1
|
Blackburn EA, Chintoan-Uta C, Bease AG, Tuijtel MW, Hateley M, Wear M, Longbottom D, Cassady-Cain R, Stevens MP. A lymphostatin homologue from Chlamydia pecorum inhibits mitogen-activated bovine T cell proliferation and IFNγ production. Virulence 2025; 16:2506500. [PMID: 40405396 DOI: 10.1080/21505594.2025.2506500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/09/2025] [Accepted: 05/01/2025] [Indexed: 05/24/2025] Open
Abstract
Pathogens frequently produce proteins to evade or inhibit host immune responses. One such protein is lymphostatin from attaching and effacing Escherichia coli (also known as lymphocyte inhibitory factor A; LifA), which influences intestinal colonization and inhibits mitogen- and antigen-activated proliferation of T lymphocytes and pro-inflammatory cytokine synthesis. Here, we report the cloning, purification and characterization of a LifA homologue from Chlamydia pecorum. The predicted 382 KDa protein (CPE2_0552) exhibited 36% identity and 55% similarity over 3171 amino acids to lymphostatin from enteropathogenic E. coli strain E2348/69. CPE2_0552 shares glycosyltransferase and cysteine protease motifs required for lymphostatin activity, including similarity in the tertiary structure of these domains predicted by AlphaFold 3. Purified CPE2_0552 did not share the L-shaped globular structure of lymphostatin when analyzed by transmission electron microscopy. CPE2_0552 inhibited concanavalin A-stimulated proliferation of bovine T cells in a concentration-dependent manner, with an inhibitory dose 50 (ID50) of 812 pg/mL. This was 38-fold higher than the ID50 of E. coli E2348/69 lymphostatin tested in parallel on T cells from the same donors (21 pg/mL), but was similar to another LifA homologue from E. coli O157:H7 (ToxB). Moreover, CPE2_0552 inhibited the secretion of interferon gamma (IFNγ), a key cytokine that influences the outcome of Chlamydia infections. At the concentrations at which CPE2_0552 inhibited T lymphocyte proliferation and IFNγ secretion, negligible cytotoxicity was observed after 72 h of stimulation. Our study indicates that E. coli lymphostatin belongs to a wider family of lymphocyte-inhibitory molecules that exist in distantly related bacterial pathogens.
Collapse
Affiliation(s)
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Andrew G Bease
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Maarten W Tuijtel
- The Edinburgh Protein Production Facility, University of Edinburgh, Edinburgh, UK
| | - Max Hateley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Martin Wear
- The Edinburgh Protein Production Facility, University of Edinburgh, Edinburgh, UK
| | - David Longbottom
- The Moredun Research Institute, Pentland Science Park, Edinburgh, UK
| | - Robin Cassady-Cain
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Ruamsap N, Riyapa D, Janesomboon S, Stevens JM, Pichyangkul S, Pattanapanyasat K, Demons ST, Stevens MP, Korbsrisate S. Lymphostatin, a virulence factor of attaching and effacing Escherichia coli, inhibits proliferation and cytokine responses of human T cells in a manner associated with cell cycle arrest but not apoptosis or necrosis. Front Cell Infect Microbiol 2022; 12:941939. [PMID: 35967844 PMCID: PMC9373022 DOI: 10.3389/fcimb.2022.941939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.
Collapse
Affiliation(s)
- Nattaya Ruamsap
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Donporn Riyapa
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne M. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sathit Pichyangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Department for Research and Development, Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Samandra T. Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| |
Collapse
|
3
|
Cheng J, Yuan Y, Zhao F, Chen J, Chen P, Li Y, Yan X, Luo C, Shu D, Qu H, Ji J. Thymic T-Cell Production Is Associated With Changes in the Gut Microbiota in Young Chicks. Front Immunol 2021; 12:700603. [PMID: 34566959 PMCID: PMC8461177 DOI: 10.3389/fimmu.2021.700603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023] Open
Abstract
Increasing studies show that gut microbiota play a central role in immunity, although the impact of the microbiota on mediation of thymic T cells throughout life is not well understood. Chickens have been shown to be a valuable model for studying basic immunology. Here, we show that changes in the gut microbiota are associated with the development of thymic T cells in young chickens. Our results showed that T-cell numbers in newborn chicks sharply increased from day 0 and peaked at day 49. Interestingly, the α-diversity score pattern of change in gut microbiota also increased after day 0 and continued to increase until day 49. We found that early antibiotic treatment resulted in a dramatic reduction in gut alpha diversity: principal component analysis (PCA) showed that antibiotic treatment resulted in a different cluster from the controls on days 9 and 49. In the antibiotic-treated chickens, we identified eight significantly different (p < 0.05) microbes at the phylum level and 14 significantly different (p < 0.05) microbes at the genus level, compared with the controls. Importantly, we found that antibiotic treatment led to a decreased percentage and number of T cells in the thymus when measured at days 9 and 49, as evaluated by flow cytometry. Collectively, our data suggest that intestinal microbiota may be involved in the regulation of T cells in birds, presenting the possibility that interventions that actively modify the gut microbiota in early life may accelerate the maturation of humoral immunity, with resulting anti-inflammatory effects against different pathogens.
