1
|
Sakurai K, Nishi K, Sekimoto S, Okawaki R, Htay SS, Yasugi M, Miyake M. Inhibitory effects of sucrose palmitic acid ester on the germination-to-outgrowth process of Clostridium perfringens SM101 spores. Int J Food Microbiol 2025; 426:110910. [PMID: 39303499 DOI: 10.1016/j.ijfoodmicro.2024.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
As a commercially available esterified compound derived from sucrose and palmitoyl acids, sucrose ester palmitic acid (SEPA) has been used as an emulsifier in food processing. It possesses antibacterial activity against vegetative and spore-forming bacteria, including Clostridium, Moorella, Bacillus, and Geobacillus species, prompting the food industry to use it as a food additive to achieve a desirable shelf life; however, the precise mechanism by which the compound affects the physiological processes of bacteria and how it inhibits bacterial growth remains unclear. In this study, we focused on the inhibitory effect of SEPA on the germination-to-outgrowth process of Clostridium perfringens SM101 spores, a strain widely used as a model of C. perfringens. When the isolated spores were exposed to ≧ 20 μg/ml of SEPA on brain heart infusion agar, bacterial colony formation was completely inhibited. Time-resolved phase-contrast microscopy was employed to visualize the effect of SEPA on the entire regrowth process of SM101 spores. SEPA did not affect the "germination stage," where each spore changes its optical density from phase-bright to phase-dark. In contrast, the presence of SEPA completely blocked the "outgrowth stage," in which the newly synthesized vegetative cell body emerges from the cracked spore shell. The results demonstrate that SEPA inhibits the revival process of the spores of a pathogenic strain of C. perfringens and that the site of its action is the "outgrowth stage" and not the "germination stage," as evidenced by single- cell analysis.
Collapse
Affiliation(s)
- Kensuke Sakurai
- Department of Veterinary Science, School of Life and Environmental Sciences, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Konomi Nishi
- Department of Veterinary Science, School of Life and Environmental Sciences, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Satoshi Sekimoto
- Food & Healthcare Group, Life Solutions Technology Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Rana Okawaki
- Department of Veterinary Science, School of Life and Environmental Sciences, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - San San Htay
- University of Veterinary Science, Yezin, Naypyidaw 05282, Myanmar
| | - Mayo Yasugi
- Department of Veterinary Science, School of Life and Environmental Sciences, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Osaka International Research Center for Infectious Diseases, University Public Cooperation Osaka, Osaka, Japan; Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
| | - Masami Miyake
- Department of Veterinary Science, School of Life and Environmental Sciences, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Research Institute for Food Safety, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Osaka International Research Center for Infectious Diseases, University Public Cooperation Osaka, Osaka, Japan.
| |
Collapse
|
2
|
Yasugi M, Ohta A, Takano K, Yakubo K, Irie M, Miyake M. Serine affects engulfment during the sporulation process in Clostridium perfringens strain SM101. Anaerobe 2024; 90:102914. [PMID: 39368695 DOI: 10.1016/j.anaerobe.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVES Although Clostridium perfringens sporulation is a key event in the pathogenesis of food-borne illness, the molecules and underlying mechanisms responsible for regulating sporulation are incompletely understood. The present study sought to identify amino acids that affect sporulation in C. perfringens strain SM101. METHODS A C. perfringens strain was cultured in the chemically defined medium deficient in an amino acid. The bacterial growth was determined by spectrophotometrically measuring culture turbidity and by calculating colony-forming unit. Morphological characteristics were assessed by phase-contrast microscopy with fluorescent staining and by electron microscopy. RESULTS The amino acids Arg, Cys, Gly, His, Ile, Leu, Met, Phe, Thr, Trp, Tyr, and Val were important for sporulation, and furthermore, Ser reduced sporulation. The mechanism underlying Ser-induced prevention of sporulation was assessed morphologically. The numbers of bacterial cells in sporulation stage II were significantly higher in the presence than in the absence of Ser. In the presence of Ser, almost all cells were in stage II-III, characterized by polar septation-early engulfment, and did not proceed to late engulfment. CONCLUSIONS These results suggest that Ser accelerated the early stage of sporulation of C. perfringens strain SM101, but disturbed the engulfment process, resulting in reduction of sporulation. To the best of our knowledge, this is the first study reporting that an amino acid affects engulfment during the C. perfringens sporulation process.
