation of inflammation, endocytosis, phagocytosis, chemotaxis and random motility, and mediation of immunometabolism. This review describes the main functions of microglia, compares existing protocols for measuring these functions in vitro, and highlights common pitfalls and future areas for development. We aim to provide a comprehensive methodological guide for researchers planning to characterise microglial functions within a range of contexts and in vitro models.
Collapse
Affiliation(s)
- Emily Maguire
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | | | |
Collapse
|
6
|
Interleukin-17A Contributed to the Damage of Blood-CNS Barriers During Streptococcus suis Meningitis. Mol Neurobiol 2022; 59:2116-2128. [PMID: 35044625 DOI: 10.1007/s12035-022-02749-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022]
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic agent that can cause meningitis in humans with high mortality and morbidity. Meningitic S. suis can induce higher level of IL-17 than non-meningitic S. suis. Besides, IL-17A plays various roles on bacterial clearance or disruption of blood-CNS barriers through the downregulation and reorganization of tight junction (TJ) molecules. However, it remains to be elucidated for the role of IL-17A on the infection with meningitic S. suis. Here, we found that meningitic S. suis infection could not only cause acute death due to the damage of multiple organs, but also cause meningitis and clinical nervous signs since 60 h of post-infection due to the penetration of blood-CNS barriers after lasting bacteremia. In contrast, the mice with deficiency of il17a gene could not significantly change the acute inflammatory response and acute death, but it could not show obvious meningitis and clinical nervous signs caused by the meningitic S. suis infection. In addition, we also found that IL-17A could inhibit the transcription and expression of TJ proteins that facilitated the leakage of blood-CNS barriers since 60 h of post-infection during meningitic S. suis infection. Thus, our findings demonstrated that IL-17A could downregulate TJ proteins, which undoubtedly facilitated the leakage of blood-CNS barriers for bacterial invasion and then caused S. suis meningitis, providing potential targets for future prevention and treatment of this disease.
Collapse
|
7
|
Davoli-Ferreira M, Thomson CA, McCoy KD. Microbiota and Microglia Interactions in ASD. Front Immunol 2021; 12:676255. [PMID: 34113350 PMCID: PMC8185464 DOI: 10.3389/fimmu.2021.676255] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) are serious, highly variable neurodevelopmental disorders, commonly characterized by the manifestation of specific behavioral abnormalities, such as stereotypic behaviors and deficits in social skills, including communication. Although the neurobiological basis for ASD has attracted attention in recent decades, the role of microglial cells, which are the main resident myeloid cell population in the brain, is still controversial and underexplored. Microglia play several fundamental roles in orchestrating brain development and homeostasis. As such, alterations in the intrinsic functions of these cells could be one of the driving forces responsible for the development of various neurodevelopmental disorders, including ASD. Microglia are highly sensitive to environmental cues. Amongst the environmental factors known to influence their intrinsic functions, the gut microbiota has emerged as a central player, controlling both microglial maturation and activation. Strikingly, there is now compelling data suggesting that the intestinal microbiota can play a causative role in driving the behavioural changes associated with ASD. Not only is intestinal dysbiosis commonly reported in ASD patients, but therapies targeting the microbiome can markedly alleviate behavioral symptoms. Here we explore the emerging mechanisms by which altered microglial functions could contribute to several major etiological factors of ASD. We then demonstrate how pre- and postnatal environmental stimuli can modulate microglial cell phenotype and function, underpinning the notion that reciprocal interactions between microglia and intestinal microbes could play a crucial role in ASD aetiology.
Collapse
Affiliation(s)
- Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Yang B, Yang R, Xu B, Fu J, Qu X, Li L, Dai M, Tan C, Chen H, Wang X. miR-155 and miR-146a collectively regulate meningitic Escherichia coli infection-mediated neuroinflammatory responses. J Neuroinflammation 2021; 18:114. [PMID: 33985523 PMCID: PMC8120916 DOI: 10.1186/s12974-021-02165-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023] Open
Abstract
Background Escherichia coli is the most common Gram-negative bacterium causing meningitis, and E. coli meningitis is associated with high mortality and morbidity throughout the world. Our previous study showed that E. coli can colonize the brain and cause neuroinflammation. Increasing evidence supports the involvement of miRNAs as key regulators of neuroinflammation. However, it is not clear whether these molecules participate in the regulation of meningitic E. coli-mediated neuroinflammation. Methods The levels of miR-155 and miR-146a, as well as their precursors, in E. coli-infected astrocytes were measured using quantitative real-time PCR (qPCR). Overexpression and knockdown studies of miR-155 and miR-146a were performed to observe the effects on bacterial loads, cytokines, chemokines, and NF-κB signaling pathways. Bioinformatics methods were utilized to predict the target genes, and these target genes were validated using qPCR, Western blotting, and luciferase reporter system. In vivo knockdown of miR-155 and miR-146a was carried out to observe the effects on bacterial loads, inflammatory genes, astrocyte activation, microglia activation, and survival in a mouse model. Results The levels of miR-155, miR-146a, and their precursors were significantly increased in astrocytes during E. coli infection. miR-155 and miR-146a were induced by the NF-κB-p65 signaling pathway upon infection. Overexpressing and inhibiting miR-155 and miR-146a in astrocytes did not affect the bacterial loads. Further, the in vitro overexpression of miR-155 and miR-146a suppressed the E. coli-induced inflammatory response, whereas the inhibition of miR-155 and miR-146a enhanced it. Mechanistically, miR-155 inhibited TAB2, and miR-146a targeted IRAK1 and TRAF6; therefore, they functioned collaboratively to modulate TLR-mediated NF-κB signaling. In addition, both miR-155 and miR-146a could regulate the EGFR–NF-κB signaling pathway. Finally, the in vivo suppression of E. coli-induced miR-155 and miR-146a further promoted the production of inflammatory cytokines, aggravated astrocyte and microglia activation, and decreased mouse survival time, without affecting the bacterial loads in the blood and brain. Conclusions E. coli infection induced miR-155 and miR-146a, which collectively regulated bacteria-triggered neuroinflammatory responses through negative feedback regulation involving the TLR-mediated NF-κB and EGFR–NF-κB signaling pathways, thus protecting the central nervous system from further neuroinflammatory damage.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinyi Qu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Menghong Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China. .,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China. .,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Yue C, Hu C, Xiang P, Zhang S, Xiao H, Zhou W, Jin H, Shi D, Li J, Xu L, Chen Y, Zeng Y. Autophagy is a defense mechanism controlling Streptococcus suis serotype 2 infection in murine microglia cells. Vet Microbiol 2021; 258:109103. [PMID: 33991788 DOI: 10.1016/j.vetmic.2021.109103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
Streptococcus suis (S. suis) is an important swine and human pathogen, causing severe meningitis with high morbidity and mortality worldwide. Microglial activation and inflammation are responsible for bacterial meningitis. S. suis has been identified to activate microglia, but the role of autophagy following S. suis infection in microglial cells remains elusive. In this study, using western blot, immunofluorescent staining and transmission electron microscopy (TEM), we demonstrated that S. suis serotype 2 (SS2) triggered autophagosome and enhanced autophagic flux in BV2 microglial cells. Autophagy activators, rapamycin, could further promote autophagy in S. suis-infected BV2 cells. Conversely, autophagy inhibitors including siRNA targeting ATG5, Beclin-1, ATG9a and ATG12 attenuated the autophagic process. Consistent with the in vitro results, autophagy was activated following S. suis infection in brain tissue including frontal cortex and hippocampus in a mouse model of meningitis. Further experiment showed that autophagy serves as a cellular defense mechanism to limit invaded bacteria and microglia inflammation in S. suis-infected BV2 cells. This is the first study reporting that the interaction between autophagy and microglia cells in response to S. suis infection. The possible mechanism involved could additionally suggest potential therapeutic approaches for bacterial meningitis.