Collapse
Affiliation(s)
- Jiaheng Cheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yushan Yuan
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fang Zhao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Peng Chen
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ying Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xia Yan
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian Ji
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Activity of Lymphostatin, A Lymphocyte Inhibitory Virulence Factor of Pathogenic Escherichia coli, is Dependent on a Cysteine Protease Motif. J Mol Biol 2021; 433:167200. [PMID: 34400181 PMCID: PMC8505758 DOI: 10.1016/j.jmb.2021.167200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
LifA shares a cysteine protease motif with bacterial toxins and secreted effectors. C1480A substituted LifA has reduced inhibitory activity against T cells. LifA is cleaved in T cells and this requires C1480 and endosome acidification.
Lymphostatin (LifA) is a 366 kDa protein expressed by attaching & effacing Escherichia coli. It plays an important role in intestinal colonisation and inhibits the mitogen- and antigen-stimulated proliferation of lymphocytes and the synthesis of proinflammatory cytokines. LifA exhibits N-terminal homology with the glycosyltransferase domain of large clostridial toxins (LCTs). A DTD motif within this region is required for lymphostatin activity and binding of the sugar donor uridine diphosphate N-acetylglucosamine. As with LCTs, LifA also contains a cysteine protease motif (C1480, H1581, D1596) that is widely conserved within the YopT-like superfamily of cysteine proteases. By analogy with LCTs, we hypothesised that the CHD motif may be required for intracellular processing of the protein to release the catalytic N-terminal domain after uptake and low pH-stimulated membrane insertion of LifA within endosomes. Here, we created and validated a C1480A substitution mutant in LifA from enteropathogenic E. coli strain E2348/69. The purified protein was structurally near-identical to the wild-type protein. In bovine T lymphocytes treated with wild-type LifA, a putative cleavage product of approximately 140 kDa was detected. Appearance of the putative cleavage product was inhibited in a concentration-dependent manner by bafilomycin A1 and chloroquine, which inhibit endosome acidification. The cleavage product was not observed in cells treated with the C1480A mutant of LifA. Lymphocyte inhibitory activity of the purified C1480A protein was significantly impaired. The data indicate that an intact cysteine protease motif is required for cleavage of lymphostatin and its activity against T cells.
Collapse
|
5
|
Bease AG, Cassady-Cain RL, Stevens MP. Interaction of Bovine Lymphocytes with Products of Shiga Toxin-Producing Escherichia coli. Methods Mol Biol 2021; 2291:333-352. [PMID: 33704762 DOI: 10.1007/978-1-0716-1339-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) produce a number of virulence factors that interfere with lymphocyte functions, including mitogen- and antigen-activated proliferation and pro-inflammatory cytokine synthesis. Here we describe how to isolate lymphocyte subsets from bovine peripheral blood as well as methods that we have used to study the effects of STEC products on lymphocyte proliferation and cytokine production. We also describe an assay that allows for the detection of association of a given protein with lymphocytes.
Collapse
Affiliation(s)
- Andrew G Bease
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Robin L Cassady-Cain
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
6
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
7
|
Direct Manipulation of T Lymphocytes by Proteins of Gastrointestinal Bacterial Pathogens. Infect Immun 2018; 86:IAI.00683-17. [PMID: 29339462 DOI: 10.1128/iai.00683-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal bacterial infection represents a significant threat to human health, as well as a burden on food animal production and welfare. Although there is advanced knowledge about the molecular mechanisms underlying pathogenesis, including the development of immune responses to these pathogens, gaps in knowledge persist. It is well established that gastrointestinal bacterial pathogens produce a myriad of proteins that affect the development and effectiveness of innate immune responses. However, relatively few proteins that directly affect lymphocytes responsible for humoral or cell-mediated immunity and memory have been identified. Here, we review factors produced by gastrointestinal bacterial pathogens that have direct T cell interactions and what is known about their functions and mechanisms of action. T cell-interacting bacterial proteins that have been identified to date mainly target three major T cell responses: activation and expansion, chemotaxis, or apoptosis. Further, the requirement for more focused studies to identify and understand additional mechanisms used by bacteria to directly affect the T cell immune response and how these may contribute to pathogenesis is highlighted. Increased knowledge in this area will help to drive development of better interventions in prevention and treatment of gastrointestinal bacterial infection.
Collapse
|