Collapse
Affiliation(s)
- Mayo Yasugi
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan; Asian Health Science Research Institute, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Akinobu Ohta
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Keiko Takano
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Kanako Yakubo
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Michiko Irie
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Masami Miyake
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan; Research Center for Food Safety, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
3
|
Shrestha A, Mehdizadeh Gohari I, Li J, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024; 88:e0014023. [PMID: 38864615 PMCID: PMC11426027 DOI: 10.1128/mmbr.00140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
SUMMARYIn the 2018-revised Clostridium perfringens typing classification system, isolates carrying the enterotoxin (cpe) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne cpe gene. Compared to spores of other C. perfringens isolates, spores of type F chromosomal cpe isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent C. perfringens enterotoxin (CPE) production. C. perfringens sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive cpe transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca2+ influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Navarro
- Instituto de Patologia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Characterization of NanR Regulation of Sialidase Production, Sporulation and Enterotoxin Production by Clostridium perfringens Type F Strains Carrying a Chromosomal Enterotoxin Gene. Toxins (Basel) 2022; 14:toxins14120872. [PMID: 36548769 PMCID: PMC9788507 DOI: 10.3390/toxins14120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridium perfringens type F food poisoning (FP) strains produce C. perfringens enterotoxin (CPE) to cause a common bacterial food-borne illness in the United States. During FP, CPE is synthesized in the intestines when C. perfringens sporulates. Besides CPE, FP strains also produce sialidases. Most FP strains carry their cpe gene on the chromosome and all surveyed chromosomal cpe (c-cpe) FP strains produce NanH sialidase or both NanJ and NanH sialidases. NanR has been shown previously to regulate sialidase activity in non-FP strains. The current study investigated whether NanR also regulates sialidase activity or influences sporulation and CPE production for c-cpe FP strains SM101 and 01E809. In sporulation medium, the SM101 nanR null mutant showed lower sialidase activity, sporulation, and CPE production than its wild-type parent, while the 01E809 nanR null mutant showed roughly similar sialidase activity, sporulation, and CPE production as its parent. In vegetative medium, the nanR null mutants of both strains produced more spores than their parents while NanR repressed sialidase activity in SM101 but positively regulated sialidase activity in 01E809. These results demonstrate that NanR regulates important virulence functions of c-cpe strains, with this control varying depending on strain and culture conditions.
Collapse
|
5
|
The Physiological Functions of AbrB on Sporulation, Biofilm Formation and Carbon Source Utilization in Clostridium tyrobutyricum. Bioengineering (Basel) 2022; 9:bioengineering9100575. [PMID: 36290543 PMCID: PMC9598496 DOI: 10.3390/bioengineering9100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
As a pleiotropic regulator, Antibiotic resistant protein B (AbrB) was reported to play important roles in various cellular processes in Bacilli and some Clostridia strains. In Clostridium tyrobutyricum, abrB (CTK_C 00640) was identified to encode AbrB by amino acid sequence alignment and functional domain prediction. The results of abrB deletion or overexpression in C. tyrobutyricum showed that AbrB not only exhibited the reported characteristics such as the negative regulation on sporulation, positive effects on biofilm formation and stress resistance but also exhibited new functions, especially the negative regulation of carbon metabolism. AbrB knockout strain (Ct/ΔabrB) could alleviate glucose-mediated carbon catabolite repression (CCR) and enhance the utilization of xylose compared with the parental strain, resulting in a higher butyrate titer (14.79 g/L vs. 7.91 g/L) and xylose utilization rate (0.19 g/L·h vs. 0.02 g/L·h) from the glucose and xylose mixture. This study confirmed the pleiotropic regulatory function of AbrB in C. tyrobutyricum, suggesting that Ct/ΔabrB was the potential candidate for butyrate production from abundant, renewable lignocellulosic biomass mainly composed of glucose and xylose.