Collapse
Affiliation(s)
- Chaoxiong Yue
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Chenlu Hu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Peng Xiang
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Siming Zhang
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Hongde Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Bleuzé M, Auger JP, Lavagna A, Gisch N, Gottschalk M, Segura M. In vitro characterization of granulocyte-colony stimulating factor (G-CSF) production by dendritic cells and macrophages during Streptococcus suis infection. Immunobiology 2020; 225:151979. [PMID: 32747024 DOI: 10.1016/j.imbio.2020.151979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent. Infections induce an exacerbated inflammation that can result in sudden death (septic shock) and meningitis. Though neutrophilic leukocytosis characterizes S. suis infection, the mediators involved are poorly understood. Among them, granulocyte-colony stimulating factor (G-CSF), a pro-inflammatory cytokine, triggers proliferation of neutrophil progenitors and neutrophil mobilization. However, the systemic production of G-CSF induced during S. suis infection, the cell types involved, and the underlying mechanisms remain unknown. In a S. suis serotype 2 mouse model of systemic infection, plasma levels of G-CSF rapidly increased after infection. S. suis activation of DCs and macrophages resulted in high (> 1000 pg/mL) and comparable production levels of G-CSF, as measured by ELISA. By using mutant strains deficient in capsular polysaccharide (CPS) or lipoprotein maturation in combination with purified lipoteichoic acid (LTA) from the latter mutant strain, it was showed that G-CSF production is mainly mediated by S. suis lipoproteins. The Toll-like receptor (TLR) pathway via myeloid differentiation primary response 88 (MyD88) is required for G-CSF production by DCs and macrophages following S. suis activation, with a partial involvement of TLR2. On the other hand, TLR2-independant G-CSF production induced by S. suis requires internalization and bacterial DNA might play a role in this pathway. Finally, these signals activated nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways leading to G-CSF production. In conclusion, this study demonstrated for the first time that S. suis induces G-CSF production in vivo and DCs and macrophages are key cellular sources of this cytokine mediator, mainly via the binding of lipoproteins to TLR2. The CPS significantly reduced this activation, confirming the powerful role of this component in S. suis virulence. As such, this study contributes to better understand how DCs and macrophages produce G-CSF in response to S. suis, and potentially to other streptococci.
Collapse
Affiliation(s)
- Marêva Bleuzé
- Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, J2S 2M2, QC, Canada
| | - Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, J2S 2M2, QC, Canada
| | - Agustina Lavagna
- Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, J2S 2M2, QC, Canada
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, J2S 2M2, QC, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, J2S 2M2, QC, Canada.
| |
Collapse
|
11
|
Inflammatory Monocytes and Neutrophils Regulate Streptococcus suis-Induced Systemic Inflammation and Disease but Are Not Critical for the Development of Central Nervous System Disease in a Mouse Model of Infection. Infect Immun 2020; 88:IAI.00787-19. [PMID: 31818962 PMCID: PMC7035915 DOI: 10.1128/iai.00787-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Moreover, monocytes are composed of two main subsets: shorter-lived inflammatory monocytes and longer-lived patrolling monocytes. However, regardless of their presence in blood and the fact that S. suis-induced meningitis is characterized by infiltration of monocytes and neutrophils into the CNS, their role during the S. suis systemic and CNS diseases remains unknown. Consequently, we hypothesized that monocytes and neutrophils participate in S. suis infection via bacterial clearance and inflammation. Results demonstrated that inflammatory monocytes and neutrophils regulate S. suis-induced systemic disease via their role in inflammation required for bacterial burden control. In the CNS, inflammatory monocytes contributed to exacerbation of S. suis-induced local inflammation, while neutrophils participated in bacterial burden control. However, development of clinical CNS disease was independent of both cell types, indicating that resident immune cells are mostly responsible for S. suis-induced CNS inflammation and clinical disease and that inflammatory monocyte and neutrophil infiltration is a consequence of the induced inflammation. In contrast, the implication of patrolling monocytes was minimal throughout the S. suis infection. Consequently, this study demonstrates that while inflammatory monocytes and neutrophils modulate S. suis-induced systemic inflammation and disease, they are not critical for CNS disease development.
Collapse
|
12
|
Yuan Z, Chen X, Yang W, Lou B, Ye N, Liu Y. The anti-inflammatory effect of minocycline on endotoxin-induced uveitis and retinal inflammation in rats. Mol Vis 2019; 25:359-372. [PMID: 31354229 PMCID: PMC6620367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/03/2019] [Indexed: 11/20/2022] Open
Abstract
Purpose Uveitis is a serious inflammatory disease of the uvea, frequently leading to visual impairment and irreversible blindness. Here, we investigated the anti-inflammatory effect of minocycline on rat endotoxin-induced uveitis (EIU) and retinal inflammation. Methods For in vivo studies, the rat EIU model was induced with intravitreal injection of lipopolysaccharide (LPS). Minocycline was administered intraperitoneally 2 h before and after the LPS injection. The severity of the ocular inflammation was evaluated with slit-lamp photography, aqueous humor cell counting, protein quantitative determination, and histological analysis. Retinal microglia were labeled with a fluorescent dye 4Di-10ASP. Microglial activity and inflammatory cytokine production were analyzed with immunofluorescence and real-time PCR. For the in vitro studies, BV-2 microglia cells were stimulated with LPS or cotreated with minocycline for 6 h. Toll-like receptor (TLR) 2/4 levels were determined with real-time PCR and western blotting. Results The LPS-challenged eyes displayed severe inflammation in all ocular structures, including a large number of anterior chamber cells, fibrin exudation, hypopyon, and infiltrated inflammatory cells in the vitreous and retina. Immunostaining of the retinal whole-mounts also revealed numerous retinal microglia were activated promptly, and then more and more peripheral leukocytes were recruited and infiltrated in the LPS-injected retinas. Additionally, the production of tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL-2), interleukin-1 beta (IL-1β), and IL-6 was dramatically increased. However, minocycline treatment strongly inhibited microglia activation, decreased inflammatory cytokine production, prevented peripheral inflammatory cell recruitment, and significantly attenuated ocular inflammation. Finally, we demonstrated the mechanism of the microglia inactivation effect of minocycline is via suppression of TLR4 signaling. Conclusions This study indicates minocycline is far beyond an antibiotic. It not only attenuates rat EIU but also inhibits retinal inflammation through inactivating microglia, inhibiting inflammatory cell recruitment and inflammatory cytokine production.