Collapse
|
6
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Van Damme L, Cox N, Callens C, Dargatz M, Flügel M, Hark S, Thiemann F, Pelzer S, Haesebrouck F, Ducatelle R, Van Immerseel F, Goossens E. Protein Truncating Variants of colA in Clostridium perfringens Type G Strains. Front Cell Infect Microbiol 2021; 11:645248. [PMID: 33996628 PMCID: PMC8117337 DOI: 10.3389/fcimb.2021.645248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular matrix (ECM) degrading enzymes produced by Clostridium perfringens may play an important role during the initial phases of avian necrotic enteritis by facilitating toxin entry in the intestinal mucosa and destruction of the tissue. C. perfringens is known to produce several ECM-degrading proteases, such as kappa toxin, an extracellular collagenase that is encoded by the colA gene. In this study, the colA gene sequence of a collection of 48 C. perfringens strains, including pathogenic (i.e. toxinotype G) and commensal (i.e. toxinotype A) chicken derived strains and strains originating from other host species, was analyzed. Although the colA gene showed a high level of conservation (>96% nucleotide sequence identity), several gene variants carrying different nonsense mutations in the colA gene were identified, leading to the definition of four truncated collagenase variant types (I-IV). Collagenase variant types I, III and IV have a (nearly) complete collagenase unit but lack parts of the C-terminal recruitment domains, whereas collagenase variant types II misses the N-terminal part of collagenase unit. Gene fragments encoding a truncated collagenase were mainly linked with necrotic enteritis associated C. perfringens type G strains with collagenase variant types I and II being the most prevalent types. Gelatin zymography revealed that both recombinant full-length and variant type I collagenase have active auto-cleavage products. Moreover, both recombinant fragments were capable of degrading type I as well as type IV collagen, although variant type I collagenase showed a higher relative activity against collagen type IV as compared to full-length collagenase. Consequently, these smaller truncated collagenases might be able to break down collagen type IV in the epithelial basement membrane of the intestinal villi and so contribute to the initiation of the pathological process leading to necrotic enteritis.
Collapse
Affiliation(s)
- Lore Van Damme
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Natasja Cox
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chana Callens
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michelle Dargatz
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Monika Flügel
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Sarah Hark
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Frank Thiemann
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Stefan Pelzer
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Freddy Haesebrouck
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
NanH Is Produced by Sporulating Cultures of Clostridium perfringens Type F Food Poisoning Strains and Enhances the Cytotoxicity of C. perfringens Enterotoxin. mSphere 2021; 6:6/2/e00176-21. [PMID: 33910991 PMCID: PMC8092135 DOI: 10.1128/msphere.00176-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium perfringens type F strains cause the second most common bacterial foodborne illness in the United States. C. perfringens enterotoxin (CPE) is responsible for the diarrhea and cramping symptoms of this food poisoning (FP). Previous studies showed that NanI sialidase can enhance CPE activity in vitro. Clostridium perfringens type F food poisoning (FP) strains cause one of the most common foodborne illnesses. This FP develops when type F FP strains sporulate in the intestines and produce C. perfringens enterotoxin (CPE), which is responsible for the diarrhea and abdominal cramps of this disease. While C. perfringens can produce up to three different sialidases, the current study surveyed FP strains, which confirmed the results of a previous study that they consistently carry the nanH sialidase gene, often as their only sialidase gene. NanH production was found to be associated with sporulating cultures of the surveyed type F FP strains, including SM101 (a transformable derivative of a FP strain). The sporulation-associated regulation of NanH production by strain SM101 growing in modified Duncan-Strong medium (MDS) was shown to involve Spo0A, but it did not require the completion of sporulation. NanH production was not necessary for either the growth or sporulation of SM101 when cultured in MDS. In those MDS cultures, NanH accumulated in the sporulating mother cell until it was released coincidently with CPE. Since CPE becomes extracellular when mother cells lyse to release their mature spores, this indicates that mother cell lysis is also important for NanH release. The copresence of NanH and CPE in supernatants from lysed sporulating cultures was shown to enhance CPE cytotoxicity for Caco-2 cells. This enhancement was attributable to NanH increasing CPE binding and could be replicated with purified recombinant NanH. These in vitro findings suggest that NanH may be an accessory virulence factor during type F FP. IMPORTANCEClostridium perfringens type F strains cause the second most common bacterial foodborne illness in the United States. C. perfringens enterotoxin (CPE) is responsible for the diarrhea and cramping symptoms of this food poisoning (FP). Previous studies showed that NanI sialidase can enhance CPE activity in vitro. While many type F FP strains do not produce NanI, they do consistently make NanH sialidase. This study shows that, like CPE, NanH is produced by sporulating type F FP strains and then released extracellularly when their sporulating cells lyse to release their mature spore. NanH was shown to enhance CPE cytotoxicity in vitro by increasing CPE binding to cultured Caco-2 cells. This enhancement could be important because many type F FP strains produce less CPE than necessary (in a purified form) to cause intestinal pathology in animal models. Therefore, NanH represents a potential accessory virulence factor for type F FP.