Collapse
|
13
|
Lavagna A, Auger JP, Dumesnil A, Roy D, Girardin SE, Gisch N, Segura M, Gottschalk M. Interleukin-1 signaling induced by Streptococcus suis serotype 2 is strain-dependent and contributes to bacterial clearance and inflammation during systemic disease in a mouse model of infection. Vet Res 2019; 50:52. [PMID: 31262357 PMCID: PMC6604435 DOI: 10.1186/s13567-019-0670-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine pathogen and zoonotic agent causing sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the infection. A rapid, effective and balanced innate immune response against S. suis is critical to control bacterial growth without causing excessive inflammation. Even though interleukin (IL)-1 is one of the most potent and earliest pro-inflammatory mediators produced, its role in the S. suis pathogenesis has not been studied. We demonstrated that a classical virulent European sequence type (ST) 1 strain and the highly virulent ST7 strain induce important levels of IL-1 in systemic organs. Moreover, bone marrow-derived dendritic cells and macrophages contribute to its production, with the ST7 strain inducing higher levels. To better understand the underlying mechanisms involved, different cellular pathways were studied. Independently of the strain, IL-1β production required MyD88 and involved recognition via TLR2 and possibly TLR7 and TLR9. This suggests that the recognized bacterial components are similar and conserved between strains. However, very high levels of the pore-forming toxin suilysin, produced only by the ST7 strain, are required for efficient maturation of pro-IL-1β via activation of different inflammasomes resulting from pore formation and ion efflux. Using IL-1R−/− mice, we demonstrated that IL-1 signaling plays a beneficial role during S. suis systemic infection by modulating the inflammation required to control and clear bacterial burden, thus promoting host survival. Beyond a certain threshold, however, S. suis-induced inflammation cannot be counterbalanced by this signaling, making it difficult to discriminate its role.
Collapse
Affiliation(s)
- Agustina Lavagna
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Audrey Dumesnil
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - David Roy
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
14
|
Auger JP, Dolbec D, Roy D, Segura M, Gottschalk M. Role of the Streptococcus suis serotype 2 capsular polysaccharide in the interactions with dendritic cells is strain-dependent but remains critical for virulence. PLoS One 2018; 13:e0200453. [PMID: 30001363 PMCID: PMC6042740 DOI: 10.1371/journal.pone.0200453] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/26/2018] [Indexed: 11/18/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. However, serotype 2 strains are heterogeneous, composed of a multitude of sequence types (STs) whose distribution greatly varies worldwide. Of the virulence factors presently described for S. suis, the capsular polysaccharide (CPS) is a critical factor implicated in a multitude of functions, including in impairment of phagocytosis and innate immune cell activation by masking underlying bacterial components. However, these roles have been described using Eurasian ST1 and ST7 strains, which greatly differ from North American ST25 strains. Consequently, the capacity of the CPS to mask surface antigens and putative virulence factors in non-Eurasian strains remains unknown. Herein, the role of the S. suis serotype 2 CPS of a prototype intermediate virulent North American ST25 strain, in comparison with that of a virulent European ST1 strain, with regards to interactions with dendritic cells, as well as virulence during the systemic phase of infection, was evaluated. Results demonstrated that the CPS remains critical for virulence and development of clinical disease regardless of strain background, due to its requirement for survival in blood. However, its role in the interactions with dendritic cells is strain-dependent. Consequently, certain key characteristics associated with the CPS are not necessarily applicable to all S. suis serotype 2 strains. This indicates that though certain factors may be important for S. suis serotype 2 virulence, strain background could be as determining, reiterating the need in using strains from varying backgrounds in order to better characterize the S. suis pathogenesis.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Dominic Dolbec
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - David Roy
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
15
|
Zhang S, Gao X, Xiao G, Lu C, Yao H, Fan H, Wu Z. Intracranial Subarachnoidal Route of Infection for Investigating Roles of Streptococcus suis Biofilms in Meningitis in a Mouse Infection Model. J Vis Exp 2018. [PMID: 30010655 DOI: 10.3791/57658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus suis is not only a major bacterial pathogen of pigs worldwide but also an emerging zoonotic agent. In humans and pigs, meningitis is a major manifestation of S. suis infections. A suitable infection model is an essential tool to understand the mechanisms of diseases caused by pathogens. Several routes of infection in mice have been developed to study the pathogenesis of S. suis infection. However, the intraperitoneal, intranasal, and intravenous routes of infection are not suitable for studying the roles of S. suis surface components in meningitis directly in the brain, such as the extracellular matrix from biofilms. Although intracisternal inoculation has been used for S. suis infection, the precise injection site has not been described. Here, the intracranial subarachnoidal route of infection was described in a mouse model to investigate the roles of biofilms in S. suis meningitis. S. suis planktonic cells or biofilm state cells were directly injected into the subarachnoid space of mice through the injection site located 3.5 mm rostral from the bregma. Histopathological analysis and increased mRNA expression of TLR2 and cytokines of the brain tissue from mice injected with biofilm state cells clearly indicated that S. suis biofilm plays definitive roles in S. suis meningitis. This route of infection has obvious advantages over other routes of infection, allowing the study of the host-bacterium interaction. Furthermore, it permits the effect of bacterial components on host immune responses directly in the brain to be assessed, and mimics bacterial entrance into the central nervous system. This route of infection can be extended for investigating the mechanisms of meningitis caused by other bacteria. In addition, it can also be used to test the efficacy of drugs against bacterial meningitis.