Collapse
|
9
|
Biswas R, Sonenshein AL, Belitsky BR. Genome-wide identification of Listeria monocytogenes CodY-binding sites. Mol Microbiol 2020; 113:841-858. [PMID: 31944451 DOI: 10.1111/mmi.14449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
CodY is a global transcriptional regulator that controls, directly or indirectly, the expression of dozens of genes and operons in Listeria monocytogenes. We used in vitro DNA affinity purification combined with massively parallel sequencing (IDAP-Seq) to identify genome-wide L. monocytogenes chromosomal DNA regions that CodY binds in vitro. The total number of CodY-binding regions exceeded 2,000, but they varied significantly in their strengths of binding at different CodY concentrations. The 388 strongest CodY-binding regions were chosen for further analysis. A strand-specific analysis of the data allowed pinpointing CodY-binding sites at close to single-nucleotide resolution. Gel shift and DNase I footprinting assays confirmed the presence and locations of several CodY-binding sites. Surprisingly, most of the sites were located within genes' coding regions. The binding site within the beginning of the coding sequence of the prfA gene, which encodes the master regulator of virulence genes, has been previously implicated in regulation of prfA, but this site was weaker in vitro than hundreds of other sites. The L. monocytogenes CodY protein was functionally similar to Bacillus subtilis CodY when expressed in B. subtilis cells. Based on the sequences of the CodY-binding sites, a model of CodY interaction with DNA is proposed.
Collapse
Affiliation(s)
- Rajesh Biswas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Soncini SR, Hartman AH, Gallagher TM, Camper GJ, Jensen RV, Melville SB. Changes in the expression of genes encoding type IV pili-associated proteins are seen when Clostridium perfringens is grown in liquid or on surfaces. BMC Genomics 2020; 21:45. [PMID: 31937237 PMCID: PMC6958937 DOI: 10.1186/s12864-020-6453-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clostridium perfringens is a Gram-positive anaerobic pathogen that causes multiple diseases in humans and animals. C. perfringens lack flagella but have type IV pili (TFP) and can glide on agar surfaces. When C. perfringens bacteria are placed on surfaces, they become elongated, flexible and have TFP on their surface, traits not seen in liquid-grown cells. In addition, the main pilin in C. perfringens TFP, PilA2, undergoes differential post-translational modification when grown in liquid or on plates. To understand the mechanisms underlying these phenotypes, bacteria were grown in three types of liquid media and on agar plates with the same medium to compare gene expression using RNA-Seq. RESULTS Hundreds of genes were differentially expressed, including transcriptional regulatory protein-encoding genes and genes associated with TFP functions, which were higher on plates than in liquid. Transcript levels of TFP genes reflected the proportion of each protein predicted to reside in a TFP assembly complex. To measure differences in rates of translation, the Escherichia coli reporter gene gusA gene (encoding β-glucuronidase) was inserted into the chromosome downstream of TFP promoters and in-frame with the first gene of the operon. β-glucuronidase expression was then measured in cells grown in liquid or on plates. β-glucuronidase activity was proportional to mRNA levels in liquid-grown cells, but not plate-grown cells, suggesting significant levels of post-transcriptional regulation of these TFP-associated genes occurs when cells are grown on surfaces. CONCLUSIONS This study reveals insights into how a non-flagellated pathogenic rod-shaped bacterium senses and responds to growth on surfaces, including inducing transcriptional regulators and activating multiple post-transcriptional regulatory mechanisms associated with TFP functions.
Collapse
Affiliation(s)
- Samantha R Soncini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.,Current address: UPMC Genome Center, Pittsburgh, PA, USA
| | - Andrea H Hartman
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Tara M Gallagher
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.,Current address: Department of Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - Gary J Camper
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Stephen B Melville
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
11
|
Muñoz M, Restrepo-Montoya D, Kumar N, Iraola G, Herrera G, Ríos-Chaparro DI, Díaz-Arévalo D, Patarroyo MA, Lawley TD, Ramírez JD. Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence 2019; 10:657-676. [PMID: 31304854 PMCID: PMC6629180 DOI: 10.1080/21505594.2019.1637699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 01/23/2023] Open
Abstract
Some well-known Clostridiales species such as Clostridium difficile and C. perfringens are agents of high impact diseases worldwide. Nevertheless, other foreseen Clostridiales species have recently emerged such as Clostridium tertium and C. paraputrificum. Three fecal isolates were identified as Clostridium tertium (Gcol.A2 and Gcol.A43) and C. paraputrificum (Gcol.A11) during public health screening for C. difficile infections in Colombia. C. paraputrificum genomes were highly diverse and contained large numbers of accessory genes. Genetic diversity and accessory gene percentage were lower among the C. tertium genomes than in the C. paraputrificum genomes. C. difficile tcdA and tcdB toxins encoding homologous sequences and other potential virulence factors were also identified. EndoA interferase, a toxic component of the type II toxin-antitoxin system, was found among the C. tertium genomes. toxA was the only toxin encoding gene detected in Gcol.A43, the Colombian isolate with an experimentally-determined high cytotoxic effect. Gcol.A2 and Gcol.A43 had higher sporulation efficiencies than Gcol.A11 (84.5%, 83.8% and 57.0%, respectively), as supported by the greater number of proteins associated with sporulation pathways in the C. tertium genomes compared with the C. paraputrificum genomes (33.3 and 28.4 on average, respectively). This work allowed complete genome description of two clostridiales species revealing high levels of intra-taxa diversity, accessory genomes containing virulence-factors encoding genes (especially in C. paraputrificum), with proteins involved in sporulation processes more highly represented in C. tertium. These finding suggest the need to advance in the study of those species with potential importance at public health level.
Collapse
Affiliation(s)
- Marina Muñoz
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Posgrado Interfacultades, Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniel Restrepo-Montoya
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - Nitin Kumar
- Host–Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Dora I. Ríos-Chaparro
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Faculty of Animal Sciences, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Trevor D. Lawley
- Host–Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
12
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
13
|
|
14
|
Abstract
In humans and livestock, Clostridium perfringens is an important cause of intestinal infections that manifest as enteritis, enterocolitis, or enterotoxemia. This virulence is largely related to the toxin-producing ability of C. perfringens. This article primarily focuses on the C. perfringens type F strains that cause a very common type of human food poisoning and many cases of nonfoodborne human gastrointestinal diseases. The enteric virulence of type F strains is dependent on their ability to produce C. perfringens enterotoxin (CPE). CPE has a unique amino acid sequence but belongs structurally to the aerolysin pore-forming toxin family. The action of CPE begins with binding of the toxin to claudin receptors, followed by oligomerization of the bound toxin into a prepore on the host membrane surface. Each CPE molecule in the prepore then extends a beta-hairpin to form, collectively, a beta-barrel membrane pore that kills cells by increasing calcium influx. The cpe gene is typically encoded on the chromosome of type F food poisoning strains but is encoded by conjugative plasmids in nonfoodborne human gastrointestinal disease type F strains. During disease, CPE is produced when C. perfringens sporulates in the intestines. Beyond type F strains, C. perfringens type C strains producing beta-toxin and type A strains producing a toxin named CPILE or BEC have been associated with human intestinal infections. C. perfringens is also an important cause of enteritis, enterocolitis, and enterotoxemia in livestock and poultry due to intestinal growth and toxin production.
Collapse
|
15
|
Daou N, Wang Y, Levdikov VM, Nandakumar M, Livny J, Bouillaut L, Blagova E, Zhang K, Belitsky BR, Rhee K, Wilkinson AJ, Sun X, Sonenshein AL. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PLoS One 2019; 14:e0206896. [PMID: 30699117 PMCID: PMC6353076 DOI: 10.1371/journal.pone.0206896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/25/2018] [Indexed: 12/16/2022] Open
Abstract
Toxin synthesis and endospore formation are two of the most critical factors that determine the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB, are the principal factors causing damage to the host. Spores are the infectious form of C. difficile, permit survival of the bacterium during antibiotic treatment and are the predominant cell form that leads to recurrent infection. Toxin production and sporulation have their own specific mechanisms of regulation, but they share negative regulation by the global regulatory protein CodY. Determining the extent of such regulation and its detailed mechanism is important for understanding the linkage between two apparently independent biological phenomena and raises the possibility of creating new ways of limiting infection. The work described here shows that a codY null mutant of a hypervirulent (ribotype 027) strain is even more virulent than its parent in a mouse model of infection and that the mutant expresses most sporulation genes prematurely during exponential growth phase. Moreover, examining the expression patterns of mutants producing CodY proteins with different levels of residual activity revealed that expression of the toxin genes is dependent on total CodY inactivation, whereas most sporulation genes are turned on when CodY activity is only partially diminished. These results suggest that, in wild-type cells undergoing nutrient limitation, sporulation genes can be turned on before the toxin genes.