Collapse
Affiliation(s)
- Shouming Zhang
- College of Veterinary Medicine, Nanjing Agricultural University; Key Lab of Animal Bacteriology, Ministry of Agriculture; OIE Reference Lab for Swine Streptococcosis
| | - Xueping Gao
- College of Veterinary Medicine, Nanjing Agricultural University; Key Lab of Animal Bacteriology, Ministry of Agriculture; OIE Reference Lab for Swine Streptococcosis
| | - Genhui Xiao
- College of Veterinary Medicine, Nanjing Agricultural University; Key Lab of Animal Bacteriology, Ministry of Agriculture; OIE Reference Lab for Swine Streptococcosis; School of Medicine, Tsinghua University
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University; Key Lab of Animal Bacteriology, Ministry of Agriculture; OIE Reference Lab for Swine Streptococcosis
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University; Key Lab of Animal Bacteriology, Ministry of Agriculture; OIE Reference Lab for Swine Streptococcosis
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University; Key Lab of Animal Bacteriology, Ministry of Agriculture; OIE Reference Lab for Swine Streptococcosis; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University; Key Lab of Animal Bacteriology, Ministry of Agriculture; OIE Reference Lab for Swine Streptococcosis;
| |
Collapse
|
16
|
Schimunek L, Serve R, Teuben MPJ, Störmann P, Auner B, Woschek M, Pfeifer R, Horst K, Simon TP, Kalbitz M, Sturm R, Pape HC, Hildebrand F, Marzi I, Relja B. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model. PLoS One 2017; 12:e0187404. [PMID: 29125848 PMCID: PMC5681268 DOI: 10.1371/journal.pone.0187404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased immediately and remained lower during the first 3.5 h after trauma, but increased after 24 h. Antagonizing TLR2 significantly decreased the phagocytizing activity of monocytes. Both, decreased percentage of activated as well as TLR2 expressing monocytes persisted as long as the reduced phagocytosis was observed. Moreover, neutralizing TLR2 led to a reduced capability of phagocytosis as well. Therefore, we assume that reduced TLR2 expression may be responsible for the decreased phagocytizing capacity of circulating monocytes in the early post-traumatic phase.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Rafael Serve
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Michel P. J. Teuben
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Störmann
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Birgit Auner
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Mathias Woschek
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Roman Pfeifer
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klemens Horst
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Tim-P. Simon
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Miriam Kalbitz
- Department of Orthopedic Trauma, Hand, Plastic, and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Ramona Sturm
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Hans-C. Pape
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Borna Relja
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
17
|
Xu B, Zhang P, Li W, Liu R, Tang J, Fan H. hsdS, Belonging to the Type I Restriction-Modification System, Contributes to the Streptococcus suis Serotype 2 Survival Ability in Phagocytes. Front Microbiol 2017; 8:1524. [PMID: 28848531 PMCID: PMC5552720 DOI: 10.3389/fmicb.2017.01524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic agent in swine and humans. Anti-phagocytosis and survival in phagocytic cells and whole blood is essential for bacteria to be pathogenic. In this study, the host specificity determinant specificity subunit (coded by hsdS) of the Type I Restriction-Modification system and two peptidoglycan-binding proteins (coded by lysM and lysM′, respectively), which were simultaneously found to be subjected to transcript-level influence by hsdS, were identified to facilitate the anti-phagocytosis of SS2 to a microglia cell line BV2. Furthermore, they significantly enhanced its survival in BV2, whole blood, and a peroxidation environment (H2O2) (p < 0.05), yet not in the acidic condition based on statistical analysis of the characteristic differences between gene mutants and wild-type SS2. In contrast, another specificity subunit, coded by hsdS′, that belonged to the same Type I Restriction-Modification system, only significantly reduced the survival ability of SS2 in the acidic condition when in the form of a gene-deleted mutant (p < 0.05), but it did not significantly influence the survival ability in other conditions mentioned above or have enhanced anti-phagocytosis action when compared with wild-type SS2. In addition, the mutation of hsdS significantly enhanced the secretion of nitric oxide and TNF-α by BV2 with SS2 incubation (p < 0.05). The SS2 was tested, and it failed to stimulate BV2 to produce IFN-γ. These results demonstrated that hsdS contributed to bacterial anti-phagocytosis and survival in adverse host environments through positively impacting the transcription of two peptidoglycan-binding protein genes, enhancing resistance to reactive oxygen species, and reducing the secretion of TNF-α and nitric oxide by phagocytes. These findings revealed new mechanisms of SS2 pathogenesis.
Collapse
Affiliation(s)
- Bin Xu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Poultry Institute, Chinese Academy of Agricultural SciencesYangzhou, China
| | - Weiyi Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Rui Liu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Jinsheng Tang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
18
|
Streptococcus suis small RNA rss04 contributes to the induction of meningitis by regulating capsule synthesis and by inducing biofilm formation in a mouse infection model. Vet Microbiol 2016; 199:111-119. [PMID: 28110777 DOI: 10.1016/j.vetmic.2016.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022]
Abstract
Streptococcus suis (SS) is an important pathogen for pigs, and it is also considered as a zoonotic agent for humans. Meningitis is one of the most common features of the infection caused by SS, but little is known about the mechanisms of SS meningitis. Recent studies have revealed that small RNAs (sRNAs) have emerged as key regulators of the virulence in several bacteria. In the previous study, we reported that SS sRNA rss04 was up-regulated in pig cerebrospinal fluid and contributes to SS virulence in a zebrafish infection model. Here, we show that rss04 facilitates SS invasion of mouse brain and lung in vivo. Label-free quantitation mass spectrometry analysis revealed that rss04 regulates transcriptional regulator CcpA and several virulence factors including LuxS. Transmission electron microscope and Dot-blot analyses indicated that rss04 represses capsular polysaccharide (CPS) production, which in turn facilitates SS adherence and invasion of mouse brain microvascular endothelial cells bEnd.3 in vitro and activates the mRNA expression of TLR2, CCL2, IL-6 and TNF-α in mouse brain in vivo at 12h post-infection. In addition, rss04 positively regulates SS biofilm formation. Survival analysis of infected mice showed that biofilm state in brain contributes to SS virulence by intracranial subarachnoidal route of infection. Together, our data reveal that SS sRNA rss04 contributes to the induction of meningitis by regulating the CPS synthesis and by inducing biofilm formation, thereby increasing the virulence in a mouse infection model. To our knowledge, rss04 represents the first bacterial sRNA that plays definitive roles in bacterial meningitis.
Collapse
|
19
|
Yang XP, Fu JY, Yang RC, Liu WT, Zhang T, Yang B, Miao L, Dou BB, Tan C, Chen HC, Wang XR. EGFR transactivation contributes to neuroinflammation in Streptococcus suis meningitis. J Neuroinflammation 2016; 13:274. [PMID: 27756321 PMCID: PMC5070219 DOI: 10.1186/s12974-016-0734-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Streptococcus suis serotype 2 (SS2) is an important zoonotic bacterial pathogen in both humans and animals, which can cause high morbidity and mortality. Meningitis is one of the major clinical manifestations of SS2 infection. However, the specific process of SS2 meningitis and its molecular mechanisms remain unclear. Epidermal growth factor receptor (EGFR) has been reported to initiate transduction of intracellular signals and regulate host inflammatory responses. Whether and how EGFR contributes to the development of S. suis meningitis are currently unknown. METHODS The tyrosine phosphorylation of cellular proteins, the transactivation of EGFR, as well as its dimerization, and the associated signal transduction pathways were investigated by immunoprecipitation and western blotting. Real-time quantitative PCR was used to investigate the transcriptional level of the ErbB family members, EGFR-related ligands, cytokines, and chemokines. The secretion of cytokines and chemokines in the serum and brain were detected by Q-Plex™ Chemiluminescent ELISA. RESULTS We found an important role of EGFR in SS2 strain SC19-induced meningitis. SC19 increasingly adhered to human brain microvascular endothelial cells (hBMEC) and caused inflammatory lesions in the brain tissues, with significant induction and secretion of proinflammatory cytokines and chemokines in the serum and brains. SC19 infection of hBMEC induced tyrosine phosphorylation of cellular EGFR in a ligand-dependent manner involving the EGF-like ligand HB-EGF, amphiregulin (AREG), and epiregulin (EREG) and led to heterodimerization of EGFR/ErbB3. The EGFR transactivation did not participate in SS2 strain SC19 adhesion of hBMEC, as well as in bacterial colonization in vivo. However, its transactivation contributed to the bacterial-induced neuroinflammation, via triggering the MAPK-ERK1/2 and NF-κB signaling pathways in hBMEC that promote the production of proinflammatory cytokines and chemokines. CONCLUSIONS We investigated for the first time the tyrosine phosphorylation of cellular proteins in response to SS2 strain SC19 infection of hBMEC and demonstrated the contribution of EGFR to SS2-induced neuroinflammation. These observations propose a novel mechanism involving EGFR in SS2-mediated inflammatory responses in the brain, and therefore, EGFR might be an important host target for further investigation and prevention of neuroinflammation caused by SS2 strains.