Collapse
Affiliation(s)
- Nadine Daou
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yuanguo Wang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Vladimir M. Levdikov
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Madhumitha Nandakumar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Jonathan Livny
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Laurent Bouillaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Elena Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Keshan Zhang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Boris R. Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Kyu Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Abraham L. Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Identification of an Important Orphan Histidine Kinase for the Initiation of Sporulation and Enterotoxin Production by Clostridium perfringens Type F Strain SM101. mBio 2019; 10:mBio.02674-18. [PMID: 30670619 PMCID: PMC6343041 DOI: 10.1128/mbio.02674-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridium perfringens type F enteric diseases, which include a very common form of food poisoning and many cases of antibiotic-associated diarrhea, develop when type F strains sporulate and produce C. perfringens enterotoxin (CPE) in the intestines. Spores are also important for transmission of type F disease. Despite the importance of sporulation for type F disease and the evidence that C. perfringens sporulation begins with phosphorylation of the Spo0A transcriptional regulator, the kinase phosphorylating Spo0A to initiate sporulation and CPE production had not been ascertained. In response, the current report now provides identification of an orphan histidine kinase named CPR0195 that can directly phosphorylate Spo0A. Results using a CPR0195 null mutant indicate that this kinase is very important for initiating C. perfringens sporulation and CPE production. Therefore, the CPR0195 kinase represents a potential target to block type F disease by interfering with intestinal C. perfringens sporulation and CPE production. Clostridium perfringens type F strains cause a common human foodborne illness and many cases of nonfoodborne human gastrointestinal diseases. Sporulation plays two critical roles during type F enteric disease. First, it produces broadly resistant spores that facilitate type F strain survival in the food and nosocomial environments. Second, production of C. perfringens enterotoxin (CPE), the toxin responsible for causing the enteric symptoms of type F diseases, is restricted to cells in the process of sporulation. While later steps in the regulation of C. perfringens sporulation have been discerned, the process leading to phosphorylation of Spo0A, the master early regulator of sporulation and consequent CPE production, has remained unknown. Using an insertional mutagenesis approach, the current study identified the orphan histidine kinase CPR0195 as an important factor regulating C. perfringens sporulation and CPE production. Specifically, a CPR0195 null mutant of type F strain SM101 made 103-fold fewer spores than its wild-type parent and produced no detectable CPE. In contrast, a null mutant of another putative C. perfringens orphan histidine kinase (CPR1055) did not significantly affect sporulation or CPE production. Studies using a spoIIA operon promoter-driven reporter plasmid indicated that CPR0195 functions early during sporulation, i.e., prior to production of sporulation-associated sigma factors. Furthermore, in vitro studies showed that the CPR0195 kinase domain can autophosphorylate and phosphorylate Spo0A. These results support the idea of CPR0195 as an important kinase that initiates C. perfringens sporulation by directly phosphorylating Spo0A. This kinase could represent a novel therapeutic target to block C. perfringens sporulation and CPE production during type F disease.
Collapse
|
17
|
NanR Regulates Sporulation and Enterotoxin Production by Clostridium perfringens Type F Strain F4969. Infect Immun 2018; 86:IAI.00416-18. [PMID: 30082481 DOI: 10.1128/iai.00416-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
Clostridium perfringens type F strains, which produce C. perfringens enterotoxin (CPE), are a major cause of gastrointestinal infections, including the second most prevalent bacterial foodborne illness and 5 to 10% cases of antibiotic-associated diarrhea. Virulence of type F strains is primarily ascribable to CPE, which is synthesized only during sporulation. Many type F strains also produce NanI sialidase and carry a nan operon that likely facilitates uptake and metabolism of sialic acid liberated from glycoconjugates by NanI. During vegetative growth of type F strain F4969, NanR can regulate expression of nanI Given their importance for type F disease, the current study investigated whether NanR can also influence sporulation and CPE production when F4969 or isogenic derivatives are cultured in modified Duncan-Strong sporulation (MDS) medium. An isogenic F4969 nanR null mutant displayed much less sporulation and CPE production but more NanI production than wild-type F4969, indicating that NanR positively regulates sporulation and CPE production but represses NanI production in MDS. Results for the nanR mutant also demonstrated that NanR regulates expression of the nan operon. A nanI nanR double null mutant mirrored the outcome of the nanR null mutant strain but with a stronger inhibition of sporulation and CPE production, even after overnight incubation. Coupled with results using a nanI null mutant, which had no impairment of sporulation or CPE production, NanR appears to carefully modulate the availability of NanI, nan operon-encoded proteins and sialic acid to provide sufficient nutrients to sustain sporulation and CPE production when F4969 is cultured in MDS medium.