Collapse
Affiliation(s)
- Xiao-Pei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ji-Yang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rui-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wen-Tong Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ling Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bei-Bei Dou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
20
|
Auger JP, Fittipaldi N, Benoit-Biancamano MO, Segura M, Gottschalk M. Virulence Studies of Different Sequence Types and Geographical Origins of Streptococcus suis Serotype 2 in a Mouse Model of Infection. Pathogens 2016; 5:pathogens5030048. [PMID: 27409640 PMCID: PMC5039428 DOI: 10.3390/pathogens5030048] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/22/2023] Open
Abstract
Multilocus sequence typing previously identified three predominant sequence types (STs) of Streptococcus suis serotype 2: ST1 strains predominate in Eurasia while North American (NA) strains are generally ST25 and ST28. However, ST25/ST28 and ST1 strains have also been isolated in Asia and NA, respectively. Using a well-standardized mouse model of infection, the virulence of strains belonging to different STs and different geographical origins was evaluated. Results demonstrated that although a certain tendency may be observed, S. suis serotype 2 virulence is difficult to predict based on ST and geographical origin alone; strains belonging to the same ST presented important differences of virulence and did not always correlate with origin. The only exception appears to be NA ST28 strains, which were generally less virulent in both systemic and central nervous system (CNS) infection models. Persistent and high levels of bacteremia accompanied by elevated CNS inflammation are required to cause meningitis. Although widely used, in vitro tests such as phagocytosis and killing assays require further standardization in order to be used as predictive tests for evaluating virulence of strains. The use of strains other than archetypal strains has increased our knowledge and understanding of the S. suis serotype 2 population dynamics.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Nahuel Fittipaldi
- Public Health Ontario and Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| | - Marie-Odile Benoit-Biancamano
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
21
|
Tenenbaum T, Asmat TM, Seitz M, Schroten H, Schwerk C. Biological activities of suilysin: role in Streptococcus suis pathogenesis. Future Microbiol 2016; 11:941-54. [PMID: 27357518 DOI: 10.2217/fmb-2016-0028] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Streptococcus suis is an important swine and zoonotic pathogen equipped with several virulence factors. The pore-forming toxins are the most abundant bacterial toxins and classified as critical virulence (associated) factors of several pathogens. The role of suilysin (SLY), a pore-forming cholesterol-dependent cytolysin of S. suis, as a true virulence factor is under debate. Most of the bacterial toxins have been reported to modulate the host immune system to facilitate invasion and subsequent replication of bacteria within respective host cells. SLY has been demonstrated to play an important role in the pathogenesis of S. suis infection and inflammatory response in vitro and in vivo. This review highlights the contributions of SLY to the pathogenicity of S. suis. It will address its role during the development of S. suis meningitis in pigs, as well as humans, and discuss SLY as a potential vaccine candidate.
Collapse
Affiliation(s)
- Tobias Tenenbaum
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| | - Tauseef M Asmat
- Center for Advanced Studies in Vaccinology and Biotechnology, Brewery Road, University of Balochistan, 87300 Quetta, Pakistan
| | - Maren Seitz
- Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover D-30173, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| |
Collapse
|
22
|
Jiang X, Yang Y, Zhu L, Gu Y, Shen H, Shan Y, Li X, Wu J, Fang W. Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9. Vaccine 2016; 34:6529-6538. [PMID: 27349838 DOI: 10.1016/j.vaccine.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022]
Abstract
Streptococcus suis is one of the common pathogens causing diseases in pigs and covers 35 serotypes with the type 2 strains being more pathogenic and zoonotic. Existing inactivated or subunit vaccines, in clinical use or under trial, could not provide cross protection against other serotypes. We identified a natural low-virulence S. suis type 5 strain XS045 as a live vaccine candidate because it is highly adhesive to the cultured HEp-2 cells, but with no apparent pathogenicity in mice and piglets. We further demonstrate that subcutaneous administration of the live XS045 strain to mice induced high antibody responses and was able to provide cross protection against challenges by a type 2 strain HA9801 (100% protection) and a type 9 strain JX13 (85% protection). Induction of high-titer antibodies with opsonizing activity as well as their cross-reactivity to surface proteins of the types 2 and 9 strains and anti-adhesion effect could be the mechanisms of cross protection. This is the first report that a live vaccine candidate S. suis type 5 strain could induce cross-protection against strains of types 2 and 9. This candidate strain is to be further examined for safety in pigs of different ages and breeds as well as for its protection against other serotypes or other strains of the type 2, a serotype of particular importance from public health concern.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yunkai Yang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lexin Zhu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuanxing Gu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Hongxia Shen
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ying Shan
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaoliang Li
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiusheng Wu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Weihuan Fang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
23
|
Seele J, Nau R, Prajeeth CK, Stangel M, Valentin-Weigand P, Seitz M. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures. Pathogens 2016; 5:pathogens5020043. [PMID: 27304968 PMCID: PMC4931394 DOI: 10.3390/pathogens5020043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/28/2016] [Accepted: 06/07/2016] [Indexed: 01/09/2023] Open
Abstract
Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.
Collapse
Affiliation(s)
- Jana Seele
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover 30173, Germany.
- Institute for Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen 37099, Germany.
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, Göttingen 37075, Germany.
| | - Roland Nau
- Institute for Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen 37099, Germany.
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, Göttingen 37075, Germany.
| | - Chittappen K Prajeeth
- Department of Neurology, Center for Systems Neuroscience (ZSN), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany.
| | - Martin Stangel
- Department of Neurology, Center for Systems Neuroscience (ZSN), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany.
| | - Peter Valentin-Weigand
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover 30173, Germany.
| | - Maren Seitz
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover 30173, Germany.
| |
Collapse
|
24
|
Doran KS, Fulde M, Gratz N, Kim BJ, Nau R, Prasadarao N, Schubert-Unkmeir A, Tuomanen EI, Valentin-Weigand P. Host-pathogen interactions in bacterial meningitis. Acta Neuropathol 2016; 131:185-209. [PMID: 26744349 PMCID: PMC4713723 DOI: 10.1007/s00401-015-1531-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/26/2022]
Abstract
Bacterial meningitis is a devastating disease occurring worldwide with up to half of the survivors left with permanent neurological sequelae. Due to intrinsic properties of the meningeal pathogens and the host responses they induce, infection can cause relatively specific lesions and clinical syndromes that result from interference with the function of the affected nervous system tissue. Pathogenesis is based on complex host–pathogen interactions, some of which are specific for certain bacteria, whereas others are shared among different pathogens. In this review, we summarize the recent progress made in understanding the molecular and cellular events involved in these interactions. We focus on selected major pathogens, Streptococcus pneumonia, S. agalactiae (Group B Streptococcus), Neisseria meningitidis, and Escherichia coli K1, and also include a neglected zoonotic pathogen, Streptococcus suis. These neuroinvasive pathogens represent common themes of host–pathogen interactions, such as colonization and invasion of mucosal barriers, survival in the blood stream, entry into the central nervous system by translocation of the blood–brain and blood–cerebrospinal fluid barrier, and induction of meningeal inflammation, affecting pia mater, the arachnoid and subarachnoid spaces.
Collapse
|
25
|
Auger JP, Christodoulides M, Segura M, Xu J, Gottschalk M. Interactions of Streptococcus suis serotype 2 with human meningeal cells and astrocytes. BMC Res Notes 2015; 8:607. [PMID: 26502903 PMCID: PMC4624383 DOI: 10.1186/s13104-015-1581-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/14/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Streptococcus suis serotype 2 is an important porcine pathogen and emerging zoonotic agent responsible for meningitis, of which different sequence types predominate worldwide. Though bacterial meningitis is defined as an exacerbated inflammation of the meninges, the underlying astrocytes of the glia limitans superficialis may also be implicated. However, the interactions between this pathogen and human meningeal cells or astrocytes remain unknown. Furthermore, the roles of well-described virulence factors (capsular polysaccharide, suilysin and cell wall modifications) in these interactions have yet to be studied. Consequently, the interactions between S. suis serotype 2 and human meningeal cells or astrocytes were evaluated for the first time in order to better understand their involvement during meningitis in humans. RESULTS Streptococcus suis serotype 2 adhered to human meningeal cells and astrocytes; invasion of meningeal cells was rare however, whereas invasion of astrocytes was generally more frequent. Regardless of the interaction or cell type, differences were not observed between sequence types. Though the capsular polysaccharide modulated the adhesion to and invasion of meningeal cells and astrocytes, the suilysin and cell wall modifications only influenced astrocyte invasion. Surprising, S. suis serotype 2 induced little or no inflammatory response from both cell types, but this absence of inflammatory response was probably not due to S. suis-induced cell death. CONCLUSIONS Though S. suis serotype 2 interacted with human meningeal cells and astrocytes, there was no correlation between sequence type and interaction. Consequently, the adhesion to and invasion of human meningeal cells and astrocytes are strain-specific characteristics. As such, the meningeal cells of the leptomeninges and the astrocytes of the glia limitans superficialis may not be directly implicated in the inflammatory response observed during meningitis in humans.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases of Swine (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases of Swine (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases of Swine (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
26
|
Wu Z, Wu C, Shao J, Zhu Z, Wang W, Zhang W, Tang M, Pei N, Fan H, Li J, Yao H, Gu H, Xu X, Lu C. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. RNA (NEW YORK, N.Y.) 2014; 20:882-898. [PMID: 24759092 PMCID: PMC4024642 DOI: 10.1261/rna.041822.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Streptococcus suis (SS) is an important pathogen of pigs, and it is also recognized as a zoonotic agent for humans. SS infection may result in septicemia or meningitis in the host. However, little is known about genes that contribute to the virulence process and survival within host blood or cerebrospinal fluid (CSF). Small RNAs (sRNA) have emerged as key regulators of virulence in several bacteria, but they have not been investigated in SS. Here, using a differential RNA-sequencing approach and RNAs from SS strain P1/7 grown in rich medium, pig blood, or CSF, we present the SS genome-wide map of 793 transcriptional start sites and 370 operons. In addition to identifying 29 sRNAs, we show that five sRNA deletion mutants attenuate SS virulence in a zebrafish infection model. Homology searches revealed that 10 sRNAs were predicted to be present in other pathogenic Streptococcus species. Compared with wild-type strain P1/7, sRNAs rss03, rss05, and rss06 deletion mutants were significantly more sensitive to killing by pig blood. It is possible that rss06 contributes to SS virulence by indirectly activating expression of SSU0308, a virulence gene encoding a zinc-binding lipoprotein. In blood, genes involved in the synthesis of capsular polysaccharide (CPS) and subversion of host defenses were up-regulated. In contrast, in CSF, genes for CPS synthesis were down-regulated. Our study is the first analysis of SS sRNAs involved in virulence and has both improved our understanding of SS pathogenesis and increased the number of sRNAs known to play definitive roles in bacterial virulence.
Collapse
Affiliation(s)
- Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Jing Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Weixue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Min Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Na Pei
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | | | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Hongwei Gu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
27
|
Deregulated balance of omega-6 and omega-3 polyunsaturated fatty acids following infection by the zoonotic pathogen Streptococcus suis. Infect Immun 2014; 82:1778-85. [PMID: 24549326 DOI: 10.1128/iai.01524-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for early high mortality in septic shock-like syndrome cases. Polyunsaturated fatty acids (PUFAs) may contribute to regulating inflammatory processes. This study shows that mouse infection by S. suis is accompanied by an increase of arachidonic acid, a proinflammatory omega-6 (ω-6) PUFA, and by a decrease of docosahexaenoic acid, an anti-inflammatory ω-3 PUFA. Macrophages infected with S. suis showed activation of mitogen-activated protein kinase pathways and cyclooxygenase-2 upregulation. Fenretinide, a synthetic vitamin A analog, reduced in vitro expression of inflammatory mediators. Pretreatment of mice with fenretinide significantly improved their survival by reducing systemic proinflammatory cytokines during the acute phase of an S. suis infection. These findings indicate a beneficial effect of fenretinide in diminishing the expression of inflammation and improving survival during an acute infection by a virulent S. suis strain.
Collapse
|
28
|
Zheng H, Lan R, Zheng X, Cui Z, Liu Z, Bai X, Ji S, Gottschalk M, Xu J. Comparative genomic hybridization identifies virulence differences in Streptococcus suis. PLoS One 2014; 9:e87866. [PMID: 24503649 PMCID: PMC3913679 DOI: 10.1371/journal.pone.0087866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis is an important zoonotic pathogen. However, identification of virulent S. suis strains is complicated because of the high diversity of the species. Here we evaluated the genetic difference among S. suis strains using comparative genomic hybridization (CGH) and virulence variation in vivo and in vitro. We showed that different clades differed in their ability to activate TLR2/6 in vitro and their capacity to induce cytokine production in vivo as well as their resistance to phagocytosis and survival in vivo. Our data showed the S. suis strains tested can be classified into three groups having differing levels of virulence: epidemic and highly virulent strains were clustered into clade Ia (epidemic and highly virulent group, E/HV group), virulent strains were clustered into clade Ib (virulent group, V group), and intermediately or weakly virulent strains were clustered into other clades (intermediately or weakly virulent group, I/WV group). Our study provided further insight into the genomic and virulence variation of S. suis.