Collapse
|
18
|
Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio 2018; 9:mBio.01188-18. [PMID: 30181248 PMCID: PMC6123439 DOI: 10.1128/mbio.01188-18] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. A body of research has accumulated over the years to describe the multifaceted physiological roles of BCAAs and the mechanisms bacteria use to maintain their intracellular levels. More recent studies have focused on understanding how fluctuations in their intracellular levels impact global regulatory pathways that coordinate the adaptation to nutrient limitation, especially in pathogenic bacteria. In this minireview, we discuss how these studies have refined the individual roles of BCAAs, shed light on how BCAA auxotrophy might promote higher sensitivity to exogenous BCAA levels, and revealed pathogen-specific responses to BCAA deprivation. These advancements improve our understanding of how bacteria meet their nutritional requirements for growth while simultaneously remaining responsive to changes in environmental nutrient availability to promote their survival in a range of environments.
Collapse
|
19
|
Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 2018; 7:141. [PMID: 30082713 PMCID: PMC6079034 DOI: 10.1038/s41426-018-0144-8] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
Clostridium perfringens, a rapid-growing pathogen known to secrete an arsenal of >20 virulent toxins, has been associated with intestinal diseases in both animals and humans throughout the past century. Recent advances in genomic analysis and experimental systems make it timely to re-visit this clinically and veterinary important pathogen. This Review will summarise our understanding of the genomics and virulence-linked factors, including antimicrobial potentials and secreted toxins of this gut pathogen, and then its up-to-date clinical epidemiology and biological role in the pathogenesis of several important human and animal-associated intestinal diseases, including pre-term necrotising enterocolitis. Finally, we highlight some of the important unresolved questions in relation to C. perfringens-mediated infections, and implications for future research directions.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| |
Collapse
|
20
|
Saito R, Talukdar PK, Alanazi SS, Sarker MR. RelA/DTD-mediated regulation of spore formation and toxin production by Clostridium perfringens type A strain SM101. MICROBIOLOGY-SGM 2018; 164:835-847. [PMID: 29624163 DOI: 10.1099/mic.0.000655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RelA is a global regulator for stationary phase development in the model bacterium Bacillus subtilis. The relA gene forms a bicistronic operon with the downstream dtd gene. In this study, we evaluated the significance of RelA and DTD proteins in spore formation and toxin production by an important gastrointestinal pathogen Clostridium perfringens. Our β-glucuronidase assay showed that in C. perfringens strain SM101, relA forms a bicistronic operon with its downstream dtd gene, and the relA promoter is expressed during both vegetative and sporulation conditions. By constructing double relA dtd and single dtd mutants in C. perfringens SM101, we found that: (1) RelA is required for maintaining the efficient growth capacity of SM101 cells during vegetative conditions; (2) both RelA and DTD are required for spore formation and enterotoxin (CPE) production by SM101; (3) RelA/DTD activate CodY, which is known to activate spore formation and CPE production in SM101 by activating a key sporulation-specific σ factor F; (4) as expected, RelA/DTD activate sporulation-specific σ factors (σE, σF, σG and σK) by positively regulating Spo0A production; and finally (5) RelA, but not DTD, negatively regulates phospholipase C (PLC) production by repressing plc gene expression. Collectively, our results demonstrate that RelA modulates cellular physiology such as growth, spore formation and toxin production by C. perfringens type A strain SM101, although DTD also plays a role in these pleiotropic functions in coordination with RelA during sporulation. These findings have implications for the understanding of the mechanisms involved in the infectious cycle of C. perfringens.
Collapse
Affiliation(s)
- Ryoichi Saito
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology and Immunology, Field of Applied Laboratory Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Prabhat K Talukdar
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA.,Present address: School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Saud S Alanazi
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|