Collapse
Affiliation(s)
- Han Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiao Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zhigang Cui
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zhijie Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xuemei Bai
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Shaobo Ji
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de Montréal, Montréal, Québec, Canada
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
Wu Z, Wang W, Tang M, Shao J, Dai C, Zhang W, Fan H, Yao H, Zong J, Chen D, Wang J, Lu C. Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC070731 contains a unique 105K genomic island. Gene 2013; 535:156-64. [PMID: 24316490 DOI: 10.1016/j.gene.2013.11.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/16/2013] [Accepted: 11/19/2013] [Indexed: 11/29/2022]
Abstract
Streptococcus suis (SS) is an important swine pathogen worldwide that occasionally causes serious infections in humans. SS infection may result in meningitis in pigs and humans. The pathogenic mechanisms of SS are poorly understood. Here, we provide the complete genome sequence of S. suis serotype 2 (SS2) strain SC070731 isolated from a pig with meningitis. The chromosome is 2,138,568bp in length. There are 1933 predicted protein coding sequences and 96.7% (57/59) of the known virulence-associated genes are present in the genome. Strain SC070731 showed similar virulence with SS2 virulent strains HA9801 and ZY05719, but was more virulent than SS2 virulent strain P1/7 in the zebrafish infection model. Comparative genomic analysis revealed a unique 105K genomic island in strain SC070731 that is absent in seven other sequenced SS2 strains. Further analysis of the 105K genomic island indicated that it contained a complete nisin locus similar to the nisin U locus in S. uberis strain 42, a prophage similar to S. oralis phage PH10 and several antibiotic resistance genes. Several proteins in the 105K genomic island, including nisin and RelBE toxin-antitoxin system, contribute to the bacterial fitness and virulence in other pathogenic bacteria. Further investigation of newly identified gene products, including four putative new virulence-associated surface proteins, will improve our understanding of SS pathogenesis.
Collapse
Affiliation(s)
- Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| | - Weixue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Min Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Jing Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Jie Zong
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | - Dai Chen
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | | | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| |
Collapse
|
30
|
Lachance C, Segura M, Gerber PP, Xu J, Gottschalk M. Toll-like receptor 2-independent host innate immune response against an epidemic strain of Streptococcus suis that causes a toxic shock-like syndrome in humans. PLoS One 2013; 8:e65031. [PMID: 23724118 PMCID: PMC3665724 DOI: 10.1371/journal.pone.0065031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/20/2013] [Indexed: 11/18/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic agent causing meningitis and septicemia. Outbreaks in humans in China with atypical cases of streptococcal toxic shock-like syndrome have been described to be caused by a clonal epidemic S. suis strain characterized as sequence type (ST) 7 by multilocus sequence typing, different from the classical ST1 usually isolated in Europe. Previous in vitro studies showed that Toll-like receptor (TLR) 2 plays a major role in S. suis ST1 interactions with host cells. In the present study, the in vivo role of TLR2 in systemic infections caused by S. suis ST1 or ST7 strains using TLR2 deficient (TLR2(-/-)) mice was evaluated. TLR2-mediated recognition significantly contributes to the acute disease caused by the highly virulent S. suis ST1 strain, since the TLR2(-/-) mice remained unaffected when compared to wild type (WT) mice. The lack of mortality could not be associated with a lower bacterial burden; however, a significant decrease in the induction of pro-inflammatory mediators, as evaluated by microarray, real-time PCR and protein assays, was observed. On the other hand, TLR2(-/-) mice infected with the epidemic ST7 strain presented no significant differences regarding survival and expression of pro-inflammatory mediators when compared to the WT mice. Together, these results show a TLR2-independent host innate immune response to S. suis that depends on the strain.
Collapse
Affiliation(s)
- Claude Lachance
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec, Canada
| | - Mariela Segura
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec, Canada
| | - Pehuén Pereyra Gerber
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec, Canada
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
31
|
Zheng H, Sun H, Dominguez-Punaro MDLC, Bai X, Ji S, Segura M, Xu J. Evaluation of the pathogenesis of meningitis caused by Streptococcus suis sequence type 7 using the infection of BV2 microglial cells. J Med Microbiol 2013; 62:360-368. [DOI: 10.1099/jmm.0.046698-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Han Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | | | - Xuemei Bai
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | - Shaobo Ji
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | - Mariela Segura
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| |
Collapse
|
32
|
Immune receptors involved in Streptococcus suis recognition by dendritic cells. PLoS One 2012; 7:e44746. [PMID: 22984550 PMCID: PMC3440357 DOI: 10.1371/journal.pone.0044746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022] Open
Abstract
Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs). Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR) signaling. Supporting this fact, TLR2−/− DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively) through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.
Collapse
|
33
|
Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7:259-79. [PMID: 22324994 DOI: 10.2217/fmb.11.149] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc & Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, CP5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | | | | | | |
Collapse
|
34
|
Kochan T, Singla A, Tosi J, Kumar A. Toll-like receptor 2 ligand pretreatment attenuates retinal microglial inflammatory response but enhances phagocytic activity toward Staphylococcus aureus. Infect Immun 2012; 80:2076-2088. [PMID: 22431652 PMCID: PMC3370599 DOI: 10.1128/iai.00149-12] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/12/2012] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a leading cause of severe endophthalmitis, which often results in vision loss in some patients. Previously, we showed that Toll-like receptor 2 (TLR2) ligand pretreatment prevented the development of staphylococcal endophthalmitis in mice and suggested that microglia might be involved in this protective effect (Kumar A, Singh CN, Glybina IV, Mahmoud TH, Yu FS. J. Infect. Dis. 201:255-263, 2010). The aim of the present study was to understand how microglial innate response is modulated by TLR2 ligand pretreatment. Here, we demonstrate that S. aureus infection increased the CD11b(+) CD45(+) microglial/macrophage population in the C57BL/6 mouse retina. Using cultured primary retinal microglia and a murine microglial cell line (BV-2), we found that these cells express TLR2 and that its expression is increased upon stimulation with bacteria or an exclusive TLR2 ligand, Pam3Cys. Furthermore, challenge of primary retinal microglia with S. aureus and its cell wall components peptidoglycan (PGN) and lipoteichoic acid (LTA) induced the secretion of proinflammatory mediators (tumor necrosis factor alpha [TNF-α] and MIP-2). This innate response was attenuated by a function-blocking anti-TLR2 antibody or by small interfering RNA (siRNA) knockdown of TLR2. In order to assess the modulation of the innate response, microglia were pretreated with a low dose (0.1 or 1 μg/ml) of Pam3Cys and then challenged with live S. aureus. Our data showed that S. aureus-induced production of proinflammatory mediators is dramatically reduced in pretreated microglia. Importantly, microglia pretreated with the TLR2 agonist phagocytosed significantly more bacteria than unstimulated cells. Together, our data suggest that TLR2 plays an important role in retinal microglial innate response to S. aureus, and its sensitization inhibits inflammatory response while enhancing phagocytic activity.
Collapse
Affiliation(s)
- Travis Kochan
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, Michigan, USA
| | - Anuj Singla
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, Michigan, USA
| | - Joaquin Tosi
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, Michigan, USA
| | - Ashok Kumar
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, Michigan, USA
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
35
|
Severe cochlear inflammation and vestibular syndrome in an experimental model of Streptococcus suis infection in mice. Eur J Clin Microbiol Infect Dis 2012; 31:2391-400. [PMID: 22382820 DOI: 10.1007/s10096-012-1581-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 02/04/2012] [Indexed: 12/31/2022]
Abstract
Hearing impairment is a common and frequently permanent sequel of Streptococcus suis meningitis in humans. Nevertheless, mechanisms underlying the development of cochlear damage have not been addressed so far. In the present work, we characterized a mouse model of suppurative labyrinthitis and meningitis induced by a systemic infection with S. suis and studied the impact of the injected bacterial dosage on the progression of such inflammatory events. We observed that high infection doses of bacteria lead to sustained bacteremia, with an increase in the permeability of the blood-labyrinth and blood-brain barriers, causing suppurative labyrinthitis and meningitis, respectively. However, in mice infected with a low dose of S. suis, bacteria disappeared quickly from blood, hence, cochlear inflammation and meningitis were not consistent features. This model of S. suis infection seems ideal to evaluate novel drugs that may help alleviate the negative consequences of such important sequelae of S. suis-induced meningitis and labyrinthitis.
Collapse
|
36
|
Segura M. Fisher scientific award lecture - the capsular polysaccharides of Group B Streptococcus and Streptococcus suis differently modulate bacterial interactions with dendritic cells. Can J Microbiol 2012; 58:249-60. [PMID: 22356626 DOI: 10.1139/w2012-003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infections with encapsulated bacteria cause serious clinical problems. Besides being poorly immunogenic, the bacterial capsular polysaccharide (CPS) cloaks antigenic proteins, allowing bacterial evasion of the host immune system. Despite the clinical significance of bacterial CPS and its suggested role in the pathogenesis of the infection, the mechanisms underlying innate and, critically, adaptive immune responses to encapsulated bacteria have not been fully elucidated. As such, we became interested in studying the CPS of two similar, but unique, streptococcal species: Group B Streptococcus (GBS) and Streptococcus suis . Both streptococci are well encapsulated, some capsular types are more virulent than others, and they can cause severe meningitis and septicemia. For both pathogens, the CPS is considered the major virulence factor. Finally, these two streptococci are the sole Gram-positive bacteria possessing sialic acid in their capsules. GBS type III is a leading cause of neonatal invasive infections. Streptococcus suis type 2 is an important swine and emerging zoonotic pathogen in humans. We recently characterized the S. suis type 2 CPS. It shares common structural elements with GBS, but sialic acid is α2,6-linked to galactose rather than α2,3-linked. Differential sialic acid expression by pathogens might result in modulation of immune cell activation and, consequently, may affect the immuno-pathogenesis of these bacterial infections. Here, we review and compare the interactions of these two sialylated encapsulated bacteria with dendritic cells, known as the most potent antigen-presenting cells linking innate and adaptive immunity. We further address differences between dendritic cells and professional phagocytes, such as macrophages and neutrophils, in their interplay with these encapsulated pathogens. Elucidation of the molecular and cellular basis of the impact of CPS composition on bacterial interactions with immune cells is critical for mechanistic understanding of anti-CPS responses. Knowledge generated will help to advance the development of novel, more effective anti-CPS vaccines and improved immunotherapies.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
37
|
Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition. Infect Immun 2011; 80:506-17. [PMID: 22124659 DOI: 10.1128/iai.05734-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes.
Collapse
|
38
|
Zheng H, Luo X, Segura M, Sun H, Ye C, Gottschalk M, Xu J. The role of toll-like receptors in the pathogenesis of Streptococcus suis. Vet Microbiol 2011; 156:147-56. [PMID: 22055206 DOI: 10.1016/j.vetmic.2011.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/08/2011] [Accepted: 10/12/2011] [Indexed: 01/03/2023]
Abstract
Streptococcus suis is an important agent of swine and human meningitis. Sequence type (ST) 7 emerged in China and was responsible for the human epidemic caused by S. suis in 2005. The virulence of S. suis ST7 is greater than the wild type pathogenic S. suis, ST1; however, the mechanisms for this increased pathogenicity are unknown. The aim of this study was to determine the role of different toll-like receptors (TLRs) involved in regulating the host response to the S. suis infection and to speculate on differing mechanisms used by ST7 strains to induce disease. Here we compared two ST7 strains isolated in the 2005 Sichuan outbreak to two ST1 strains. Our data show TLR2, 6 and 9 are involved in the recognition of heat-killed S. suis independent of the ST type. We found the TLR-dependent cytokine production differed between the two types of strains using whole cell lysate proteins. TLR6 played a greater role in cytokine production induced by the whole cell lysate proteins from the ST7 strain than in that induced by the ST1 strain lysates. The data suggest that mechanisms of inflammation induced by S. suis strains differ where this will be useful in designing efficient strategies in combating streptococcal toxic shock-like syndrome caused by the S. suis ST7 strains.
Collapse
Affiliation(s)
- Han Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Lecours MP, Segura M, Lachance C, Mussa T, Surprenant C, Montoya M, Gottschalk M. Characterization of porcine dendritic cell response to Streptococcus suis. Vet Res 2011; 42:72. [PMID: 21635729 PMCID: PMC3127767 DOI: 10.1186/1297-9716-42-72] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/02/2011] [Indexed: 01/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen and important zoonotic agent causing mainly septicemia and meningitis. However, the mechanisms involved in host innate and adaptive immune responses toward S. suis as well as the mechanisms used by S. suis to subvert these responses are unknown. Here, and for the first time, the ability of S. suis to interact with bone marrow-derived swine dendritic cells (DCs) was evaluated. In addition, the role of S. suis capsular polysaccharide in modulation of DC functions was also assessed. Well encapsulated S. suis was relatively resistant to phagocytosis, but it increased the relative expression of Toll-like receptors 2 and 6 and triggered the release of several cytokines by DCs, including IL-1β, IL-6, IL-8, IL-12p40 and TNF-α. The capsular polysaccharide was shown to interfere with DC phagocytosis; however, once internalized, S. suis was readily destroyed by DCs independently of the presence of the capsular polysaccharide. Cell wall components were mainly responsible for DC activation, since the capsular polysaccharide-negative mutant induced higher cytokine levels than the wild-type strain. The capsular polysaccharide also interfered with the expression of the co-stimulatory molecules CD80/86 and MHC-II on DCs. To conclude, our results show for the first time that S. suis interacts with swine origin DCs and suggest that these cells might play a role in the development of host innate and adaptive immunity during an infection with S. suis serotype 2.
Collapse
Affiliation(s)
- Marie-Pier Lecours
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kong Y, Le Y. Toll-like receptors in inflammation of the central nervous system. Int Immunopharmacol 2011; 11:1407-14. [PMID: 21600311 DOI: 10.1016/j.intimp.2011.04.025] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/19/2011] [Accepted: 04/30/2011] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) belong to pattern-recognition receptor family that could recognize exogenous pathogen-associated molecular patterns and endogenous damage-associated molecular patterns. TLRs play pivotal roles in innate and adaptive immune responses. In this review we summarize the ligands and signal transduction pathways of TLRs and highlight recent progress of the involvement of TLRs in neuroinflammation related disorders, including cerebral ischemia/stroke, brain trauma and hemorrhage, pathogen infection and autoimmune diseases, and explore the potential of TLR signaling as therapeutic targets against these disorders.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing 210009, China
| | | |
Collapse
|
41
|
Zheng H, Domínguez Punaro MC, Segura M, Lachance C, Rivest S, Xu J, Houde M, Gottschalk M. Toll-like receptor 2 is partially involved in the activation of murine astrocytes by Streptococcus suis, an important zoonotic agent of meningitis. J Neuroimmunol 2011; 234:71-83. [DOI: 10.1016/j.jneuroim.2011.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/10/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
|